Анисина Юлия Евгеньевна

«Мультикомпонентный дизайн хромено[2,3-b]пиридиновых систем»

Шифр специальности 02.00.03

Химические науки

Шифр диссертационного совета Д 002.222.01

Федеральное государственное учреждение науки Институт

органической химии им. Н.Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел.: (499) 137-13-79

E-mail: sci-serc@ioc.ac.ru

Дата размещения полного текста диссертации на сайте Института http://zioc.ru/

«01» июля 2019 года

Дата приема к защите «09» июля 2019 года

Дата размещения автореферата на сайте BAK vak3.ed.gov.ru «18» июля 2019 года

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н. Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН)

На правах рукописи

AHUCUHA

АНИСИНА ЮЛИЯ ЕВГЕНЬЕВНА

МУЛЬТИКОМПОНЕНТНЫЙ ДИЗАЙН ХРОМЕНО[2,3-*b*]ПИРИДИНОВЫХ СИСТЕМ

02.00.03 – Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в лаборатории химии аналогов карбенов и родственных интермедиатов №1 Федерального государственного бюджетного учреждения науки Института органической химии им. Н. Д. Зелинского Российской академии наук (ИОХ РАН)

НАУЧНЫЙ РУКОВОДИТЕЛЬ: Элинсон Михаил Николаевич,

д.х.н., профессор, ведущий научный сотрудник лаборатории химии аналогов карбенов и родственных интермедиатов №1 Института органической химии им. Н.Д.

Зелинского Российской академии наук

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ: Белоглазкина Елена Кимовна,

д.х.н., профессор кафедры органической

химии химического факультета

Московского государственного университета

им. М.В. Ломоносова

Попков Сергей Владимирович,

к.х.н., доцент, заведующий кафедрой химии и технологии органического синтеза факультета химико-фармацевтических технологий и биомедицинских препаратов ФГБОУ ВО

РХТУ им. Д.И. Менделеева

ВЕДУЩАЯ ОРГАНИЗАЦИЯ: ФГАОУ ВО Российский государственный

университет нефти и газа (национальный исследовательский университет) им. И.М.

Губкина

Защита диссертации состоится «09» октября 2019 г. в 11^{00} часов на заседании Диссертационного совета Д 002.222.01 в Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского РАН по адресу: 119991 Москва, Ленинский проспект, 47.

С диссертацией можно ознакомиться в библиотеке Института органической химии им. Н.Д. Зелинского РАН и на официальном сайте Института http://zioc.ru.

Автореферат разослан «24» июля 2019 г.

Ваш отзыв в двух экземплярах, заверенный гербовой печатью, просим направлять по адресу: 119991, Москва, Ленинский проспект, д. 47, ученому секретарю Диссертационного совета ИОХ РАН.

Ученый секретарь Диссертационного совета Д 002.222.01 ИОХ РАН доктор химических наук

Derrulla

А. Д. Дильман

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность проблемы.</u> Мультикомпонентные реакции (МКР) — это реакции, в которых три или более реагента смешиваются в одном реакционном сосуде и образовывают новое соединение, включающее большинство атомов, содержащихся в исходных компонентах. МКР известны уже более ста лет. Одним из первых мультикомпонентных процессов является синтез дигидропиридинов по Ганчу, опубликованный в 1882 году.

В настоящее время мультикомпонентные реакции занимают уникальную нишу в синтезе сложных гетероциклических молекул. По сравнению с классическим многостадийным синтезом мультикомпонентные процессы имеют ряд существенных преимуществ, таких как,

- сокращение количества синтетических стадий,
- сокращение числа операций по выделению и очистке синтезируемых соединений,
 - уменьшение количества отходов и побочных продуктов,
 - снижение расхода органических растворителей,
- экономия атомов (большинство атомов реагентов в некоторых случаях все входят в состав конечного соединения),
- конвергентность (несколько реагентов взаимодействуют в одном процессе с образованием конечного соединения),
- высокий bond-forming-index (количество не водородных связей, образующихся за одну мультикомпонентную трансформацию).

С применением мультикомпонентных реакций был осуществлен синтез обширных библиотек соединений различных классов при варьировании исходных реагентов.

Гетероциклические соединения составляют почти 50% известных органических соединений и примерно 90% активных синтетических фармацевтических препаратов. В связи с этим, гетероциклические соединения занимают особое место в поиске современных лекарственных средств. Среди них выделены 50 наиболее известных гетероциклических соединений, так называемых «privileged medicinal structures» или скаффолдов, для которых известны и изучены взаимодействия с различными биологическими мишенями. «Архитектура» скаффолда подразумевает наличие жесткой гетероциклической структуры, задающей определенную ориентацию молекулы для распознавания активного центра мишени (клеточного рецептора).

Хромено[2,3-*b*] пиридины представляют собой «privileged medicinal scaffold» и обладают широким спектром биологической активности, а также физико-химическими свойствами, позволяющими им находить применение в различных областях промышленности (например, в качестве ингибиторов коррозии малоуглеродистой стали). Они способны проявлять такие виды фармакологической активности, как антибактериальная, антипролиферативная, противораковая, противоревматическая, антигистаминная, антимиопическая и антиастматическая.

Поскольку современный органический синтез направлен на получение сложных функционализированных молекул из простых и доступных реагентов с использованием минимального количества стадий, создание методов мультикомпонентного дизайна хромено[2,3-b]пиридинов является актуальным и представляет практический интерес.

<u>Цель работы</u> — создание методов мультикомпонентного дизайна различных замещенных хромено[2,3-b]пиридиновых систем из альдегидов, малононитрила или его димера, С-H кислот и органических фосфитов на основе использования МКР,

изучение механизмов и химических свойств полученных соединений. Также перед нами стояли следующие задачи:

- молекулярное моделирование (молекулярный докинг) для поиска наиболее достоверной ориентации и конформации лиганда (хромено[2,3-b]пиридина) в центре связывания известного белка-мишени,
- исследование межмолекулярных водородных связей в твердой фазе в хромено[2,3-*b*]пиридинах методом порошкового рентгеноструктурного анализа.

Научная новизна работы.

Установлено, что 5-C-замещенные хромено[2,3-b] пиридины образуются путем трехкомпонентной трансформации салициловых альдегидов, димера малононитрила и C-H кислот. B качестве C-H кислот B реакциях получения 5-C-замещенных хромено[2,3-b] пиридинов использованы пяти- и шестичленные гетероциклические или карбоциклические соединения.

Широкое разнообразие хромено[2,3-b]пиридинов дополнено новым подклассом – 5-P-замещенные хромено[2,3-b]пиридины.

Обнаружены термические перегруппировки дигалогензамещенных 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридинов в соответствующие 5-(2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридин-3-карбонитрилы или 9-оксо-5,6,7,8,9,10-гексагидробензо[b][1,6]нафтиридин-4-карбонитрилы в зависимости от температурного режима.

