ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н. Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Филатов Андрей Викторович

УСТАНОВЛЕНИЕ СТРОЕНИЯ О-СПЕЦИФИЧЕСКИХ ПОЛИСАХАРИДОВ ЭНТЕРОБАКТЕРИЙ *ENTEROBACTER CLOACAE* И *ESCHERICHIA COLI*. СОЛЬВОЛИЗ ТРИФТОРУКСУСНОЙ КИСЛОТОЙ КАК УДОБНЫЙ МЕТОД ИЗБИРАТЕЛЬНОГО РАСЩЕПЛЕНИЯ ГЛИКОЗИДНЫХ СВЯЗЕЙ

02.00.10 – биоорганическая химия

Диссертация на соискание ученой степени кандидата химических наук

Научный руководитель:

к.х.н. Перепелов А. В.

Научный консультант:

д.х.н., проф. Книрель Ю.А.

Москва 2017

содержание

СПИСОК СОКРАЩЕНИИ	4
1. ВВЕДЕНИЕ	5
2. ЛИТЕРАТУРНЫЙ ОБЗОР	
Строение О-специфических полисахаридов энтеробактерий	8
2.1. Общие аспекты	8
2.2. Состав О-полисахаридов	11
2.3. Строение О-полисахаридов	13
2.3.1. Salmonella	13
2.3.2. Citrobacter, Edwardsiella	20
2.3.3. Escherichia, Shigella	24
2.3.4. Klebsiella, Raoultella	32
2.3.5. Serratia	32
2.3.6. Hafnia	33
2.3.7. Pantoea, Franconibacter, Enterobacter, Cronobacter	40
2.3.8. Proteus, Providencia, Morganella	41
2.3.9. Yersinia	48
2.3.10. Plesiomonas	52
2.3.11. Другие роды	52
3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ	57
3.1. Строение О-полисахаридов	57
3.1.1. Полисахариды Enterobacter cloacae	57
3.1.2. Полисахариды <i>Escherichia coli</i>	64
3.2. Характеристика генных кластеров О-антигенов	67
3.2.1. Генные кластеры Enterobacter cloacae	68
3.2.2. Генные кластеры Escherichia coli	71
3.3. Структурный анализ О-полисахаридов	74
3.3.1. Выделение и деградация липополисахаридов	75
3.3.2. Компонентный анализ полисахаридов	75
3.3.3. Химические модификации полисахаридов	77
3.3.3.1. О-Дезацетилирование	77
3.3.3.2. Дезацеталирование	78
3.3.4. Анализ методом метилирования	78

3.3.5. Избирательное расщепление полисахаридов	79
3.3.5.1. Мягкий кислотный гидролиз	79
3.3.5.2. Распад по Смиту	79
3.3.5.3. Сольволиз трифторуксусной кислотой	82
3.3.6. Спектроскопия ЯМР	84
3.3.7. Масс-спектрометрия	84
3.3.8. Пример установления структуры О-полисахарида <i>E. coli</i> О39	86
3.4. Получение олигосахаридных фрагментов ОПС Shigella flexneri	92
3.5. Заключение	95
4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	98
4.1. Бактериальные штаммы и выращивание	98
4.2. Выделение липополисахаридов и О-полисахаридов	98
4.3. Определение состава полисахаридов	100
4.3.1. Анализ моносахаридов методом ГЖХ в виде ацетатов полиолов	100
4.3.2. Определение абсолютных конфигураций компонентов	100
4.4. Метилирование	101
4.5. Избирательное расщепление	102
4.5.1. Сольволиз трифторуксусной кислотой	102
4.5.2. Распад по Смиту	102
4.6. Масс-спектрометрия с ионизацией электрораспылением	103
4.7. Спектроскопия ЯМР	103
5. ВЫВОДЫ	110
СПИСОК ЛИТЕРАТУРЫ	106
ПРИЛОЖЕНИЕ	
Табулированные данные спектров ¹ Н и ¹³ С ЯМР полисахаридов и олигосахаридо	в120

СПИСОК СОКРАЩЕНИЙ

Сокращения для моносахаридов приведены в таблице 1 литературного обзора.

ГЖХ	– газо-жидкостная хроматография
ГКО	– генный кластер О-антигена
ИЭР МС	– масс-спектрометрия с ионизацией электрораспылением
ЛПС	– липополисахарид
ОПС	 О-специфический полисахарид (О-антиген)
ЯМР	– ядерный магнитный резонанс
Ac	– ацетил
Ala	– аланин или аланил
alaLys	– аланинолизин [N ^ε -(1-карбоксиэтил)лизин]
alo	– аланопин [N-(карбоксиэтил)аланин]
Am	- ацетимидоил
Ara-ol	– арабинит
COSY	– корреляционная спектроскопия
Fo	- формил
Glu	– глютаминовая кислота
Gro	– глицерин
GroN	– 2-амино-1,3-пропандиол (2-амино-2-дезоксиглицерин)
HMBC	– гетероядерная мультисвязевая корреляция
HSQC	– гетероядерная одноквантовая когеренция
lac	– 1-карбоксиэтил (остаток молочной кислоты)
Р	– фосфатная группа
pyr	– 1-карбоксиэтилиден (ацеталь пировиноградной кислоты)
Rib-ol	– рибит
ROESY	– спектроскопия ядерного эффекта Оверхаузера во вращающейся системе
	координат
TOCSY	– полная корреляционная спектроскопия
3Hb, 4Hb	– 3-гидроксибутаноил, 4-гидроксибутаноил

1. ВВЕДЕНИЕ

Основная цель настоящей работы заключалась в получении новой информации об О-специфических полисахаридах (ОПС), называемых О-антигенами, двух видов условно-патогенных бактерий грамотрицательных семейства Enterobacteriaceae Enterobacter cloacae (энтеробактер клоаки) и Escherichia coli (кишечная палочка), которая послужит молекулярной основой для классификации штаммов этих клональных микроорганизмов. Для достижения поставленной цели необходимо было установить строение ОПС ранее неисследованных штаммов E. cloacae и E. coli. Другой целью работы была разработка улучшенного метода избирательного расшепления гликозидных связей, который позволял бы решать задачи структурного анализа таких сложных объектов, какими являются исследуемые ОПС. Планировалось также выяснить применимость этого метода для получения олигосахаридных фрагментов ОПС энтеробактерий Shigella flexneri как потенциальных компонентов противодизентерийных конъюгатных вакцин.

Систематические исследования строения ОПС грамотрицательных бактерий проводятся в лаборатории химии углеводов Института органической химии им. Н.Д. Зелинского РАН. Один из основных объектов, исследуемых в настоящее время, – кишечная палочка. Эта бактерия наиболее широко изучаеется в различных аспектах. Она является распространенным компонентом нормальной кишечной микрофлоры, но некоторые штаммы этого вида могут вызывать диарею, гастроэнтерит, инфекции мочевыводящих путей и неонатальный менингит, а также такие особо опасные заболевания, как гемолитико-уремический синдром и геморрагические колиты. Недавно в лаборатории начато также изучение энтеробактера клоаки – бактерий, вызывающих инфекционные заболевания мочеполовых путей, остеомиелиты, холециститы и менингиты у новорожденных. Высокая устойчивость к дезинфектантам и антибиотикам выводит этот микроорганизм в число доминирующих возбудителей госпитальных инфекций. Таким образом, установление строения ОПС этих двух важных в медицинском отношении видов бактерий, которому в основном посвящена настоящая работа, – это актуальная задача современной науки.

ОПС представляет собой полисахаридную цепь липополисахарида (ЛПС), расположенного на наружной поверхности внешней мембраны клеточной стенки грамотрицательных бактерий. Они построены из регулярно повторяющихся олигосахаридных звеньев, включающих разнообразные моносахариды. Биосинтез ОПС, являющихся осуществляется путем полимеризации гетерополисахаридами, олигосахарида (так называемого биологического повторяющегося звена), предварительно собранного на

5

липидном носителе, возможными с последующими, часто нестехиометрическими модификациями (например, О-ацетилированием или глюкозилированием). ОПС участвуют в специфических взаимодействиях бактерий с другими биологическими системами, в том числе с иммунной системой животных и человека, в связи с чем их называют О-антигенами. Тонкая структура ОПС определяет иммуноспецифичность бактерий и лежит в основе серотипирования бактериальных штаммов. Широкая вариабельность структур О-антигенов, возникшая в ходе эволюции бактерий, рассматривается как фактор вирулентности патогенных микробов, так как иммунная память, сформировавшаяся в результате контакта с одним О-антигеном, неэффективна против клона с другим О-антигеном.

Молекулярной основой структурного разнообразия ОПС является полиморфизм генных кластеров, которые включают гены, кодирующие ферменты биосинтеза О-антигенов. Интерес к изучению строения О-антигенов и генетики их биосинтеза связан не только с решением фундаментальных задач науки о жизни, но и с такими практическими задачами, как создание классификационных схем бактериальных штаммов, необходимых для эпидемиологического мониторинга. Данные об О-антигенах необходимы также для разработки методов молекулярного типирования на основе специфических генов биосинтеза О-антигенов для экспресс-диагностики и вакцинопрофилактики инфекций, вызываемых патогенными клонами бактерий.

В связи с этим еще одной целью работы было определение функций генов биосинтеза О-антигенов изучаемых бактерий путем анализа секвенированных генных кластеров с учетом полученных данных о строении ОПС. Эта часть работы была выполнена совместно с китайскими партнерами – генетиками из Института биологических наук и биотехнологии ТЕДА Нанькайского университета (г. Тяньдзинь, КНР).

В работе установлены новые структуры 12 ОПС бактерий *E. cloacae* и 7 ОПС *E. coli*. Полученные данные позволили определить функции генов биосинтеза О-антигенов исследованных штаммов. Для установления строения ОПС предложен сольволиз безводной трифторуксусной кислотой, показавшей себя как новый эффективный и удобный в работе реагент для избирательного расщепления гликозидных связей. Сольволиз был впервые использован нами также для получения олигосахаридных фрагментов ОПС энтеробактерий *Shigella flexneri* (шигелл Флекснера – возбудителей бациллярной дизентерии), которые имеют потенциал использования в качестве компонентов конъюгатных вакцин для профилактики шигеллеза.