Найдена внутримолекулярная окислительная циклизация 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридинов в соответствующие замещенные 7-амино-13-оксо-10,11,12,13-тетрагидробензо[b]хромено[4,3,2-de][1,6]нафтиридин-8-карбонитрилы.

Всего синтезировано 133 соединения, из них 117 новых.

Практическая значимость работы.

Разработаны системы «катализатор-растворитель» для эффективного получения сложных функционализированных хромено[2,3-b]пиридинов из простых и доступных исходных реагентов в одну синтетическую стадию.

Осуществлен мультикомпонентный синтез серий хромено[2,3-b]пиридинов взаимодействием салициловых альдегидов, С-H кислот и малононитрила или его димера.

Разработан мультикомпонентный эффективный и простой в реализации метод синтеза 5-арил-6,7,8,9-тетрагидро-5H-хромено[2,3-b]пиридин-3-карбонитрилов.

В результате взаимодействия салициловых альдегидов, димера малононитрила и триалкилфосфитов получены ранее неизвестные диалкил(2,4-диамино-3-циано-5H-хромено[2,3-b]пиридин-5-ил)фосфонаты.

Исследована способность хромено[2,3-b]пиридиновой системы превращаться в другие полигетероциклические соединения, а также предложена универсальная методика для осуществления данного процесса.

<u>Публикации.</u> По результатам проведенных исследований опубликовано 10 статей в отечественных и зарубежных журналах, а также 12 тезисов докладов на российских и международных научных конференциях.

Апробация работы. Результаты диссертационной работы были представлены на VII Международной научно-практической конференции «Наука сегодня» (Вологда, 2015), І Всероссийской молодёжной школе-конференции «Успехи синтеза и комплексообразования» (Москва, 2016), Кластере конференций по органической химии «ОргХим-2016» (Санкт-Петербург, 2016), Х Международной конференции молодых учёных по химии «МЕНДЕЛЕЕВ-2017» (Санкт-Петербург, 2017), IV

Международной научной конференции «Успехи синтеза и комплексообразования» (Москва, 2017), VII Молодежной конференции ИОХ РАН (Москва, Всероссийской молодёжной школе-конференция «Актуальные проблемы органической химии» (Новосибирск, Шерегеш, 2018), II Всероссийской «Байкальской школе-конференция по химии» (Иркутск, 2018), V Всероссийской с международным участием конференции по органической химии (Владикавказ, 2018), Международной конференции «Organic & Hybrid Functional Materials and Additive Technologies» (Москва, 2018), Всероссийской конференции «Взаимосвязь ионных и ковалентных взаимодействий в дизайне молекулярных и наноразмерных химических систем» (Москва, 2019), VIII Молодежной конференции ИОХ РАН (Москва, 2019).

<u>Структура и объем работы.</u> Материал диссертации изложен на 240 страницах и состоит из введения, обзора литературы на тему «Мультикомпонентные методы получения хромено[2,3-*b*]пиридиновых систем», обсуждения результатов, экспериментальной части, выводов и списка литературы. Библиографический список состоит из 165 наименований.

<u>Личный вклад автора.</u> Личный вклад соискателя состоит в поиске, анализе и обобщении научной информации по классическим и мультикомпонентным методам получения хромено[2,3-*b*]пиридинов, их биологической активности и применении. При этом были использованы современные системы сбора и обработки научнотехнической информации: электронные базы данных Reaxys (Elsevier), SciFinder (Chemical Abstracts Service) и Web of Science (Thomson Reuters), а также полные тексты статей и книг.

Соискатель самостоятельно выполнял описанные в диссертации химические эксперименты, а также самостоятельно выделял и очищал конечные соединения. Диссертант участвовал в установлении строения полученных соединений с помощью физико-химических и спектральных методов анализа, обрабатывал и интерпретировал полученные результаты (физико-химические исследования выполнены в результате совместных исследований с сотрудниками ФГБУН ИОХ РАН в Лаборатории микроанализа №9 и в Лаборатории ядерного магнитного резонанса №30, а также ФГБУН ИНЭОС РАН в Отделе физических и физико-химических методов изучения строения веществ). Соискатель также осуществлял апробацию работ на конференциях и выполнял подготовку публикаций по выполненным исследованиям.

Все экспериментальные работы и спектральные исследования синтезированных соединений выполнены на современном сертифицированном оборудовании, обеспечивающем получение надежных данных. Состав и строение соединений, обсуждаемых в диссертационной работе, подтверждены данными одномерной (¹H, ¹³C, ¹⁹F) и двумерной ({¹H-¹³C}-HMBC, {¹H-¹H}-NOESY и т.д.) спектроскопии ЯМР, а также ИК-спектроскопии и масс-спектрометрии (в том числе высокого разрешения), элементного анализа, а также рентгеноструктурного анализа.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Основное содержание диссертационной работы посвящено дизайну хромено[2,3-b]-пиридиновых систем на основе альдегидов, малононитрила или его димера, С-H кислот или триалкилфосфитов, а также изучению некоторых химических свойств полученных соединений. Кроме того, для ряда соединений выполнен молекулярный докинг и исследование межмолекулярных водородных связей в твердой фазе методом порошкового рентгеноструктурного анализа.

1. Мультикомпонентный синтез 5-С-замещенных хромено[2,3-b]пиридинов

5-C-замещенные хромено[2,3-b]пиридины способны ингибировать митогенактивируемую протеинкиназу МК-2 и подавлять экспрессию фактора некроза опухоли TNF- α . Эти свойства позволяют им считаться потенциальными лекарствами для лечения различных воспалительных заболеваний, таких как ревматоидный артрит или псориаз. Кроме того, некоторые из них являются антиоксидантами с мощной нейропротекторной селективной ингибирующей активностью в отношении ацетилхолинэстеразы, что делает их перспективными для применения в терапии болезни Альцгеймера.

1.1. Мультикомпонентная трансформация бензальдегидов, димера малононитрила и 5,5-диметилциклогексан-1,3-диона

На первом этапе исследований была изучена трехкомпонентная трансформация бензальдегидов **1**, димера малононитрила (2-аминопроп-1-ен-1,1,3-трикарбонитрила) и димедона **2** (Схема 1).

$$R^3$$
 R^2
 R^1
 R^1
 R^2
 R^1
 R^1
 R^2
 R^1
 R^1
 R^2
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^2
 R^1
 R^2
 R^2
 R^1
 R^2
 R^2
 R^2
 R^1
 R^2
 R^2

Схема 1

Установлено, что проведение процесса при кипячении в H-пропаноле в присутствии 50 мольн.% триэтиламина обеспечивает оптимальные условия получения 2,4-диамино-8,8-диметил-6-оксо-5-фенил-6,7,8,9-тетрагидро-5H-хромено[2,3-b] пиридин-3-карбонитрила **3** ($R^1 = R^2 = R^3 = H$) с выходом 85%.

В оптимальных условиях трехкомпонентная трансформация бензальдегидов 1, димера малононитрила и димедона 2 приводит к соответствующим 2,4-диамино-5-арил-8,8-диметил-6-оксо-6,7,8,9-тетрагидро-5H-хромено[2,3-b]пиридин-3-карбонитрилам 3 с выходом 70-85% за 4 ч (Схема 1, Таблица 1).

Предложенный механизм мультикомпонентной трансформации бензальдегидов **1**, димера малононитрила и димедона **2** представлен на Схеме 2.

Данный каталитический метод прост в осуществлении и не предполагает использование сложного оборудования. Конечные соединения кристаллизуются непосредственно из реакционной смеси, выделяются простым фильтрованием и не требуют хроматографической очистки или перекристаллизации.

Таблица 1. Трехкомпонентная трансформация бензальдегидов **1**, димера малононитрила и димедона **2** в 2,4-диамино-5-арил-8,8-диметил-6-оксо-6,7,8,9-тетрагидро-5H-хромено[2,3-b]пиридин-3-карбонитрилы $3^{[a],[b]}$

[а] Бензальдегид **1** (3 ммоль), димер малононитрила (3 ммоль), димедон **2** (3 ммоль), триэтиламин (1.5 ммоль), n-PrOH (10 мл), кипячение в течение 4 ч.

[b] Выход выделенных 6,7,8,9-тетрагидро-5H-хромено[2,3-b]пиридин-3-карбонитрилов 3.

Схема 2

Известно, что 6,7,8,9-тетрагидро-5H-хромено[2,3-b]пиридин-3-карбонитрилы обладают антибактериальными и противогрибковыми свойствами, некоторые из них селективно ингибируют рост грамотрицательных бактерий.

1.2. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и 3-фенилизоксазол-5(4H)-она

На следующем этапе этого исследования была изучена трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 3-фенилизоксазол-5(4H)-она в 5-изоксазолил-5H-хромено[2,3-b] пиридины **5** (Схема 3).

$$R^{3}$$
 O + NC NH_{2} + NC CN + R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{4} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5} R^{5}

Схема 3

Соединения, содержащие изоксазольный фрагмент, проявляют широкий спектр биологической активности. Среди них встречаются, например, гербициды, фунгициды, антибиотики и противораковые хемотерапевтические агенты.

Найдены оптимальные условия проведения мультикомпонентной реакции на примере взаимодействия салицилового альдегида $\mathbf{4}$ ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{H}$), димера малононитрила и 3-фенилизоксазол- $\mathbf{5}(4H)$ -она. Установлено, что лучшие выходы конечного соединения достигаются при проведении процесса при кипячении в пиридине в течение $\mathbf{4}$ ч. \mathbf{B} этом процессе пиридин одновременно является растворителем и катализатором.

В оптимальных условиях трансформация салициловых альдегидов **4**, димера малононитрила и 3-фенилизоксазол-5(4H)-она приводит к 5-изоксазолил-5H-хромено[2,3-b] пиридинам **5** с выходом 50-74% (Схема 3, Таблица 2).

Таблица 2. Трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 3-фенилизоксазол-5(4H)-она в 2,4-диамино-5-(5-оксо-3-фенил-2,5-дигидроизоксазол-4-ил)-5H-хромено[2,3-b]пиридин-3-карбонитрилы $\mathbf{5}^{[a],\,[b]}$

[а] Салициловый альдегид **4** (3 ммоль), димер малононитрила (3 ммоль), 3-фенилизоксазол-5(4H)-он (3 ммоль), пиридин (5 мл), кипячение в течение 4 ч.

[b] Выход выделенных 5-изоксазолил-5H-хромено[2,3-b] пиридинов 5.

Предложен следующий механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и 3-фенилизоксазол-5(4*H*)-она (Схема 4):

Схема 4

В разработанном методе используется простое оборудование. Он не сложен в осуществлении и легко масштабируется. Конечные соединения кристаллизуются непосредственно из реакционной смеси, выделяются простым фильтрованием и не требуют хроматографической очистки или перекристаллизации.

Данная реакция стала первым примером в научной литературе, где 5-C-замещенные хромено[2,3-b]пиридины синтезированы из салициловых альдегидов, димера малононитрила и C-H кислоты.

1.3. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и 1,3-циклогександионов

Производные димедона и 1,3-циклогександиона проявляют гербицидную, фунгицидную, противовоспалительную, гипогликемическую активность, а также способны влиять на метаболизм нейропептидов, ответственных за чувство насыщения человека.

В данном разделе приведены данные по исследованию трехкомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и карбоциклических 1,3-дикетонов **2** в 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридины **6** (Схема 5).

$$R^{3}$$
 O + R^{4} R^{4} R^{4} R^{4} R^{3} R^{2} R^{3} R^{2} R^{3} R^{4} R^{4}

Схема 5

Найдены оптимальные условия проведения мультикомпонентной реакции салициловых альдегидов **4**, димера малононитрила и 1,3-циклогександионов **2** в 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридины **6** ($R^1 = R^2 = R^3 = H$, $R^4 = Me$). Установлено, что лучшие выходы конечного соединения достигаются при осуществлении трансформации при кипячении в ацетонитриле в течение 2 ч при катализе 10 мольн.% триэтиламина.

В оптимальных условиях трансформация салициловых альдегидов **4**, димера малононитрила и 1,3-циклогександионов **2** приводит к соответствующим 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридинам **6** с выходом 59-88% (Схема 5, Таблица 3).

Таблица 3. Трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 1,3-циклогександионов **2** в 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридин-3-карбонитрилы **6**^{[a], [b]}

- [а] Салициловый альдегид 4 (3 ммоль), димер малононитрила (3 ммоль), 1,3-циклогександион
- 2 (3 ммоль), триэтиламин (0.3 ммоль), ацетонитрил (10 мл), кипячение в течение 2 ч.
- [b] Выход выделенных 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b] пиридинов **6**.

Механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и циклических 1,3-дикетонов в **2** аналогичен приведенному на стр. 9 (Схема 4).

Разработанный метод предполагает использование простого оборудования и легко осуществим. Конечные соединения кристаллизуются непосредственно из реакционной смеси, выделяются простым фильтрованием и не требуют хроматографической очистки или перекристаллизации.

При использовании вместо 2-аминопроп-1-ен-1,1,3-трикарбонитрила двух эквивалентов малононитрила в данной реакции также были получены целевые хромено [2,3-b] пиридины $\mathbf{6}$ (см. раздел 1.4.).