Результаты диссертационной работы опубликованы в 13 статьях в отечественных и зарубежных рецензируемых журналах, рекомендованных ВАК [101, 102, 106, 108, 111, 112,

114, 115, 117, 118, 119, 137, 140]. Полученные данные также были представлены на четырех российских и трех международных конференциях, включая VI Молодежную конференцию ИОХ РАН, Москва, 2014 г.; Molecular Complexity in Modern Chemistry, Moscow, Russia, 2014; 6th Baltic Meeting on Microbial Carbohydrates, Gdansk, Poland, 2014; 18th European Carbohydrate Symposium, Moscow, 2015; V Съезд биохимиков России, Сочи-Дагомыс, 2016 г.; Всероссийскую конференцию «Фундаментальная гликобиология», Владивосток, 2016 г.; Научную конференцию грантодержателей РНФ «Фундаментальные научные исследования XXI-го века», Москва, 2016 г.

Диссертация состоит из введения, литературного обзора, описания и обсуждения результатов, экспериментальной части и выводов, а также включает список литературы и приложение (табулированные данные ЯМР спектров). Литературный обзор посвящен О-антигенам энтеробактерий, разнообразию их состава и строения. В главе «Результаты и их обсуждение» описаны установление строения и особенности ОПС энтеробактера клоаки и кишечной палочки и использование полученных данных для функционального анализа генных кластеров О-антигенов; в ней также обсуждается фундаментальная и практическая значимость выполненной работы. Эта глава включает также отчет о получении олигосахаридных фрагментов ОПС шигелл Флекснера. В главе «Экспериментальная часть» приведены методики выделения полисахаридов, их химического анализа, модификации и избирательного проведения ЯМР-спектроскопических расщепления, И массспектрометрических экспериментов.

Автор выражает глубокую благодарность научному руководителю Андрею Вячеславовичу Перепелову за постановку задачи, обучение химическим методам структурного анализа и помощь в обсуждении полученных результатов и научному консультанту Юрию Александровичу Книрелю за определение основных направлений исследования и неизменное внимание к работе. Автор искренне признателен Софии Николаевне Сенченковой за помощь в экспериментальной работе, Александру Степановичу Шашкову за съемку и помощь в интерпретации спектров ЯМР, Александру Олеговичу Чижову за съемку масс-спектров высокого разрешения, Вячеславу Леонидовичу Львову за предложение использовать сольволиз для получения олигосахаридных фрагментов ОПС шигелл Флекснера, а также коллективу лаборатории химии углеводов ИОХ РАН за ценные советы и поддержку.

7

2. ЛИТЕРАТУРНЫЙ ОБЗОР

Строение о-специфических полисахаридов энтеробактерий

2.1. Общие аспекты

Липополисахарид является основным компонентом внешней мембраны клеточной стенки грамотрицательных бактерий. Он играет важную роль во взаимодействии бактерий с окружающей средой, в том числе с организмом хозяина, по отношению к которому он проявляет себя как эндотоксин и антиген. Септический шок, вызываемый эндотоксином, остается одной из наиболее актуальных проблем современной медицины. Вместе с тем ЛПС играет и положительную роль, активируя систему врожденного иммунитета и вызывая образование специфических антител, связывание которых с бактериями обеспечивает возможность последующего фагоцитоза.

Липидная часть ЛПС, называемая липидом А выступает в качестве мембранного якоря для всей молекулы ЛПС (рис. 1). Наиболее удаленная от мембраны часть ЛПС – О-специфический полисахарид (ОПС) или О-антиген, который связан с липидом А через центральный олигосахарид, называемый кором. ОПС, постренный из повторяющихся олигосахаридных звеньев, является наиболее вариабильной частью ЛПС и обеспечивает серологическую специфичность клетки, которая используется для серотипирования бактериальных штаммов. Исследования ОПС, от выяснения их химического строения и конформации до изучения их биологических и физико-химических свойств, способствуют более глубокому пониманию механизмов патогенеза инфекционных заболеваний и становятся основой для разработки новых вакцин и средств диагностики.

Рис. 1. Схематическое представление строения клеточной оболочки грамотрицательных бактерий.

ОПС-гетерогликаны состоят из повторяющихся олигосахаридных единиц (О-звеньев), которые включают от двух до восьми различных моносахаридных остатков. Сборка О-звена осуществляется путем последовательного переноса гликозилтранферазами моносахаридных остатков на растущую олигосахаридную цепь, присоединенную к липидному носителю на цитоплазматической стороне внутренней мембраны. После переноса полученного гликолипида через мембрану с помощью флиппазы Wzx О-звено полимеризуется на периплазматической стороне внутренней мембраны О-антиген-полимеразой Wzy при участии регулятора длины цепи Wzz (рис. 2А). Этот путь называется Wzx/Wzy-зависимым путем биосинтеза ОПС [1].

Рис. 2. Схематическое представление биосинтеза ОПС по Wzx/Wzy-зависимому пути (A) и ABC-транспортер-зависимому пути (Б) [1].

ОПС-гомогликаны и некоторые гетерогликаны с дисахаридными О-звеньями синтезируются по альтернативному пути, который включает последовательный перенос единичных моносахаридов на растущую полисахаридную цепь, присоединенную к липидному носителю через неповторяющийся олигосахаридный домен, называемый адаптором. Затем, после модификации невосстанавливающего конца, дающей сигнал к прекращению роста полимерной цепи, (например, таким сигналом может быть метилирование, ацилирование или фосфорилирование последнего моносахаридного остатка) готовый ОПС переносится через мембрану с помощью белков Wzm и Wzt – компонентов АВС-транспортера (рис. 2Б). Этот путь биосинтеза, называемый АВС-транспортер-зависимым, встречается значительно реже, чем Wzx/Wzy-зависимый путь [1].

ΟΠC, Постполимеризационные модификации такие как О-ацетилирование, метилирование, фосфорилирование, амидирование, гликозилирование, могут осуществляться независимо от того, по какому пути происходил его биосинтез. Часто эти модификации нестехиометрические и маскируют регулярную структуру ОПС (в приводимых ниже структурах ОПС нестехиометрические заместители выделены курсивом). Реже наблюдается постполимеризационная эпимеризация при С-5 гексуроновых кислот, которая также может быть нестехиометрической. Другой редкой причиной отсутствия строгой регулярностии ОПС является альтернативное N-ацилирование аминогруппы одного и того же аминосахара различными ацильными группами (например ацетилирование в одних О-звеньях и 3-гидроксибутаноилирование в других О-звеньях).

Полноценные ЛПС, включающие все три структурные области, характерны для гладких форм бактерий и называются S-ЛПС (от слова Smooth – гладкий). Бактерии, лишенные ОПС вследствии инактивация генов, которые кодируют ферменты биосинтеза O-звена, образуют колонии шероховатого типа. Такие бактерии продуцируют R-ЛПС (от слова Rough – шероховатый), углеводная часть которого ограничена олигосахаридом кора; такую форму иногда называют липоолигосахаридом. Если способность синтезировать O-звено сохраняется, но теряется активность O-антиген-полимеразы, образуются SR-ЛПС (от слова Semi-Rough), содержащие одно O-звено, присоединенное к кору. Некоторые бактерии являются гомогенными в отношении формы ЛПС, но многие из них одновременно экспрессируют две или все три формы ЛПС.

Длина цепи ОПС значительно варьируется от одного до более чем пятидесяти Озвеньев. Распределение длин цепи является модальным и специфично для каждого бактериального штамма, что может давать бактериям преимущества в различных экологических нишах.

2.2. Состав О-полисахаридов

Типичными компонентами ОПС энтеробактерий являются моносахариды, широко распространенные в природе, но часто ОПС включают также редко встречающиеся и уникальные сахара. К последним относятся кетоальдоновые кислоты, в том числе их аминои диамино-производные, а также различные разветвленные моносахариды. Обнаруженные к настоящему времени моносахаридные компоненты ОПС и их сокращенные названия, используемые в данном обзоре, приведены в таблице 1.

Таблица 1. Моносахаридные компоненты ОПС

Альдозы и их дезоксипроизводные		
D-арабиноза (D-Ara)	6-дезокси-L-альтроза (L-6dAlt)	
L-, D-ксилоза (L-Xyl, D-Xyl)	6-дезокси-L-, -D-талоза (L-, D-6dTal)	
D-рибоза (D-Rib)	6-дезокси-D-гулоза (D-6dGul)	
D-глюкоза (D-Glc)	3,6-дидезокси-D- <i>арабино</i> -гексоза (тувелоза, Туv)	
D-манноза (D-Man)	3,6-дидезокси-L-арабино-гексоза (аскарилоза, Asc)	
D-галактоза (D-Gal)	3,6-дидезокси-D-рибо-гексоза (паратоза, Par)	
4-дезокси-D-арабино-гексоза (D-4daraHex)	3,6-дидезокси-D-ксило- гексоза (абеквоза, Abe)	
6-дезокси-L-глюкоза (L-хиновоза, L-Qui)	3,6-дидезокси-L-ксило- гексоза (колитоза, Col)	
6-дезокси-L-, -D-манноза (L-, D-рамноза,	D-глицеро-D-манно-гептоза (DD-Нер)	
L-, D-Rha)	L-глицеро-D-манно-гептоза (LD-Hep)	
6-дезокси-L-, -D-галактоза (L-, D-фукоза, L-, D-Fuc)	б-дезокси-D- <i>манно</i> -гептоза (D-6dHep)	
2-Амино-2-дезоксигексозы, амино- и диаминопроизводные 6-дезоксигексоз		
D-глюкозамин (D-GlcN)	3-амино-3-дезокси-D-хиновоза (D-Qui3N)	
D-галактозамин (D-GalN)	3-амино-3-дезокси-D-фукоза (D-Fuc3N)	
D-маннозамин (D-ManN)	4-амино-4-дезокси-D-хиновоза (D-Qui4N)	
D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN)	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N)	
D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN)	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) 	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) 	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N) 2,4-диамино-2,4-дидезокси-D-фукоза (D-FucN4N)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) 	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N) 2,4-диамино-2,4-дидезокси-D-фукоза (D-FucN4N) производные	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) <i>Гексуроновые кислоты, их амино- и диамино</i> D-глюкуроновая кислота (D-GlcA)	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N) 2,4-диамино-2,4-дидезокси-D-фукоза (D-FucN4N) <i>производные</i> D-глюкозаминуроновая кислота (D-GlcNA)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) <i>Гексуроновые кислоты, их амино- и диамино</i> D-глюкуроновая кислота (D-GlcA) D-галактуроновая кислота (D-GalA) 	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N) 2,4-диамино-2,4-дидезокси-D-фукоза (D-FucN4N) <i>производные</i> D-глюкозаминуроновая кислота (D-GlcNA) D-галактозаминуроновая кислота (D-GalNA)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) <i>Гексуроновые кислоты, их амино- и диамино</i> D-глюкуроновая кислота (D-GlcA) D-галактуроновая кислота (D-GalA) L-альтруроновая кислота (L-AltA)	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N) 2,4-диамино-2,4-дидезокси-D-фукоза (D-FucN4N) производные D-глюкозаминуроновая кислота (D-GlcNA) D-галактозаминуроновая кислота (L-AltNA)	
 D-маннозамин (D-ManN) L-, D-хиновозамин (L-, D-QuiN) L-рамнозамин (L-RhaN) L-, D-фукозамин (L-, D-FucN) 6-дезокси-L-талозамин (L-6dTalN) <i>Гексуроновые кислоты, их амино- и диамино</i> D-глюкуроновая кислота (D-GlcA) D-галактуроновая кислота (D-GalA) L-альтруроновая кислота (L-AltA) 2,3-диамино-2,3-дидезокси-D-глюкуроновая	4-амино-4-дезокси-D-хиновоза (D-Qui4N) 4-амино-4-дезокси-D-рамноза (D-Rha4N) 4-амино-4-дезокси-D-фукоза (D-Fuc4N) 2,3-диамино-2,3-дидезокси-L-рамноза (L-RhaN3N) 2,4-диамино-2,4-дидезокси-D-хиновоза (D-QuiN4N) 2,4-диамино-2,4-дидезокси-D-фукоза (D-FucN4N) <i>производные</i> D-глюкозаминуроновая кислота (D-GlcNA) L-альтрозаминуроновая кислота (L-AltNA) кислота (D-GlcN3NA)	

Кетосахара

L-, D-*трео*-пент-2-улоза (L-, D-ксилулоза, L-, D-Xlu)

3-дезокси-D-*манно*-окт-2-улозоновая кислота (кетодезоксиоктоновая кислота, Kdo)

5-амино-3,5-дидезокси-D-глицеро-D-галакто-нон-2-улозоновая (нейраминовая) кислота (Neu)

5,7-диамино-3,5,7,9-тетрадезокси-L-*глицеро*-L-*манно*-нон-2-улозоновая (псевдаминовая) кислота (Pse)

5,7-диамино-3,5,7,9-тетрадезокси-D-, -L-*глицеро*-D-*галакто*-нон-2-улозоновая (легионаминовая, 8-эпилегионаминовая) кислота (Leg, 8eLeg)

Разветвленные моносахарады

3,6-дидезокси-4-*C*-[(*S*)-, (*R*)-1-гидроксиэтил]-D-*ксило*-гексоза (йерсиниозы A и B, YerA, YerB)

3,6-дидезокси-4-С-[(S)-1,2-дигидроксиэтил]-D-ксило-гексоза

3,6,8-тридезокси-4-*C*-[(*R*)-1-гидроксиэтил]-D-*гуло*-октоза (эрвиниоза)

2-амино-4-С-(2-карбамоил-2,2-дигидроксиэтил)-2,6-дидезокси-D-галактоза (шеванеллоза)

Большинство моносахаридов существуют в пиранозной форме, но для некоторых из них (пентоз, 6-дезокси-L-альтрозы) более характерна фуранозная форма. Галактоза и фукоза встречаются в обеих формах (при доминировании пиранозной формы), и известны редкие примеры обнаружения паратозы (3,6-дидезокси-D-*рибо*-гексозы) и N-ацетилгалактозамина в фуранозной форме, а рибозы и 6-дезокси-L-альтрозы – в пиранозной форме.

Из широкораспространенных неуглеводных присутствуют компонентов N-ацетильные ацилирующие аминогруппы группы, различных аминосахаров, И О-ацетильные группы. Реже встречаются О-метильные группы, которые могут алкилировать гидроксильные группы компонентов О-звена или терминировать всю полисахаридную цепь у ОПС, синтезируемых по АВС-транспортер-зависимому пути (см. раздел 2.1 и рис. 2). Другим встречающимся алкильным заместителем является 1-карбоксиэтильная группа – остаток молочной кислоты. Еще один кислотный компонент – остаток пировиноградной кислоты (О-карбоксиэтилиденовая группа) – присоединяется к моносахаридам в виде ацеталя с образованием диоксоланового или диоксанового цикла.

Аминогруппы аминосахаров (кроме GlcN и GalN) часто несут не ацетильные группы, а остатки других кислот, таких как муравьиная, ацетимидовая, малоновая, янтарная, гидроксикислоты (L-глицериновая, 3- или, реже, 4-гидроксибутановая) и аминокислоты [глицин, D- и L-аланин, серин, D- и L-аспарагиновая кислота, N-(1-карбоксиэтил)-L-аланин, С-метильные и гидроксильные производные 5-оксопролина (пироглютаминовой кислоты)].

В некоторых ОПС гексуроновые кислоты присутствуют в виде первичного амида (обозначаемого добавлением буквы N, например, GalAN для галактуронамида) или амидов с 2-амино-2-дезоксиглицерином (GroN) или аминокислотами и их производными [например, с N^ε-(1-карбоксиэтил)-L-лизином]. Фосфатная группа всегда присутствует в виде диэфиров, либо связывая моносахаридные остатки между собой (при этом одна из связей является гликозилфосфатной), либо присоединяя к ОПС различные неуглеводные компоненты, такие как этаноламин, холин, глицерин, рибит или, реже, арабинит.

2.3. Строение О-полисахаридов

Структуры ОПС неоднократно обсуждались в различных обзорах [2-6]. Число ОПС с известным строением быстро растет, и интернет-доступная база данных структур бактериальных углеводов (BCSDB: http://csdb.glycoscience.ru/bacterial/) обновляется ежегодно. В настоящем обзоре собраны данные о структурах ОПС, опубликованных до конца 2016 года. Названия семейств, родов и видов бактерий приведены в соответствии с базой таксономический данных NCBI (Taxonomy Browser: http://www.ncbi.nlm.nih.gov/Taxonomy/). Номенклатура микроорганизмов постоянно пересматривается, и если структура ОПС была опубликована для бактерии с названием, отличающимся от современного, то старое название указано в скобках.

Как правило, полученные данные относятся к так называемым химическим повторящимся звеньям, которые могут совпадать с биологическим О-звеном, но могут отличаться от него циклической перестановкой моносахаридных остатков. Недавно было показано, что в большинстве гетерополисахаридов первым моносахаридом О-звена, перенос которого на липидный носитель инициирует биосинтез О-антигена, является аминосахар с *D-глюко-* или *D-галакто-* конфигурацией – производное GlcN, GalN, D-QuiN, D-FucN или диаминосахара D-QuiN4N или D-FucN4N. Вероятно и в других случаях, когда хотя бы один такой D-аминосахар присутствует, он является первым моносахаридом О-звена, даже если это специально не подтверждено. В отсутствие D-гексозаминов первым моносахаридом О-звена иможет быть D-галактоза, как, например, в некоторых серогруппах *Salmonella enterica* (таблица 2), однако в большинстве других таких случаях этот вопрос остается открытым.

Большинство установленных к настоящему времени структур ОПС относятся к бактериям семейства *Enterobacteriaceae* (энтеробактериям). Это семейство включает около 50 родов, однако данные о строении ОПС имеются только для половины из них. Эти данные представлены в основной части настоящего обзора.

2.3.1. SALMONELLA

Бактерии рода *Salmonella*, являющиеся возбудителями сальмонелеза, остаются основной причиной инфекций пищевого происхождения во многих странах, и некоторые из них ответственны за более опасные заболевания, такие как брюшной тиф (серогруппа О9,

серовар Турһі) и возвратный тиф (серогруппа O2, серовар Paratyphi). Большинство медицински значимых штаммов относятся к виду *Salmonella enterica*, которые объединены в 46 основных О-серогрупп, ранее обозначавшиеся буквами А-Z. Внутри вида выделяют подвиды (I для подвида *enterica*, II для подвида *salamae*, IIIa и IIIB для подвидов *arizonae* и *diarizonae* и т.д.) и серовары.

Исторически первые структуры ОПС были установлены для штаммов Salmonella серогрупп A, B, D и E. Они объединены наличием основной цепи, состоящей из трисахаридных звеньев \rightarrow D-Man $p \rightarrow$ L-Rha $p \rightarrow$ D-Gal $p \rightarrow$ (таблица 2). Отличия как между О-серогруппами, так и внутри О-серогрупп заключаются в различном положении замещения остатка маннозы и различной конфигурации связи между маннозой и галактозой, а также наличием или отстутствием боковых остатков глюкозы и/или О-ацетильных групп. В серогруппе D3 присутствуют О-звенья как с α-связанными, так и с β-связанными остатками маннозы. В серогруппах A, B и D остаток маннозы несет остаток 3,6-дидезоксигексозы, имеющей D-рибо- (паратоза), D-ксило- (абеквоза) или D-арабиноконфигурацию соответственно, тогда Е (тивелоза) как В серогруппе остаток 3,6-дидезоксигексозы отсутствует.