1.4. Мультикомпонентная трансформация салициловых альдегидов, малононитрила и 1,3-циклогександионов

На следующем этапе исследований была изучена псевдочетырехкомпонентная трансформация салициловых альдегидов **4**, малононитрила и карбоциклических 1,3-дикетонов **2** в 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридины **6** (Схема 6).

$$R^{3}$$
 O + CN + CN

Схема 6

Таблица 4. Псевдочетырехкомпонентная трансформация салициловых альдегидов **4**, малононитрила и 1,3-циклогександионов **2** в 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридин-3-карбонитрилы **6**^{[a], [b]}

[а] Салициловый альдегид **4** (3 ммоль), малононитрил (6 ммоль), 1,3-циклогександион **2** (3 ммоль), триэтиламин (0.3 ммоль), ацетонитрил (10 мл), кипячение в течение 2 ч.

[b] Выход выделенных 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b] пиридинов **6**.

Найдены оптимальные условия проведения мультикомпонентной реакции салициловых альдегидов **4**, малононитрила и 1,3-циклогександионов **2** в 5-(2-гидрокси-6-оксоциклогексил)-5*H*-хромено[2,3-*b*] пиридины **6** ($R^1 = R^2 = R^3 = H, R^4 = Me$).

Установлено, что лучшие выходы конечного соединения достигаются при осуществлении трансформации при кипячении в ацетонитриле в течение 2 ч при катализе 10 мольн.% триэтиламина.

В оптимальных условиях трансформация салициловых альдегидов **4**, малононитрила и 1,3-циклогександионов **2** приводит к 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридинам **6** с выходом 53-82% (Схема 6, Таблица 4).

Предложен следующий механизм псевдочетырехкомпонентной трансформации салициловых альдегидов **4**, двух эквивалентов малононитрила и 1,3-циклогександионов **2** (Схема 7):

Схема 7

Разработанный псевдочетырехкомпонентный метод предполагает использование доступных реагентов, легко осуществим, замещенные 2,4-диамино-5-(2-гидрокси-6-оксоциклогекс-1-ен-1-ил)-5H-хромено[2,3-b]пиридин-3-карбонитрилы 6 кристаллизуются непосредственно из реакционной смеси и не требуют перекристаллизации или хроматографической очистки.

1.5. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и 5-метил-2,4-дигидро-3H-пиразол-3-онов

Производные 2,4-дигидро-3*H*-пиразола проявляют антибактериальную, антиконвульсантную, противовирусную активность, а также участвуют в регуляции метаболизма жиров и синтеза инсулина путем активации рецепторов, активируемых пероксисомным пролифератором.

На следующем этапе диссертационной работы была изучена трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 5-метил-2,4-

дигидро-3H-пиразол-3-онов **7** в 5-(5-гидрокси-3-метил-1H-пиразол-4-ил)-5H-хромено-[2,3-b]пиридины **8** (Схема 8).

$$R^3$$
 O + NC NH₂ + ON N R^4 R^3 R^3 R^3 R^4 R

Схема 8

Условия данной реакции были оптимизированы на примере взаимодействия салицилового альдегида **4**, димера малононитрила и 5-метил-2,4-дигидро-3*H*-пиразол-3-она **7a** ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{H}$). Установлено, что проведение реакции при кипячении в минимальном количестве *n*-PrOH в течение 1 ч при катализе 10 мольн.% триэтиламина обеспечивает оптимальные условия получения 2,4-диамино-5-(5-гидрокси-3-метил-*H*-пиразол-4-ил)-5*H*-хромено[2,3-*b*]пиридин-3-карбонитрила **8a** ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{H}$).

Таблица 5. Трехкомпонентная 'on-solvent' трансформация салициловых альдегидов **4**, димера малононитрила и 5-метил-2,4-дигидро-3*H*-пиразол-3-онов **7** в 5-(5-гидрокси-3-метил-1*H*-пиразол-4-ил)-5*H*-хромено[2,3-*b*]пиридины $8^{[a],[b]}$

[а] Салициловый альдегид **4** (3 ммоль), димер малононитрила (3 ммоль), 5-метил-2,4-дигидро-3H-пиразол-3-он **7** (3 ммоль), триэтиламин (0.3 ммоль), n-PrOH или ацетонитрил (2 мл), кипячение в течение 1 ч.

[b] Выход выделенных 5-(5-гидрокси-3-метил-1*H*-пиразол-4-ил)-5*H*-хромено[2,3-b]пиридинов **8**.

Следует отметить, что в результате оптимизации условий реакции было выявлено, что для трансформации салицилового альдегида **4**, димера малононитрила и 5-метил-2-фенил-2,4-дигидро-3*H*-пиразол-3-она **7b** ($R^1 = R^2 = R^3 = H$, $R^4 = Ph$) лучших выходов

удалось достичь при осуществлении процесса при кипячении в минимальном количестве ацетонитрила в течение 1 ч при катализе 10 мольн.% триэтиламина.

В отптимальных условиях мультикомпонентная 'on-solvent' реакция салициловых альдегидов **4**, димера малононитрила и 5-метил-2,4-дигидро-3H-пиразол-3-онов **7** приводит к соответствующим 5-(5-гидрокси-3-метил-1H-пиразол-4-ил)-5H-хромено-[2,3-b]пиридинам **8** с выходом 63-98% (Схема 8, Таблица 5).

Механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и 5-метил-2,4-дигидро-3*H*-пиразол-3-онов **7** аналогичен приведенному на стр. 9 (Схема 4).

В этом трехкомпонентном методе используется простое оборудование, доступные исходные реагенты, конечные соединения кристаллизуются непосредственно из реакционной смеси и не требуют хроматографической очистки.

1.6. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и 5-трифторметил-2,4-дигидро-3H-пиразол-3-она

Производные 5-(трифторметил)-2,4-дигидро-3H-пиразола обладают гербицидной, инсектицидной, противодиабетической, противовоспалительной активностью, а также антимикробными свойствами.

На следующем этапе диссертационной работы была изучена трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 5-трифторметил-2,4-дигидро-3H-пиразол-3-она в замещенные 5-(5-гидрокси-3-(трифторметил)-1H-пиразол-4-ил)-5H-хромено[2,3-b]пиридины **9** (Схема 9).

$$R^3$$
 ОН R^2 ОН R^3 Метод А или метод Б R^3 (Метод А, 46-90%) (Метод В, 58-92%)

Схема 9

Для выяснения синтетического потенциала и определения оптимальных условий процесса было исследовано превращение салицилового альдегида **4**, димера малононитрила и 5-трифторметил-2,4-дигидро-3*H*-пиразол-3-она в 5-(5-гидрокси-3-(трифторметил)-1*H*-пиразол-4-ил)-5*H*-хромено[2,3-*b*]пиридин **9** ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{R}^3 = \mathbb{H}$). Установлено, что лучшие выходы соединения **9** достигаются при кипячении исходных соединений в пиридине в течение 2 ч (**метод A**) или при кипячении в *n*-пропаноле в течение 1 ч при катализе 10 мольн.% триэтиламина (**метод Б**).