ОПС остальных серогрупп отличаются широким разнообразием. Нейтральные сахара (D-Glc, D-Man, D-Gal, L-Rha, L-Fuc) и аминосахара D-GlcNAc и D-GalNAc являются компонентами многих ОПС. D-ManNAc содержится в ОПС трех серогрупп, включая ОПС О54, который является гомополимером этого моносахарида. Присутствуют также аминосахара L-QuiN, D-Qui3N, D-Qui4N, L-FucN, D-Fuc3N и D-Rha4N, многие из которых несут необычные N-ацильные группы, такие как формил, ацетимидоил, (R)-3-гидроксибутаноил, N-[(S)-3-гидроксибутаноил]-D-аланил И N-ацетил-L-серил. Некоторые ОПС являются кислыми, и среди них ОПС серогрупп О48 и О61, которые содержат производные высших сахаров: нейраминовой кислоты (Neu) И 8-эпилегионаминовой кислота (8eLeg), соответственно. Последняя относится к классу 5,7-диамино-3,5,7,9-тетрадезоксинонулозоновых кислот (таблица 1), впервые обнаруженных в лаборатории химии углеводов ИОХ РАН в середине 1980-х годов. ОПС серогруппы О47 фосфорилирован и имеет структуру, более типичную для рибит-тейхоевых кислот, чем для О-антигенов. ОПС серогруппы О62 содержит N-ацетил-D-галактозаминуроновую кислоту (D-GalNAcA), но является нейтральным, поскольку эта кислота присутствует в форме амида.

Как и в серогруппах A, B, D и E, разнообразие О-антигенных форм в ряде других О-серогруп расширяется за счет гликозилирования и О-ацетилирования. Таблица 2. Структуры ОПС вида Salmonella enterica [7]. Заместители, присутствующие в нестехиометрическом количестве, выделены курсивом

O2 (A) Paratyphi	α -Parp-(1 \rightarrow 2) α -D-Glcp-(1 \rightarrow 4)
	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap2Ac-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
O3 Uccle [8]	\rightarrow 3)- α -D-Galp6Ac-(1 \rightarrow 6)- β -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow
O4 (B) Typhimurium, Agona, ^a	$\alpha - Abep2Ac - (1 \rightarrow 3) \qquad \qquad \alpha - D - Glcp - (1 \rightarrow 4) = 0$
Abortusequi	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
O4 (B) Bredeney,	$\alpha - Abep2Ac - (1 \rightarrow 3) \qquad \qquad \alpha - D - Glcp - (1 \rightarrow 6) = 0$
Typhillum SL3022	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
O6, 7 (C_1) Livingstone	α -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2) - \beta - D - Manp - (1 \rightarrow 2) - \alpha - D - Manp - (1 \rightarrow 2) - \alpha - D - Manp - (1 \rightarrow 2) - \beta - D - Manp - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 3) - (1 \rightarrow $
O6, 7 (C_1) Thompson	α -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\beta-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow \mu \rightarrow 2)-\beta-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow \mu \rightarrow 2)-\beta-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow \mu \rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow \mu \rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow \mu \rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow \mu \rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-D-F-Ac-(1\rightarrow 4)-\beta-$
O6, 7 (C ₁) Ohio	α -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\beta-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$
O6, 7 (C ₄) Livingstone var. 14 (S.	α -D-Glcp-(1 \rightarrow 3)
eimsbuttel)	$\rightarrow 2) - \beta - D - Manp - (1 \rightarrow 2) - \alpha - D - Manp - (1 \rightarrow 2) - \alpha - D - Manp - (1 \rightarrow 2) - \beta - D - Manp - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 3) -$
O8 (C ₂) Newport	$\alpha - Abep - (1 \rightarrow 3) \qquad \qquad \alpha - D - Glcp2Ac - (1 \rightarrow 3) = 0$
	\rightarrow 4)- β -L-Rhap2Ac-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Man-p(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow
O8 (C ₃) Kentucky I.S. 98/39	α -Abep-(1 \rightarrow 3) α -D-Glcp2Ac-(1 \rightarrow 4)
	$\rightarrow 4)-\beta-L-Rhap2Ac-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-Falp-(1\rightarrow 3)-\beta-Fa$

O9 (D ₁) Typhi, Enteritidis SE6, ^a	α -Tyvp-(1 \rightarrow 3) α -D-Glcp2Ac-(1 \rightarrow 4)
Gammarum öv. Punorum //	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
O9 (D ₁) Enteritidis I.S. 64,	α -Tyvp-(1 \rightarrow 3)
Gallinarum bv. Pullorun 11	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
O9, 46 (D ₂) Strasbourg	α -Tyvp-(1 \rightarrow 3) α -D-Glcp-(1 \rightarrow 4)
	\rightarrow 6)- β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow
O9, 46 (D ₂) II (S. haarlem)	α -Tyvp-(1 \rightarrow 3)-
	\rightarrow 6)- β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow
O9, 46, 27 (D ₂) II (<i>S. zuerich</i>)	α -Tyvp-(1 \rightarrow 3) α -D-Glcp-(1 \rightarrow 6)
	\rightarrow 6)- α , β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow
O3, 10 (E ₁) Anatum	\rightarrow 6)- β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- α -D-Gal p 6A c -(1 \rightarrow
O3, 10 (E ₁) Muenster	α -D-Glcp-(1-++4)-
	\rightarrow 6)- β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow
O3, 10 (E_2) Anatum var. 15 (<i>S. newington</i>)	\rightarrow 6)- β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- β -D-Gal p -(1 \rightarrow
O3, 10 (E ₃) Lexington var. 15, 34	α -D-Glcp-(1->4)
(S. <i>ilinois</i>)	$\rightarrow 6$)- β -D-Man p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- β -D-Gal p -(1 \rightarrow
O1, 3, 19 (E ₄) Senftenberg	α -D-Glcp-(1 \rightarrow 6)
	\rightarrow 6)- β -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
O11 (F) Aberdeen	β -D-Man $p(1\rightarrow 4)$
	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 4)- α -L-Rha p -(1 \rightarrow 3)- β -D-Glc p NAc(1 \rightarrow
O13 (G)	$\rightarrow 2)-\alpha-L-Fucp-(1\rightarrow 2)-\beta-D-Galp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-$

O6, 14 (H) Boecker, Carrau	α -D-Glcp-(1 \rightarrow 3)
	\rightarrow 6)- α -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow 2)- β -D-Man p -(1 \rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow
O6, 14 (H) Madelia	α -D-Glcp-(1 \rightarrow 3)
	\rightarrow 6)- α -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow 2)- β -D-Man p -(1 \rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow и α -D-Glc p -(1 \rightarrow 4)
	\rightarrow 6)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- β -D-Manp-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow и
	\rightarrow 6)- α -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow 2)- β -D-Man p -(1 \rightarrow 3)- α -D-Glc p NAc-(1 \rightarrow
O16 (I)	α -L-Fucp-(1 \rightarrow 3)
	\rightarrow 4)- α -D-GalpNAc-(1 \rightarrow 6)- α -D-Manp2/3/4-OAc-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
O17 (J)	α -D-Galf-(1 \rightarrow 4)
	$\rightarrow 2)-\alpha-\text{D-Gal}p-(1\rightarrow 3)-\beta-\text{D-Man}p\text{NAc-}(1\rightarrow 6)-\beta-\text{D-Gal}f2Ac-(1\rightarrow 3)-\beta-\text{D-Glc}p\text{NAc-}(1\rightarrow 3$
O18 (K) Cerro	$\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3$
O21 (L)	α -D-GlcpNAc-(1 \rightarrow 3)
	\rightarrow 4)- β -D-Gal p NAc-(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow 4)- β -D-Gal p -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
O28 (M, O28 ₁ ,28 ₂) Telaviv	$\alpha - D - Galp - (1 \rightarrow 3) - \alpha - D - Galp - (1 \rightarrow 3) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow$
	\rightarrow 4)- β -D-Quip3NAc-(1 \rightarrow 3)- β -D-Ribf-(1 \rightarrow 4)- β -D-Galp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow
O28 (M, O28 ₁ ,28 ₃) Dakar	β -D-Glcp-(1->4)
	\rightarrow 4)- α -D-Quip3NAc-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 4)- β -D-Galp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow
O30 (N) Landau	$\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 4)-\beta-Glcp6Ac-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha$
O30 (N) Urbana, Godesberg	β -D-Glcp-(1 \rightarrow 4)
	\rightarrow 2)- α -D-Rhap4NAc-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 4)- β -Glcp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow

O35 (O) Adelaide	α -Golp-(1 \rightarrow 3) Γ (6 \leftarrow 1)- α -Golp
	\rightarrow 4)- α -D-Glcp-(1 \rightarrow 4)- α -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc(1 \rightarrow
O38 (P)	β -D-Gal p -(1 \rightarrow 4) Γ (2 \leftarrow 1)- β -D-Glc p NAc
	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 4)- β -D-Glc p -(1 \rightarrow 3)- β -D-Gal p NAc(1 \rightarrow
O39 (Q) Mara	$\rightarrow 2)-\alpha-D-Quip3NAc-(1\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GalpNAc$
O40 (R) Riogrande	β -D-GlcpNAc-(1 \rightarrow 2)
	\rightarrow 4)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow
O41 (S)	$\rightarrow 2)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 3)-\alpha-L-QuipNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-$
O42 (T)	$\int (2 \leftarrow 1) - \beta - D - Manp NAc$
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
O43 (U) Milwaukee	α -D-Galp-(1 \rightarrow 3)
	\rightarrow 4)- α -L-Fucp-(1 \rightarrow 2)- β -D-Galp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
O44 (V)	β -D-GlcpNAc-(1 \rightarrow 3)
	$\rightarrow 2) - \alpha - D - Glcp - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 6) - \alpha - D$
O45 (W) IIIa (S. arizonae)	α -L-Fucp-(1 \rightarrow 2)
	$\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 4)-\alpha-L-Fucp3Ac-(1\rightarrow 3)-\beta-D-Ribf-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$
O47 (X)	$\rightarrow 2)-D-Rib-ol-5-P-(O\rightarrow 6)-\alpha-D-Galp4Ac-(1\rightarrow 3)-\alpha-L-FucpNAm-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-G$
O48 (Y) Toucra	\rightarrow 4)- α -Neu5Ac7,9Ac-(2 \rightarrow 3)- α -L-FucpNAm-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
O50 (Z) II (S. greenside)	$\Gamma^{(3\leftarrow 1)-\beta-D-\text{Gal}p-(2\leftarrow 1)-\alpha-\text{Col}p}$
	\rightarrow 6)- β -D-GlcpNAc-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
O50 IV (S. arizonae)	$\Gamma^{(3\leftarrow 1)-\beta-D-\text{Gal}p-(2\leftarrow 1)-\alpha-\text{Col}p}$
	\rightarrow 6)- β -D-GlcpNAc-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow

051	β -D-GlcpNAc(1 \rightarrow 3)
	\rightarrow 6)- α -D-Glc p -(1 \rightarrow 4)- β -D-Gal p -(1 \rightarrow 3)- α -D-Gal p NAc-(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
052	$\rightarrow 2)-\beta-\text{D-Rib}f-(1\rightarrow 4)-\beta-\text{D-Gal}p-(1\rightarrow 4)-\alpha-\text{D-Glc}p\text{NAc-}(1\rightarrow 4)-\beta-\text{D-Gal}p-(1\rightarrow 3)-\alpha-\text{D-Glc}p\text{NAc-}(1\rightarrow 4)-\beta-\text{D-Gal}p-(1\rightarrow 4)-\beta-\beta-\text{D-Gal}p-(1\rightarrow 4)-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta$
053	$\rightarrow 2)-\alpha-D-Galf-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-L-Rhap2, 3Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap2, 3Ac-(1\rightarrow 4)-Rhap2, 3Ac-(1\rightarrow 4)-Rhap2,$
O54 Borreze	\rightarrow 4)- β -D-ManpNAc-(1 \rightarrow 3)- β -D-ManpNAc-(1 \rightarrow
055	$\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 2)-\beta-D-Fucp3NAc-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc$
056	$\rightarrow 3)-\beta-D-Quip4N(L-SerAc)-(1\rightarrow 3)-\beta-D-Ribf-(1\rightarrow 4)-\alpha-GalpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D$
O57	_Γ (2←1)-β-D-GlcpNAc
	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow$
O58	$\rightarrow 3) - \beta - D - Quip 4N(DAlaS3Hb) - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 3) - \alpha - L - QuipNAc - (1 \rightarrow 3) - \alpha - D - GlcpNAc - (1 \rightarrow 3) - (1 \rightarrow 3) - ($
059	$\rightarrow 2)-\beta-\text{Gal}p-(1\rightarrow 3)-\alpha-\text{D-Glc}p\text{NAc-}(1\rightarrow 4)-\alpha-\text{L-Rha}p-(1\rightarrow 3)-\beta-\text{D-Glc}p\text{NAc-}(1\rightarrow 4)-\alpha-\text{L-Rha}p-(1\rightarrow 3)-\beta-\text{L-Rha}p-(1\rightarrow 3)-\beta-\text{L-Rha}p-(1\rightarrow 3)-\alpha-\text{L-Rha}p-(1\rightarrow 3)-\alpha-\alpha-\text{L-Rha}p-(1\rightarrow 3)-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha-\alpha$
O60	α -D-Fucp3NFo-(1 \rightarrow 3)
	\rightarrow 2)- β -D-Man p -(1 \rightarrow 3)- β -D-Glc p -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
O61 IIIb (S. arizonae)	\rightarrow 8)- α -8e-Legp5(R3Hb)7Ac-(2 \rightarrow 3)- α -L-FucpNAmp-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow
O62 IIIa (S. arizonae)	_Γ (2←1)-α-D-GalpNAcAN
	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-Rhap-(1\rightarrow $
O63 IIIa (S. arizonae)	Γ ^(4←1) -α-D-Fucp3NAc
	$\rightarrow 3)-\beta-D-Galp-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-$
O65	$\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-$
O66	β -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-D-Galp-(1\rightarrow 6)-\alpha-D-Galp-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc6Ac-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpA-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-D-$
O67	\rightarrow 3)- β -D-Gal <i>f2Ac</i> -(1 \rightarrow 3)- α -D-Gal <i>p</i> -(1 \rightarrow

^а О-Ацетильные группы присутствуют в нестехиометрическом количестве.

2.3.2. CITROBACTER, EDWARDSIELLA

Бактерии рода *Citrobacter* являются представителями нормальной микрофлоры кишечника человека и животных, но могут вызывать желудочно-кишечные заболевания, инфекции мочевыводящих путей и бактериемии. 13 видов этого рода объединены общей классификационной схемой, включающей 43 О-серогруппы. Строение ОПС установлено для большинства серогрупп (таблица 3) [9]. Многие из них состоят только из нейтральных моносахаридов, таких как гексозы, пентозы (D-Xyl, D-Rib) и 6-дезоксигексозы (Rha и Fuc), уникальный моносахарид 4-дезокси-D-арабино-гексоза (D-4daraHex) и абеквоза. Во многих ОПС присутствуют аминосахара, причем в ОПС серогрупп O12 и O41 остатки GlcN и Fuc3N несут (R)-3-гидроксибутаноильные группы. Несколько ОПС являются кислыми за счет присутствия моносахаридов с карбоксильными группами (GlcA, Neu5Ac), фосфатов глицерина или этаноламина, присоединенных в качестве боковых заместителей, или гликозил-фосфатной группы в основной цепи. Примечательно, что в ОПС-гомогликане серогруппы ОЗ2 остаток L-глицериновой кислоты соединяет между собой соседние остатки D-Fuc3N, ацилируя аминогруппу одного остатка и будучи О-гликозилированным другим остатком. Другой необычный аминосахар D-Rha4NAc образует различные гомополисахариды серогруппы О9 и, кроме того, присутствует в гетерополисахаридах Citrobacter sedlakii NRCC 6070 и Citrobacter freundii OCU 158.

Одинаковые ОПС могут быть характерными для более чем одной О-серогруппы. Например, один и тот же гомополимер D-4dAraHex присутствует в серогруппах O4, O27, O36, и, как оказалось, основанием для классификации соответствующих штаммов в три разные серогруппы являются структурные вариации в олигосахариде кора ЛПС [9]. О-Антигены серогрупп O1-O3 и O7 обладают сходным по структуре, но различным по составу трисахаридным фрагментом главной цепи \rightarrow 4)- α -Sug-(1 \rightarrow 3)- β -Sug-(1 \rightarrow 4)- β -Sug(1 \rightarrow , где Sug обозначает D-Man или D-Rha.

Некоторые ОПС *Citrobacter* идентичны или сходны с ОПС других бактерий, в том числе *S. enterica* (серогруппы O21, O22, O24, O38), *E. coli* (O23, O35, *C. rodentium* ATCC 51459), *Klebsiella pneumoniae* (O28, O39), *Hafnia alvei* (O16, O41) и *Eubacterium sabbureum* (O32) [9]. Основная цепь ОПС *C. braakii* O7 (РСМ 1532) совпадает по структуре с линейным ОПС – маннаном *E. coli* O9, *K. pneumoniae* O3 и *H. alvei* РСМ 1223. Одинаковые ОПС присутствуют у бактерий *C. sedlakii* NRCC 6070, *C. freundii* Ocu 158, *S. enterica* O30 и *E. coli* O157; они серологически связаны также с некоторыми другими бактериями, содержащими различные N-ацильные производные Rha4N в составе ОПС.

C. youngae O1	α -D-Ribf-(1 \rightarrow 4)
	\rightarrow 4)- α -D-Rhap-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)- β -D-Manp-(1 \rightarrow
C. youngae O2, O25, C. werkmanii O20	α -D-Xylf-(1 \rightarrow 4)
	\rightarrow 4)- α -D-Rhap-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)- β -D-Rhap-(1 \rightarrow
C. youngae O3	\rightarrow 4)- α -D-Man p -(1 \rightarrow 3)- β -D-Rha p -(1 \rightarrow 4)- β -D-Rha p -(1 \rightarrow
C. youngae O4, O36, C. werkmanii O27	\rightarrow 2)- β -D-4daraHex p -(1 \rightarrow
C. braakii O5	β -D-4daraHex <i>p</i> -(1 \rightarrow 3)
Citrobacter sp. PCM 1487	\rightarrow 6)- α -D-GlcpNAc-(1 \rightarrow 4)- α -D-GalpNAc-(1 \rightarrow
C. braakii O6	α -D-4daraHex p -(1 \rightarrow 4)
	\rightarrow 3)- α -D-Fucp-(1 \rightarrow 3)- β -L-Rhap2Ac-(1 \rightarrow 3)- α -D-Fucp-(1 \rightarrow
<i>C. braakii</i> O7 (PCM 1503)	α -D-Glcp-(1-2)
	\rightarrow 4)- α -D-Man <i>p</i> -(1 \rightarrow 3)- β -D-Rha <i>p</i> -(1 \rightarrow 4)- β -D-Rha <i>p</i> -(1 \rightarrow
<i>C. braakii</i> O7 (PCM 1532)	α-D-Glcp-(1-2)
	$\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-\alpha-D-Aapp-(1\rightarrow 2)-Aapp-(1\rightarrow 2)-Aapp-(1\rightarrow 2)-Aapp-(1\rightarrow 2)-Aapp-(1\rightarrow 2)-Aapp-(1$
C. braakii O8	α -D-Xylp-(1-2)
	\rightarrow 3)- α -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow 4)- β -D-Rhap-(1 \rightarrow
<i>C. gilenii</i> O9 (PCM 1537)	\rightarrow 3)-α-D-Rhap4NAc-(1 \rightarrow 2)-α-D-Rhap4NAc-(1 \rightarrow 2)-α-D-Rhap4NAc-(1 \rightarrow 3)-α-D-Rhap4NAc2Ac-(1 \rightarrow и \rightarrow 2)-α-D-Rhap4NAc-(1 \rightarrow
C. youngae O9 (PCM 1538) [10]	\rightarrow 2)- α -D-Rhap4NAc-(1 \rightarrow и \rightarrow 3)- α -D-Rhap4NAc-(1 \rightarrow 3)- β -D-Rhap4NAc-(1 \rightarrow
<i>C. gilenii</i> O11 (PCM 1540)	β -D-GlcpNAc-(1 \rightarrow 2) α -D-Glcp-(1 \rightarrow 6)
	\rightarrow 3)- β -D-Manp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 3)- α -D-FucpNAc4Ac-(1 \rightarrow 4)- α -D-GalpNAc-(1 \rightarrow