В оптимальных условиях была проведена мультикомпонентная реакция салициловых альдегидов **4**, димера малононитрила и 5-трифторметил-2,4-дигидро-3H-пиразол-3-она с образованием соответствующих 5-(5-гидрокси-3-(трифторметил)-1H-пиразол-4-ил)-5H-хромено[2,3-b]пиридинов **9**. Выходы 5-(5-гидрокси-3-(трифторметил)-1H-пиразол-4-ил)-5H-хромено[2,3-b]пиридинов **9** по **методу A** составили 46-90% и 58-92% по **методу Б** (Схема 9, Таблица 6).

Механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и 5-трифторметил-2,4-дигидро-3H-пиразол-3-она аналогичен приведенному на стр. 9 (Схема 4).

Разработанные методы предполагают использование простого оборудования, а конечные соединения кристаллизуются непосредственно из реакционной смеси, выделяются простым фильтрованием и не требуют хроматографической очистки.

Таблица 6. Трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 5-трифторметил-2,4-дигидро-3*H*-пиразол-3-она в 5-(5-гидрокси-3-(трифторметил)-1*H*-пиразол-4-ил)-5*H*-хромено[2,3-*b*]пиридины **9**^{[a], [b]}

[а] Салициловый альдегид **4** (3 ммоль), димер малононитрила (3 ммоль), 5-трифторметил-2,4-дигидро-3H-пиразол-3-он (3 ммоль) кипячение в пиридине (5 мл) в течение 2 ч (метод **A**) или кипячение в n-пропаноле (5 мл) в течение 4 ч при катализе 10 мольн.% триэтиламина (метод **Б**).

[b] Выход выделенных 5-(5-гидрокси-3-(трифторметил)-1H-пиразол-4-ил)-5H-хромено-[2,3-b]пиридинов **9**.

1.7. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и 4-гидрокси-6-метил-2H-пиран-2-она или 4-гидрокси-6-метилпиридин-2(1H)-онов

Производные 4-гидрокси-6-метил-2*H*-пиран-2-она обладают антикоагулянтной, антимоксидантной, антимикробной, противораковой и противовирусной активностью.

Соединения, содержащие 4-гидрокси-6-метилпиридин-2(1H)-оновый фрагмент, проявляют гербицидные, фунгицидные, нефропротекторные и противовирусные свойства.

В данном разделе приведены данные по исследованию трехкомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и гетероциклических С-H кислот **10** (4-гидрокси-6-метил-2H-пиран-2-она или 4-гидрокси-6-метилпиридин-2(1H)-онов) в замещенные 5H-хромено[2,3-b]пиридины **11** (Схема 10).

$$R^{3}$$
 OH NC NH_{2} $NH_$

Схема 10

Таблица 7. Трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и гетероциклических С-H кислот **10** в замещенные 5H-хромено[2,3-b]-пиридины $\mathbf{11}^{[a],\,[b]}$

[а] Салициловый альдегид **4** (1 ммоль), димер малононитрила (1 ммоль), гетероциклическая С-Н кислота **10** (1 ммоль), пиридин (1 мл), этанол (3 мл), кипячение в течение 4 ч.

[b] Выход выделенных 5H-хромено[2,3-b] пиридинов 11.

Установлено, что проведение процесса при кипячении в смеси пиридин-этанол в объемном соотношении 1:3 обеспечивает оптимальные условия получения

2,4-диамино-5-(4-гидрокси-6-метил-2-оксо-2H-пиран-3-ил)-5H-хромено[2,3-b]пиридин-3-карбонитрила $\mathbf{11}$ ($\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{R}^3 = \mathbf{H}$, $\mathbf{X} = \mathbf{O}$) с выходом 85%.

В оптимальных условиях трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и гетероциклических С-H кислот **10** приводит к замещенным 5H-хромено[2,3-b]пиридинам **11** с выходом 45-97% за 4 ч (Схема 10, Таблица 7).

Механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и 4-гидрокси-6-метил-2H-пиран-2-она или 4-гидрокси-6-метилпиридин-2(1H)-онов **10** аналогичен приведенному на стр. 9 (Схема 4).

Этот мультикомпонентный процесс обладает рядом преимуществ, таких как использование простого оборудования и доступных реагентов, легкое осуществление реакций и их масштабируемость, конечные соединения кристаллизуются непосредственно из реакционной смеси и не требуют хроматографической очистки.

1.8. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и 5-гидрокси-2-(гидроксиметил)-4H-пиран-4-она (койевой кислоты)

Производные койевой кислоты известны в качестве антибактериальных и фунгицидных средств, противоопухолевых, антиконвульсантных препаратов, а также ингибиторов ферментов тирозиназы и аминопептидазы N.

На следующем этапе диссертационного исследования была изучена трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и 5-гидрокси-2-(гидроксиметил)-4H-пиран-4-она (койевой кислоты) в замещенные 5-(3-гидрокси-6-(гидроксиметил)-4-оксо-4H-пиран-2-ил)-5H-хромено[2,3-b]пиридины **12** (Схема 11).

Схема 11

Найдены оптимальные условия проведения мультикомпонентной реакции образования 5-(3-гидрокси-6-(гидроксиметил)-4-оксо-4H-пиран-2-ил)-5H-хромено-[2,3-b]пиридина $\mathbf{12}$ ($\mathbf{R}^1=\mathbf{R}^2=\mathbf{R}^3=\mathbf{H}$) на примере взаимодействия салицилового альдегида $\mathbf{4}$, димера малононитрила и койевой кислоты. Установлено, что лучшие выходы конечного соединения $\mathbf{12}$ достигаются при кипячении в изопропаноле при катализе 10 мольн.% фторида калия в течение 2 ч.

В оптимальных условиях трансформация салициловых альдегидов **4**, димера малононитрила и койевой кислоты приводит к 5-(3-гидрокси-6-(гидроксиметил)-4-оксо-4H-пиран-2-ил)-5H-хромено[2,3-b]пиридинам **12** с выходом 50-88% (Схема 11, Таблица 8).

Механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и койевой кислоты аналогичен приведенному на стр. 9 (Схема 4).

Таблица 8. Трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и койевой кислоты в 5-(3-гидрокси-6-(гидроксиметил)-4-оксо-4H-пиран-2-ил)-5H-хромено[2,3-b]пиридины **12**^{[a], [b]}

[а] Салициловый альдегид **4** (3 ммоль), димер малононитрила (3 ммоль), койевая кислота (3 ммоль), изопропанол (5 мл), кипячение в течение 2 ч при катализе 10 мольн.% фторида калия.