Таблица 3. Структуры ОПС рода *Citrobacter* [7], [9]

<i>C. gilenii</i> O12 (PCM 1542)	α -D-Glcp-(1 \rightarrow 6) $(4\leftarrow 1)-\alpha$ -D-GlcpNAc
	\rightarrow 6)- β -D-GlcpN(R3Hb)-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
<i>C. gilenii</i> O12 (PCM 1544)	β -D-GlcpNAc-(1 \rightarrow 3)
	\rightarrow 3)- β -L-Rhap2Ac-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 6)- α -D-Galp-(1 \rightarrow
C. werkmanii O14	β -D-GlcpNAc-(1 \rightarrow 2) α -D-Glcp-(1 \rightarrow 6)
	\rightarrow 4)- β -D-Glc <i>p</i> 6(<i>P</i> 1Gro)-(1 \rightarrow 3)- β -D-Glc <i>p</i> NAc-(1 \rightarrow
C. youngae O16	α -D-Glcp-(1 \rightarrow 2) ₇ (6 \leftarrow 1)- α -D-Galp
	$\rightarrow 6)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-GalpNAc3(P1Gro)-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-($
C. werkmanii O21	α -D-Glcp-(1 \rightarrow 3)
	\rightarrow 6)- α -D-Man <i>p3Ac</i> -(1 \rightarrow 2)- α -D-Man <i>p</i> -(1 \rightarrow 2)- α -D-Man <i>p</i> -(1 \rightarrow 3)- α -D-Glc <i>p</i> NAc-(1 \rightarrow
C. freundii O22	α -Abep-(1 \rightarrow 3)
	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
C. freundii O23	$\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha$
C. werkmanii O24	α -L-Fucp-(1 \rightarrow 2)
	$\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 4)-\alpha-L-Fucp3Ac-(1\rightarrow 3)-\beta-D-Ribf-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1$
C. werkmanii O26	α -D-Glcp-(1 \rightarrow 2)-
	\rightarrow 3)- β -D-ManpNAc-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow
C. braakii O28	$\rightarrow 2$)- β -D-Ribf-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow
<i>C. braakii</i> O29, O30	\rightarrow 3)- β -D-ManpNAc-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow
C. youngae O32	\rightarrow 2)-L-GroA-(1 \rightarrow 3)- α -D-Fucp3N2Ac-(1 \rightarrow
C. braakii O35	\rightarrow 2)- β -D-Gal p -(1 \rightarrow 3)- α -L-Fuc p NAc-(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
C. braakii O37	\rightarrow 7)- α -Neup5Ac-(2 \rightarrow 3)- α -L-FucpNAm-(1 \rightarrow 3)- β -D-GlcpNAc6Ac-(1 \rightarrow

C. werkmanii O38	α -Abep4Ac-(1 \rightarrow 3)- α -D-Glcp-(1 \rightarrow 2)-
	\rightarrow 4)- β -L-Rhap-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow
C. freundii O39	$\rightarrow 3)-\beta-D-Galp6PEtN-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow \varkappa \rightarrow 3)-\beta-D-Galf-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3$
C. freundii O41	α -D-Glcp-(1 \rightarrow 2)
	$\rightarrow 2)\beta\text{-D-Glc}p\text{-}(1\rightarrow 2)\text{-}\beta\text{-}D\text{-}Fucp3N(R3Hb)\text{-}(1\rightarrow 6)\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1\rightarrow 4)\text{-}\beta\text{-}D\text{-}Galp\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}GalpNAc\text{-}(1\rightarrow 6)\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1\rightarrow 4)\text{-}\beta\text{-}D\text{-}GalpNAc\text{-}(1\rightarrow 6)\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1\rightarrow 6)\text{-}\alpha\text{-}D\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega$
<i>C. youngae</i> PCM 1505 [11]	α -D-Galf-(1 \rightarrow 4)
	\rightarrow 3)- α -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow 2)- β -D-Rhap-(1 \rightarrow
<i>Citrobacter</i> sp. 396 ^a	α -Abep2Ac-(1 \rightarrow 3) $(3\leftarrow 1)-\alpha$ -D-Galp
	$\rightarrow 2) - \beta - D - Manp - (1 \rightarrow 2) - \beta - D - Manp - (1 \rightarrow 2) - \beta - D - Manp - (1 \rightarrow 2) - \beta - D - Manp - (1 \rightarrow 3) - \alpha - D - GlcpNAc - (1 \rightarrow 3) -$
<i>C. sedlakii</i> NRCC 6070 <i>C. freundii</i> OCU 158	$\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GalpNAc$
C. freundii NRCC 6052	\rightarrow 2)- α -D-Rhap-(1 \rightarrow 3)- β -D-Rhap-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow
C. rodentium ATCC 51459	Γ ^{(4←1)-β-L-Rhap}
	$\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow P\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 1)-\beta-D-GlcpNAc-(1\rightarrow 1)-\beta-D-GlcpN$

^аСтруктура была установлена устаревшими методами и требует повторного исследования.

Edwardsiella spp. являются условно-патогенными бактериями; так, штаммы *Edwardsiella tarda* вызывают гастроэнтерит и инфекции у людей с ослабленным иммунитетом. Кислые ОПС *E. tarda* MT 108 и PCM 1150 включают в себя амиды D-GalA с L-треонином и L-аланином, соответственно, а в ОПС штамма PCM 1153 остаток D-GalA нейтрализован амидированием 2-амино-2-дезоксиглицерином (GroN) (таблица 4). ОПС штаммов PCM 1145 и PCM 1151 имеет такую же углеводную структуру, что и ОПС *Salmonella enterica* O4 и *Citrobacter freundii* O22.

E. <i>ictaluri</i> MT 104	\rightarrow 4)- β -D-Gal p -(1 \rightarrow 4)- α -D-Glc p -(1 \rightarrow 4)- α -D-Gal p NAc-(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
E. tarda	$\Gamma(3\leftarrow 1)$ - α -D-GalpA6LThr
MT 108	
	\rightarrow 4)- β -D-GalpNAc-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
E. tarda	$\Gamma(3\leftarrow 1)$ - α -Abep2Ac
PCM 1145,	
1151	\rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow
E. tarda	α -D-GalpNAc-(1 \rightarrow 3)
PCM 1150	
	\rightarrow 4)- β -D-GalpA6LAla-(1 \rightarrow 4)- α -L-Fucp-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow
	4)-α-D-Qui <i>p</i> -(1→3)-β-D-Glc <i>p</i> NAc-(1→
E. tarda	_F 6-GroN
PCM 1153	
	\rightarrow 4)- α -D-GalpA-(1 \rightarrow 4)- α -D-Galp-(1 \rightarrow 3)- α -D-GalpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
E. tarda	
PCM 1156	\rightarrow 4)- α -D-GalpNAc-(1 \rightarrow 6)- α -D-Manp-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow
[12]	

Таблица 4. Структуры ОПС рода Edwardsiella [7]

2.3.3. ESCHERICHIA, SHIGELLA

Кишечная палочка является основным компонентом нормальной кишечной микрофлоры, но некоторые штаммы могут вызывать диарею, гастроэнтерит, инфекции мочевыводящих путей и неонатальный менингит. *E. coli* O157 и вирулентные штаммы нескольких других серогрупп вызывают геморрагический колит и гемолитический уремический синдром. Структуры ОПС установлены для большинства из 180 О-серогрупп кишечной палочки, эти данные были обобщены в обзоре 2006 года [13] и периодически обновляются в интернет-доступной базе данных О-антигенов *Escherichia coli* (ECODAB: http://www.casper.organ.su.se/ECODAB/). В связи с этим структуры ОПС *E. coli* в данный литературный обзор не включены за исключением тех, которые идентичны или родственны ОПС *Shigella* spp. (таблицы 6 и 7). Установлению строения и генетике биосинтеза

некоторых ранее неизученных ОПС кишечной палочки посвящена часть настоящей диссертационной работы.

Структуры ОПС двух других видов рода *Escherichia* – *E. hermannii* и *E. albertii* – изучены значительно меньше. Один из штаммов *E. hermannii* продуцирует гомополимер 2-О-ацетилированной D-рамнозы, а группа других штаммов – гомополимеры D-Rha4NAc, различающиеся положением замещения одного из остатков моносахарида в пентасахаридных О-звеньях (таблица 5). Единственный изученный ОПС вида *E. albertii* имеет боковую цепь, представленную остатком Neu5Ac.

<i>E. hermannii</i> ATCC 33650, ATCC 33652	$ [3 \leftarrow 1) - \alpha - D - Galp \rightarrow 2) - \alpha - D - Rhap - (1 \rightarrow 3) - \beta - D - Rhap - (1 \rightarrow 4) - \beta - D - Glcp - (1 \rightarrow 4) - (1 \rightarrow 4)$
<i>E. hermannii</i> ATCC 33651	\rightarrow 3)- β -D-Rha <i>p2Ac</i> -(1 \rightarrow
<i>E. hermannii</i> NRCC 4262	$\rightarrow 3)-\alpha-D-Rhap4NAc-(1\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-D-Rhap4NAc-(1\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 2)$
<i>E. hermannii</i> NRCC 4297-4300	$\rightarrow 3)-\alpha-D-Rhap4NAc-(1\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-D-Rhap4NAc-(1\rightarrow 2)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-D-Rhap4NAc-(1\rightarrow 3)-\alpha-Ac-(1\rightarrow 3)$
E. albertii 10457 (Hafinia alvei)	$ \Gamma^{(6\leftarrow 2)-\alpha-\text{Neu}p5\text{Ac}} \rightarrow 3)-\beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\text{D-Gal}f-(1\rightarrow 3)-\beta-\text{D-Gal}p\text{NAc-}(1\rightarrow 6)-\beta-\beta-\text{D-Gal}f-(1\rightarrow 3)-\beta-\text{D-Gal}p\text{NAc-}(1\rightarrow 6)-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta$

Таблица 5. Структуры ОПС видов E. hermannii и E. albertii [7]

Штаммы Shigella spp., в основном S. dysenteriae, S. flexneri и S. sonnei (шигеллы дизентерии, шигеллы Флекснера и шигеллы Зонне) являются возбудителями шигеллёза (бациллярной дизентерии). Этот род тесно связан с родом Escherichia, и генетически все шигеллы являются клонами E. coli. Строение ОПС установлено для всех 46 базовых Осерогрупп Shigella spp., традиционно называемых типами (таблицы 6 и 7) [14]. Как уже отмечалось, многие из них являются идентичными или близкородственными по структуре ОПС E. coli, структуры которых также приведены в таблицах 6 и 7.

За исключением ОПС шигелл Флекснера, почти все ОПС этой группы являются кислыми, чаще всего благодаря присутствию гексуроновых кислот, в том числе уникальной N-ацетил-L-альтрозаминуроновой кислоты (L-AltNAcA) в ОПС единственной известной О-серогруппы *S. sonnei*. Найдены также псевдаминовая кислота (Pse) в ОПС *S. boydii* типа 7 и различные кислые неуглеводные заместители, такие как остаток молочной кислоты (lac) (*S. boydii* типа 17, *S. dysenteriae* типов 3 и 5), ацеталь пировиноградной кислоты (pyr) (*S. boydii* типа 1, *S. dysenteriae* типов 2, 9 и 10), L-аланин присоединенный к карбоксильной группе D-GlcA (*S. boydii* типа 3), фосфатная группа (*S. boydii* типа 13, *S. dysenteriae* типов 6, 11 и 12).

Shigella boydii	
type 1 / E. coli O149	$\rightarrow 3)-\beta-D-GlcpNAc4,6Spyr-(1\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-$
тип 2	$\lceil (3 \leftarrow 1) - \beta - D - Galf$
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\beta-D-Ribf-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GalpA-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GalpA-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 4)-\alpha-D-(1\rightarrow 4)-\alpha$
тип 3 / <i>E. coli</i> O167	Γ ^{(4←1)-α-D-Galf}
	$\rightarrow 2)-\beta-D-GalpA6LAla-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 2)-\beta-D-Galf-(1\rightarrow 5)-\beta-D-Galf-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GalpA6LAla-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Galf-(1\rightarrow 3)-\beta-D-Galf-(1\rightarrow$
тип 4 / <i>E. coli</i> O53	$[2\leftarrow 1)-\alpha$ -D-Glcp
	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1$
тип 5 / <i>E. coli</i> O79	$\int (3 \leftarrow 1) - \alpha - L - Rhap$
	$\rightarrow 2)-\beta-D-Galp6Ac-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-Manp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1$
тип 6	Γ ^{(4←1)-β-GlcpA}
	$\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 6)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FalpNAc-(1\rightarrow 3)-\beta-D-FAA-(1\rightarrow 3)-\beta-D-FAA-(1\rightarrow 3)-\beta-D-FAA-(1\rightarrow 3)-\beta-D-FAA-(1\rightarrow 3)-\beta-D-FAA-(1\rightarrow 3)-\beta-FAA-(1\rightarrow 3)-\beta-FAA$
E. coli O169	Γ ^{(4←1)-β-D-GlcpA}
	$\rightarrow 3)-\alpha-D-\text{Gal}p-(1\rightarrow 6)-\alpha-D-\text{Man}p-(1\rightarrow 2)-\alpha-D-\text{Man}p-(1\rightarrow 3)-\beta-D-\text{Gal}p\text{NAc}-(1\rightarrow 3)-\beta-D-G$
	$(6\leftarrow 1)-\beta$ -D-Glcp
тип 7	$\rightarrow 8) - \beta - Pse5Ac7(R3Hb) \\ 4Ac - (2 \rightarrow 6) - \alpha - D - Galp - (1 \rightarrow 6) - \alpha - D - Glcp - (1 \rightarrow 2) - \beta - D - Galf - (1 \rightarrow 3) - \alpha - D - Glcp \\ NAc - (1 \rightarrow 3) - \alpha - $
тип 8 / E. coli 0143	$\rightarrow 2) - \beta - \text{D-Gal}p\text{A6GroN}3, 4Ac - (1 \rightarrow 3) - \alpha - \text{D-Gal}p\text{NAc} - (1 \rightarrow 4) - \text{D-Glc}p\text{A} - (1 \rightarrow 3) - \beta - \text{D-Glc}p\text{NAc} - (1 \rightarrow 3) - \beta - $
тип 9	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 4)-\alpha-D-GlcpA-(1\rightarrow 4)$
тип 10 / <i>E. coli</i> O183	$\lceil (4 \leftarrow 1) - \beta - D - GlcpA - (4 \leftarrow 1) - \beta - D - Ribf$
	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 6)- α -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow

Таблица 6. Структуры ОПС рода Shigella (кроме S. flexneri) и родственных ОПС E. coli [14]

тип 11 / <i>E. coli</i> O105 ^a	$-(2 \leftarrow 1)$ - α -D-GlcnA-(4 $\leftarrow 1$)- β -D-Rihf
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -L-Rhap-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
тип 12	$\int (3\leftarrow 1)-\alpha-L-Rhap3Ac$
	$\rightarrow 4)-\beta-D-GlcpA3Ac-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(\rightarrow 1)-\beta-D-GlcpNAc-(\rightarrow 1)-\beta-D-(\rightarrow 1)-\beta-(\rightarrow 1)-\beta-D-(\rightarrow 1)-\beta-(\rightarrow 1)$
E. coli O7	$\int (3\leftarrow 1)-\alpha-L-Rhap$
	$\rightarrow 3)-\beta-D-Quip4NAc-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc$
тип 13	$\rightarrow 3) - \alpha - L - QuipNAc - (1 \rightarrow 4) - \alpha - D - Glcp - 1 - P - (O \rightarrow 4) - \alpha - D - GlcpNAc 6Ac - (1 \rightarrow 3) - \alpha - L - QuipNAc - (1 \rightarrow 3) - \alpha - D - Glcp$
тип 14 / <i>E. coli</i> O32	$\rightarrow 6)-\alpha-D-Galp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$
тип 15 / <i>E. coli</i> O112ab	$(3\leftarrow 1)-\beta$ -D-GlcpNAc
	$\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-L-IdoA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha$
тип 16	$\int (3\leftarrow 1)-\alpha$ -D-Galp
	$\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 2)-\beta-D-Manp6Ac-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-F-D-F-D-F-D-$
тип 17	\rightarrow 6)- β -D-Glcp4 <i>R</i> lac-(1 \rightarrow 4)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
тип 18	$\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-$
Shigella dysenteriae	
тип 1	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 4)-\alpha-D-Galp$
E. coli O148	$\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-D-Glcp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow$
тип 2 / <i>E. coli</i> O112ac	$(3\leftarrow 1)-\beta$ -D-Glc <i>p</i> NAc4,6 <i>S</i> pyr <i>3Ac</i>
	$\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-Falp$
тип 3 / <i>E. coli</i> O124	$(4 \leftarrow 1) - \alpha - D - Glcp - (6 \leftarrow 1) - \beta - D - Glcp + Rlac$
	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 6)- β -D-Gal f -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow

E 1:0164	
E. coli O164	$\int^{(4 \leftarrow 1) - \alpha - D - Glc p - (6 \leftarrow 1) - \beta - D - Glc p}$
	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 6)- β -D-Gal f -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
тип 4 / <i>E. coli</i> O168	$(3\leftarrow 1)-\alpha$ -L-Fuc <i>p2/3/4Ac</i>
	$\rightarrow 4)-\alpha-D-GlcpNAc6Ac-(1\rightarrow 4)-\alpha-D-GlcpA-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Glcp$
E. coli O159	$\int (4 \leftarrow 1) - \alpha - L - Fucp$
	$\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc$
тип 5 / <i>E. coli</i> O58	$(3\leftarrow 1)-\alpha$ -L-Rhap3Rlac2Ac
	\rightarrow 4)- β -D-Man p -(1 \rightarrow 4)- α -D-Man p -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
тип 6 (SR-форма)	$(3\leftarrow 1)-\beta$ -D-GalpNAc3Ac-(4 \leftarrow O)-P-2-Gro
	α -D-Gal p -(1 \rightarrow 6)- α -D-Glc p -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
E. coli O130	$(3\leftarrow 1)-\beta$ -D-GalpNAc-(4 \leftarrow O)-P-2-Gro
	\rightarrow 4)- α -D-Gal p -(1 \rightarrow 6)- α -D-Glc p -(1 \rightarrow 3)- β -D-Gal p NAC-(1 \rightarrow
тип 7 / <i>E. coli</i> O121	$\rightarrow 3) - \beta - D - Quip 4 NGly Ac - (1 \rightarrow 4) - \alpha - D - Galp NAcAN3Ac - (1 \rightarrow 4) - \alpha - D - Galp NAcA - (1 \rightarrow 3) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAcA -$
тип 8 / <i>E. coli</i> O38	[(4←1)-α-D-GlcpNAc
	\rightarrow 6)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
тип 9	$\rightarrow 2)-\beta-D-Galp3,4Rpyr-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Galp3Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Galp3Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-Galp3Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow 4)-\alpha-D-Ac-(1\rightarrow$
E. coli O40	$\rightarrow 2)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 4)-\alpha-D-Ga$
тип 10	$\rightarrow 2)-\beta-D-Manp3, 4Rpyr-(1\rightarrow 3)-\beta-D-ManpNAc-(1\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-$
тип 11 / <i>E. coli</i> О29	$(3\leftarrow 1)-\alpha$ -D-Galp2Ac-(6 $\leftarrow 1$)- α -D-Glcp
	$\rightarrow 3)-D-Gro-3-P-(O\rightarrow 6)-\beta-D-Glcp-(1\rightarrow 4)-\alpha-L-FucpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc$

тип 12 / <i>E. coli</i> O152	$\int (4 \leftarrow 1) - \beta - L - Rhap$
	$\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow p\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$
тип 13 / <i>E. coli</i> O150	[(2←1)-β-D-Glcp
	$\rightarrow 3)-\beta-D-GlcpNAc4Slac-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3$
Shigella sonnei	
фаза I	\rightarrow 4)- α -L-AltpNAcA-(1 \rightarrow 3)- β -D-FucpNAc4N-(1 \rightarrow

^аОПС содержат небольшое количество О-ацетильных групп в неизвестном положении.