[b] Выход выделенных 5-(3-гидрокси-6-(гидроксиметил)-4-оксо-4H-пиран-2-ил)-5H-хромено-[2,3-b]пиридинов **12**.

В этом методе используется простое оборудование, недорогие исходные реагенты, а конечные соединения выделяются простым фильтрованием и не требуют хроматографической очистки.

2. Мультикомпонентный синтез 5-Р-замещенных хромено[2,3-b]пиридинов

Сведения о 5-P-замещенных хромено[2,3-b] пиридинах в литературе отсутствовали. Так как соединения этого типа могут представлять практический интерес в качестве биологически активных соединений, нами был разработан метод их синтеза с использованием мультикомпонентных реакций.

2.1. Мультикомпонентная трансформация салициловых альдегидов, димера малононитрила и триалкилфосфитов

Фосфонаты проявляют широкий спектр биологической активности, такой как гербицидная, противораковая, антипролиферативная, противовоспалительная, они также известны как антиметаболиты, миметики и ингибиторы ферментов.

В данном разделе диссертационной работы представлены данные по трехкомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и триалкилфосфитов **13** в 5-(диалкоксифосфорил)-5H-хромено[2,3-b]пиридины **14** (Схема 12).

$$R^{3}$$
 OH NC NH_{2} + $P(OR^{4})_{3}$ R^{4} R^{4} NH_{2} NH_{2}

Схема 12

Установлено, что лучшие выходы 5-(диалкоксифосфорил)-5H-хромено[2,3-b]-пиридинов 14 достигаются при проведении мультикомпонентной реакции при кипячении в ацетонитриле в течение 4 ч в присутствии 10 мольн.% морфолина.

В оптимальных условиях мультикомпонентная реакция салициловых альдегидов **4**, димера малононитрила и триалкилфосфитов **13** приводит к 5-(диалкоксифосфорил)-5*H*-хромено[2,3-*b*]пиридинам **14** с выходом 56-86% (Схема 12, Таблица 9).

Таблица 9. Трехкомпонентная трансформация салициловых альдегидов **4**, димера малононитрила и триалкилфосфитов **13** в 5-(диалкоксифосфорил)-5H-хромено[2,3-b]-пиридины **14**^{[a], [b]}

[а] Салициловый альдегид **4** (3 ммоль), димер малононитрила (3 ммоль), триалкилфосфит **13** (3 ммоль), морфолин (0.3 ммоль), ацетонитрил (10 мл), кипячение в течение 4 ч.

[b] Выход выделенных 5-(диалкоксифосфорил)-5*H*-хромено[2,3-*b*]пиридинов **14**.

Предложенный механизм мультикомпонентной трансформации салициловых альдегидов **4**, димера малононитрила и триалкилфосфитов **13** представлен на Схеме 13.

В этом каталитическом методе используется простое оборудование, доступные и недорогие исходные реагенты, он легко осуществим, а выделение конечных соединений не является трудоемким. Они кристаллизуются непосредственно из реакционной смеси, выделяются фильтрованием и не требуют хроматографической очистки.

Данная реакция стала первым примером в научной литературе, описывающим синтез фосфор-замещенных 5H-хромено[2,3-b]пиридинов.

Схема 13

3. Изучение превращений хромено[2,3-b] пиридиновой системы

3.1. Окислительная циклизация хромено[2,3-b]пиридинов, содержащих 1,3-циклогександионовый фрагмент

При исследовании химических свойств синтезированных хромено[2,3-b]пиридинов было обнаружено, что кипячение 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено-[2,3-b]пиридинов **6** в муравьиной кислоте приводит к 10,11,12,13-тетрагидробензо[b]-хромено[4,3,2-de][1,6]нафтиридинам **15** (Схема 14).

$$R^{4}$$
 R^{4} R^{4

Схема 14

Установлено, что лучшие выходы 10,11,12,13-тетрагидробензо[b]хромено-[4,3,2-de][1,6]нафтиридинов **15** достигаются при кипячении исходных соединений **6** в муравьиной кислоте в течение 2 ч.

В оптимальных условиях внутримолекулярная окислительная циклизация хромено[2,3-b]пиридинов **6** приводит к 10,11,12,13-тетрагидробензо[b]хромено-[4,3,2-de][1,6]нафтиридинам **15** с выходом 61-85% (Схема 14, Таблица 10).

Таблица 10. Внутримолекулярная окислительная циклизация хромено[2,3-b]пиридинов **6** в 10,11,12,13-тетрагидробензо[b]хромено[4,3,2-de][1,6]нафтиридины **15**^{[a],[b]}

[а] 5-(2-Гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридин **6** (0.5 ммоль), муравьиная кислота (2.5 мл), кипячение в течение 2 ч.

[b] Выход выделенных тетрагидробензо[b]хромено[4,3,2-de][1,6]нафтиридинов **15**.

Предложен следующий механизм внутримолекулярной окислительной циклизации хромено[2,3-b]пиридинов **6** в замещенные 10,11,12,13-тетрагидробензо[b]хромено-[4,3,2-de][1,6]нафтиридины **15** (Схема 15):

Схема 15

Данная внутримолекулярная окислительная циклизация предполагает использование простого оборудования, легко осуществима, конечные соединения выделяются добавлением к реакционной смеси небольшого количества воды и не требуют хроматографической очистки.

3.2. Термические перегруппировки хромено[2,3-b]пиридинов

В процессе исследования реакции получения 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b] пиридинов 6 было обнаружено, что при длительном стоянии ампулы с соединением 6, содержащим два галогена в качестве заместителей, в ДМСО- d_6 в

спектре ЯМР ¹Н появляется второе соединение. Далее было выяснено, что хромено-[2,3-b]пиридины **6** превращаются в соответствующие 5-(2,3,4,9-тетрагидро-1*H*-ксантен-9-ил)-6-оксо-1,6-дигидропиридины **16** и 5,6,7,8,9,10-гексагидробензо[b][1,6]-нафтиридин-4-карбонитрилы **17** в зависимости от температурного режима (Схема 16).

Схема 16

Установлено, что проведение процесса при нагревании до 100 °C или 150 °C в ДМСО обеспечивает оптимальные условия получения 5-(2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридинов 16 и 5,6,7,8,9,10-гексагидробензо[b]-[1,6]нафти-ридин-4-карбонитрилов 17 соответственно.

В найденных оптимальных термическая перегруппировка дигалогензамещенных хромено[2,3-b] пиридинов **6** приводит к 5-(2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридинам **16** и 5,6,7,8,9,10-гексагидробензо[b][1,6]нафтиридин-4-карбонитрилам **17** с выходом 80-99% за 1 ч (Таблица 11, Схема 16).

Таблица 11. Термическая перегруппировка дигалогензамещенных хромено[2,3-b]-пиридинов **6** в 5-(2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридины **16**^{[a], [c]} и 5,6,7,8,9,10-гексагидробензо[b][1,6]нафтиридин-4-карбонитрилы **17**^{[b], [c]}

[а] 5-(2-Гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридин **6** (0.5 ммоль), ДМСО (0.5 мл), нагревание до 100 °С в течение 1 ч.

[b] 5-(2-Гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридин **6** (0.5 ммоль), ДМСО (0.5 мл), нагревание до 150 °C в течение 1 ч.

[c] Выход выделенных 5-(2,3,4,9-тетрагидро-1*H*-ксантен-9-ил)-6-оксо-1,6-дигидропиридинов **16** и 5,6,7,8,9,10-гексагидробензо[*b*][1,6]нафтиридин-4-карбонитрилов **17.**

Кроме того, 5-(2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридин **16** переходит в нафтиридин **17** (R = Me, Hal = Cl) с выходом 97% при нагревании до 150 °C в ДМСО в течение 1 ч (Схема 16).

Предложен следующий механизм термической перегруппировки хромено[2,3-b]-пиридинов **6** в 5-(2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридины **16** и 5,6,7,8,9,10-гексагидробензо[b][1,6]нафтиридин-4-карбонитрилы **17** (Схема 17):

Схема 17

Данная перегруппировка предполагает использование простого оборудования, легко осуществима, конечные соединения выделяются добавлением к реакционной смеси небольшого количества воды и не требуют хроматографической очистки.

выводы

- 1. Разработаны системы «катализатор-растворитель» для эффективного получения сложных функционализированных хромено[2,3-*b*] пиридинов из простых и доступных исходных реагентов в одну синтетическую стадию в мультикомпонентных реакциях.
- 2. Установлено, что 5-C-замещенные хромено[2,3-b]пиридины образуются путем трехкомпонентной трансформации салициловых альдегидов, димера малононитрила и С-H кислот. В качестве С-H кислот в реакциях получения 5-C-замещенных хромено[2,3-b]пиридинов использованы пяти- и шестичленные гетероциклические или карбоциклические соединения; а именно 1,3-циклогександионы, 5-метил-2,4-дигидро-3H-пиразол-3-оны, 5-трифторметил-2,4-дигидро-3H-пиразол-3-он, 4-гидрокси-6-метил-2H-пиран-2-он, 4-гидрокси-6-метилпиридин-2(1H)-оны, койевая кислота.
- 3. Осуществлен мультикомпонентный эффективный и простой в реализации метод синтеза 5-арил-6-оксо-6,7,8,9-тетрагидро-5H-хромено[2,3-b]пиридин-3-карбонитрилов из бензальдегидов, димера малононитрила и димедона.
- 4. Из салициловых альдегидов, димера малононитрила и триалкилфосфитов были получены ранее неизвестные диалкил(2,4-диамино-3-циано-5H-хромено[2,3-b]-пиридин-5-ил)фосфонаты. Впервые синтезированы фосфорзамещенные хромено-[2,3-b]пиридины.
- 5. Реализована эффективная псевдочетырехкомпонентная трансформация салициловых альдегидов, двух эквивалентов малононитрила и 1,3-циклогександионов в 5-(2-гидрокси-6-оксоциклогексил)-5H-хромено[2,3-b]пиридины.
- 6. Найдена внутримолекулярная окислительная циклизация хромено[2,3-b]-пиридинов, содержащих циклогексан-1,3-дионовый фрагмент, в соответствующие замещенные 7-амино-11,11-диметил-13-оксо-10,11,12,13-тетрагидробензо[b]хромено-[4,3,2-de][1,6]нафтиридин-8-карбонитрилы.
- 7. Обнаружены и исследованы термические перегруппировки дигалогензамещенных хромено[2,3-b]пиридинов, содержащих циклогексан-1,3-дионовый фрагмент, в соответствующие 5-(1-оксо-2,3,4,9-тетрагидро-1H-ксантен-9-ил)-6-оксо-1,6-дигидропиридин-3-карбонитрилы и 9-оксо-5,6,7,8,9,10-гексагидробензо[b][1,6]нафтиридин-4-карбонитрилы в зависимости от температурного режима.

Основные результаты диссертации изложены в следующих работах:

- 1. A. N. Vereshchagin. Pot, atom and step economic (PASE) synthesis of 5-isoxazolyl-5*H*-chromeno[2,3-*b*]pyridine scaffold / A. N. Vereshchagin, M. N. Elinson, **Y. E. Anisina**, F. V. Ryzhkov, A. S. Goloveshkin, I. S. Bushmarinov, S. G. Zlotin, M. P. Egorov // *Mendeleev Commun.* **2015**. Vol. 25. I. 6. P. 424-426.
- 2. M. N. Elinson. Efficient Multicomponent approach to the medicinally relevant 5-arylchromeno[2,3-*b*]pyridine scaffold / M. N. Elinson, A. N. Vereshchagin, **Y. E. Anisina**, M. P. Egorov // *Polycycl Aromat Compd.* **2017**. DOI: 10.1080/10406638.2017.1363062.
- 3. A. N. Vereshchagin. PASE pseudo-four-component synthesis and docking studies of new 5-*C*-substituted 2,4-diamino-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitriles / A. N. Vereshchagin, M. N. Elinson, **Y. E. Anisina**, F. V. Ryzhkov, R. A. Novikov, M. P. Egorov // *ChemistrySelect.* **2017**. Vol. 2. I. 17. P. 4593-4597.
- 4. A. N. Vereshchagin. Synthesis, structural, spectroscopic and docking studies of new 5*C*-substituted 2,4-diamino-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitriles / A. N.

- Vereshchagin, M. N. Elinson, **Y. E. Anisina**, F. V. Ryzhkov, R. A. Novikov, M. P. Egorov // *J. Mol. Struct.* **2017**. Vol. 1146. P. 766-772.
- 5. M. N. Elinson. PASE facile and efficient multicomponent approach to the new type of 5-*C*-substituted 2,4-diamino-5*H*-chromeno[2,3-*b*]pyridine scaffold / M. N. Elinson, A. N. Vereshchagin, **Y. E. Anisina**, A. S. Goloveshkin, I. E. Ushakov, M. P. Egorov // *Mendeleev Commun.* **2018**. Vol. 28. I. 4. P. 372-374.
- 6. M. N. Elinson. A facile and efficient multicomponent approach to 5-[5-hydroxy-3-(trifluoromethyl)-1*H*-pyrazol-4-yl]-5*H*-chromeno[2,3-*b*]pyridines / M. N. Elinson, A. N. Vereshchagin, **Y. E. Anisina**, A. N. Fakhrutdinov, A. S. Goloveshkin, M. P. Egorov // *J. Fluorine Chem.* **2018**. Vol. 213. P. 31-36.
- 7. М. Н. Элинсон. Мультикомпонентная трансформация салициловых альдегидов, 2-аминопроп-1-ен-1,1,3-трикарбонитрила и пиразолин-5-онов в замещенные 2,4-диамино-5-(5-гидрокси-3-метил-1*H*-пиразол-4-ил)-5*H*-хромено[2,3-*b*]пиридин-3-карбонитрилы / М. Н. Элинсон, А. Н. Верещагин, **Ю. Е. Анисина**, А. С. Головешкин, И. Е. Ушаков, М. П. Егоров // *Известия АН. Серия химическая*. **2018**. Т. 67. № 9. С.1695-1703.
- 8. M. N. Elinson. Selective multicomponent 'one-pot' approach to the new 5-(4-hydroxy-6-methyl-2-oxo-2*H*-pyran-3-yl)chromeno[2,3-*b*]pyridine scafold in pyridine—ethanol catalyst/solvent system / M. N. Elinson, A. N. Vereshchagin, **Y. E. Anisina**, S. K. Krymov, A. N. Fakhrutdinov, M. P. Egorov // *Monatsh. Chem.* **2019**. Vol. 150. I. 6. P. 1073-1078.
- 9. M. N. Elinson. Pot, atom and step economic (PASE) multicomponent approach to 5-(dialkyl phosphonate)-substituted 2,4-diamino-5*H*-chromeno[2,3-*b*]pyridine scaffold / M. N. Elinson, A. N. Vereshchagin, **Y. E. Anisina**, A. N. Fakhrutdinov, A. S. Goloveshkin, M. P. Egorov // Eur. J. Org. Chem. **2019**. DOI: 10.1002/ejoc.201900240.
- 10. M. N. Elinson. Pot, atom and step economic (PASE) assembly of salicylaldehydes, malononitrile dimer and 4-hydroxypyridine-2(1*H*)-ones into medicinally relevant 5*H*-chromeno[2,3-*b*]pyridine scaffold // M. N. Elinson, A. N. Vereshchagin, **Y. E. Anisina**, S. K. Krymov, A. N. Fakhrutdinov, A. S. Goloveshkin, M. P. Egorov // *Mol. Divers.* **2019**. DOI: 10.1007/s11030-019-09968-x.
- 11. **Ю. Е. Анисина**. 'PASE'-синтез 5-изоксазолил-5*H*-хромено[2,3-*b*]пиридиновых систем / **Ю. Е. Анисина**, А. Н. Верещагин, М. Н. Элинсон // VII международная научно-практическая конференция «Наука сегодня». Россия, г. Вологда, **2015**, т. 4, с. 86-88.
- 12. **Ю. Е. Анисина**. Мультикомпонентный синтез замещенных хромено[2,3-*b*]-пиридинов / **Ю. Е. Анисина**, А. Н. Верещагин, М. Н. Элинсон // *I Всероссийская молодёжная школа-конференция «Успехи синтеза и комплексообразования». Россия, г. Москва, 2016, с. 84.*
- 13. **Ю. Е. Анисина**. 'PASE'-синтез 5-пиразолил-5*H*-хромено[2,3-*b*]пиридинов / **Ю. Е. Анисина**, А. Н. Верещагин, М. Н. Элинсон // Конференция «Успехи химии гетероциклических соединений». Кластер конференций «Оргхим-2016». Россия, г. Санкт-Петербург, **2016**, с. 269.
- 14. **Y. E. Anisina**. PASE synthesis of new 5-pyrazolyl-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitriles / **Y. E. Anisina**, A. N. Vereshchagin, M. N. Elinson // *X Международная конференция молодых учёных по химии «Менделеев-2017». Россия, г. Санкт-Петербург, 2017, с. 280.*
- 15. **Y. E. Anisina**. PASE synthesis of new 5-C substituted 2,4-diamino-5H-chromeno[2,3-b]pyridine-3-carbonitriles / **Y. E. Anisina**, A. N. Vereshchagin, M. N. Elinson

- // The Fourth International Scientific Conference «Advances in Synthesis and Complexing». Russia, Moscow, **2017**, c. 99.
- 16. **Ю. Е. Анисина**. Псевдочетырехкомпонентный 'PASE' синтез новых 5-C замещенных 2,4-диамино-5H-хромено[2,3-b] пиридин-3-карбонитрилов / **Ю. Е. Анисина**, А. Н. Верещагин, М. Н. Элинсон // VII Молодежная конференция ИОХ РАН. Россия, ε . Москва, **2017**, с. 49.
- 17. **Ю. Е. Анисина**. Мультикомпонентный синтез замещенных хромено[2,3-*b*]-пиридинов / **Ю. Е. Анисина**, С. К. Крымов, А. Н. Верещагин, М. Н. Элинсон // Молодёжная научная школа-конференция «Актуальные проблемы органической химии». Россия, Шерегеш, Кемеровская обл., **2018**, с. 100.
- 18. **Ю. Е. Анисина**. 'PASE'-синтез 5-пиразолил-5*H*-хромено[2,3-*b*]пиридинов / **Ю. Е. Анисина** // *II Всероссийская «Байкальская школа-конференция по химии». Россия, г. Иркутск*, **2018**, с.13.
- 19. **Ю. Е. Анисина**. Мультикомпонентный синтез замещенных хромено[2,3-b]-пиридинов / **Ю. Е. Анисина**, А. Н. Верещагин, М. Н. Элинсон // V Всероссийская (с международным участием) конференция по органической химии. Россия, ε . Владикавказ, **2018**, с. 171.
- 20. **Y. E. Anisina**. Facile and efficient multicomponent approach to 5-[5-hydroxy-3-(trifluoromethyl)-1*H*-pyrazol-4-yl]-5*H*-chromeno[2,3-*b*]pyridines / **Y. E. Anisina**, A. N. Vereshchagin, M. N. Elinson // Международная конференция «Organic & Hybrid Functional Materials and Additive Technologies». Россия, г. Москва, **2018**, с. 51.
- 21.S. K. Krymov. Multicomponent synthesis of 2,4-diamino-5-(3-hydroxy-6-(hydroxymethyl)-4-oxo-4*H*-pyran-2-yl)-5*H*-chromeno[2,3-*b*]pyridine-3-carbonitrile / S. K. Krymov, **Y. E. Anisina**, A. N. Vereshchagin, M. N. Elinson // Всероссийская конференция «Взаимосвязь ионных и ковалентных взаимодействий в дизайне молекулярных и наноразмерных химических систем». Россия, г. Москва, **2019**, с. 52.
- 22. **Ю. Е. Анисина**. Мультикомпонентный синтез 5-(диалкоксифосфорил)-2,4-диамино-5*H*-хромено[2,3-*b*]пиридинов / **Ю. Е. Анисина**, А. Н. Верещагин, М. Н. Элинсон // *VIII Молодежная конференция ИОХ РАН. Россия, г. Москва*, **2019**, с. 79.