Молочная кислота образует с моносахаридами (D-Glc и L-Rha) простые эфиры, которые впервые были обнаружены в ОПС шигелл и названы гликолактиловыми кислотами. Из других моносахаридов отметим присутствие в ОПС этих бактерий редко встречающегося диаминосахара D-FucNAc4N со свободной аминогруппой в положении 4. С такой же картиной N-ацилирования этот моносахарид встречается и в полисахаридах других бактерий, тогда как аминогруппы всех других аминосахаров, в том числе, например, обе аминогруппы изомерного D-QuiN4N, ацетилированы или, реже, ацилированы другими кислотами.

ОПС всех шигелл Флекснера за исключением типа 6 являются нейтральными и образуют уникальную по своему разнообразию группу (около 30 вариантов структур) с общей основной цепью, построенной из тетрасахаридных О-звеньев, которые включают три остатка L-Rha и один остаток D-GlcNAc (таблица 7). Разнообразие структур ОПС в этой группе бактерий возникает в результате гликозилирования, О-ацетилирования и/или фосфорилирования фосфоэтаноламином в различные положения различных моносахаридов основной цепи. Все эти модификации кодируются не генным кластером О-антигена, который одинаковый у всех типов и подтипов, а генами в профагах, приобретенных в результате лизогении бактериофагами, или плазмидными генами [15]. Эти модификации дают бактериям определенные преимущества, не только позволяя им преодолевать защитный барьер адаптивного иммунитета, но и оптимизируя действие других факторов вирулентности [16].

1a	α -D-Glcp-(1 \rightarrow 4)
	\rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
1a ₁	α -D-Glcp-(1 \rightarrow 4)-
	$\rightarrow 2)-\alpha-L-Rhap3/4Ac-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNA$
1b	α -D-Glc <i>p</i> -(1 \rightarrow 4)-
	$\rightarrow 2)-\alpha-L-Rhap3/4Ac-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap2Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Glc$
1d	α -D-Glcp-(1 \rightarrow 3) α -D-Glcp-(1 \rightarrow 6)
	$\rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 3) $
2a ₁	α -D-Glcp-(1 \rightarrow 4)-
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc6Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-D-$

Таблица 7. Структуры ОПС вида S. flexneri и родственных ОПС E. coli [15]

2a ₂	α -D-Glc <i>p</i> -(1 \rightarrow 4)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc6Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-\beta-D-(1\rightarrow 3)-\beta-D-$
2b	α -D-Glcp-(1 \rightarrow 4) α -D-Glcp-(1 \rightarrow 4)
	\rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
2b ₁	α -D-Glcp-(1 \rightarrow 4) α -D-Glcp-(1 \rightarrow 4)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc6Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-D-(1$
E. coli	α -D-Glcp-(1 \rightarrow 2)
013	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc6Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc6Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-D-$
3a	$\int (3\leftarrow 1)-\alpha$ -D-Glcp
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap2Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-$
3a ₁	$\int^{(3\leftarrow 1)-\alpha-D-\mathrm{Glc}p}$
	$\rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap 2Ac - (1 \rightarrow 3) - \beta - D - Glcp NAc6Ac - (1 \rightarrow 3) - \beta - D - D - Glcp NAc6Ac - (1 \rightarrow 3) $
3b	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap2Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-$
4a	α -D-Glcp-(1 \rightarrow 6)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$
4av	$\int^{3-P \to 0} \alpha - D - Glc p - (1 \to 6)$
	$\rightarrow 2) \cdot \alpha - L - Rhap - (1 \rightarrow 2) \cdot \alpha - L - Rhap - (1 \rightarrow 3) \cdot \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 3) - \beta - (1 \rightarrow 3) - \beta - (1 \rightarrow 3) - \beta - (1 \rightarrow 3) - (1 \rightarrow$
4b, E coli	α -D-Glcp-(1 \rightarrow 6)
0129	$\rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap 2Ac - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 3) - \beta - (1 \rightarrow 3) -$
5a, E coli	$\int^{(3\leftarrow 1)-\alpha-\mathrm{D-Glc}p}$
O135	$\rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 3) - \beta - D - (1 \rightarrow 3) - \beta - D - (1 \rightarrow 3) - \beta - D - (1 \rightarrow 3) - $
5a ₁	Γ ^{(3←1)-α-D-Glcp}
	$\rightarrow 2)-\alpha-L-Rhap3/4Ac-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNA$
5b	α -D-Glcp-(1 \rightarrow 6) $(3\leftarrow 1)-\alpha$ -D-Glcp
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-$
Х	α -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-$
X ₁	α -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc6Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-D$
Xv	α -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-(1\rightarrow 3)-\beta-Ac-$
Υ	\rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
Y ₁	$\rightarrow 2)-\alpha-L-Rhap3/4Ac-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNA$
Y ₂	$ \rightarrow 2\rangle$ - α -L-Rhap3/4Ac-(1 $\rightarrow 2$)- α -L-Rhap-(1 $\rightarrow 3$)- α -L-Rhap-(1 $\rightarrow 3$)- β -D-GlcpNAc6Ac-(1 \rightarrow

Yv	Γ^{3-PEtN} Γ^{3-PEtN}
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow$
Yv ₁	$\int 3-P E t N \int 3-P E t N$
	$\rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - Glcp NAc6Ac - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - Glcp NAc6Ac - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - Glcp NAc6Ac - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - Glcp NAc6Ac - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - Glcp NAc6Ac - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 3) - R$
6	$\rightarrow 2)-\alpha-L-Rhap3/4Ac-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpN-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-GalpNA-(1\rightarrow 3)-\beta-D-FalpNA-(1\rightarrow 3)-\beta-FalpNA-(1\rightarrow 3)-\beta-FalpNA-(1\rightarrow 3)-\beta-FalpNA-(1\rightarrow 3)-\beta-FalpN$
<i>E. coli</i> O147	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-($
7a	α -D-Glcp-(1 \rightarrow 2)- α -D-Glcp-(1 \rightarrow 4)-
(1c)	\rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
7a ₁	α -D-Glcp-(1 \rightarrow 2)- α -D-Glcp-(1 \rightarrow 4)
	\rightarrow 2)- α -L-Rhap3/4Ac-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
7b	α -D-Glcp-(1 \rightarrow 2)- α -D-Glcp-(1 \rightarrow 4)-
	\rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap2Ac-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow

2.3.4. KLEBSIELLA, RAOULTELLA

Klebsiella pneumoniae является частой причиной внутрибольничных инфекций, вызывая пневмонии и инфекционные заболевания мочевых путей. Первоначально штаммы этого вида бактерий разделяли на 12 О-серогрупп, но позднее некоторые серогруппы были попарно объединены (таблица 8), а серогруппа О10 была перенесена в род *Enterobacter*. ОПС всех серогруппы *K. pneumoniae* являются нейтральными и, за исключением некоторых подгрупп серогруппы О2, линейными полимерами (таблица 8). Серологически связанные ОПС серогрупп О1, О2, О8 и О9 имеют одинаковую основную цепь \rightarrow 3)-α-D-Gal*p*-(1 \rightarrow 3)-β-D-Gal*f*-(1 \rightarrow , называемую галактаном I. В серогруппах О1 и О8 к невосстанавливающему концу галактана I присоединен так называемый галактан II, имеющий структуру \rightarrow 3)-β-D-Gal*p*-(1 \rightarrow 3)-α-D-Gal*p*-(1 \rightarrow . ОПС некоторых других О-серогрупп также являются гомополисахаридами (D-маннанами или L-рамнаном).

На невосстанавливающем конце ОПС серогрупп O4 и O12 обнаружен остаток 3-дезокси-D-*манно*-окт-2-улозоновой кислоты (Kdo) [17], в ОПС серогруппы O5 – остаток 3-O-метил-D-маннозы [6], а в ОПС серогруппы O3 – метилфосфатная группа [18]. Присоединение этих неповторяющихся терминальных групп дает сигнал к прекращению роста полимерной цепи, синтезирующейся по ABC-зависимому пути (см. раздел 2.1). ОПС *К. рпеиmoniae* связаны с олигосахаридом кора через праймер – остаток β-GlcNA, а в серогруппах O3 и O5 между ОПС и праймером располагается дисахаридный мостик \rightarrow 3)- α -D-Man*p*-(1 \rightarrow , называемый адаптором [17].

ОПС *К. pneumoniae* серогрупп O3, O4 и O5 имеют общее строение с OПС *Е. coli* серогрупп O9, O20a,b и O8, соответственно [13], а OПС серогруппы O5 идентичен по структуре также OПС *Burkholderia cepacia* O2 и Е [7] и *Serratia marcescens* O28 [19].

01, 06	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow и \rightarrow 3)- β -D-Gal p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow
O2a, 2a,b	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow
O2a,c	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow и \rightarrow 5)- β -D-Gal f -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
O2a,e,	α -D-Galp-(1 \rightarrow 2)
02a,e,fi, 09	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow
O2a,f,g	α -D-Galp-(1 \rightarrow 4)
	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow
03	\rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow
	3)- α -D-Man p -(1 \rightarrow 3)- α -D-Man p -(1 \rightarrow
04, 011	\rightarrow 4)- α -D-Gal p -(1 \rightarrow 2)- β -D-Rib f -(1 \rightarrow
05	\rightarrow 3)- β -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow
07	\rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- β -D-Ribf-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow
08	$\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-Galf-2, 6Ac-(1\rightarrow \varkappa \rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow$
012	\rightarrow 3)- β -GlcpNAc-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow
22535	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow
	2)- α -L-Rhap-(1→2)- α -L-Rhap-(1→
i28/94	\rightarrow 4)- β -Glc <i>p</i> -(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow

Таблица 8. Структуры ОПС вида Klebsiella pneumoniae [7], [17]

^аОПС серогрупп O2a,e, O2a,e,h и O9 отличаются друг от друга только степенью галактозилирования и O-ацетилирования в неизвестном положении.

Штаммы *Raoultella* (ранее *Klebsiella*) spp. выделяют из растений, почвы и воды. *Raoultella terrigena* ATCC 33257 имеет такую же структуру \rightarrow 3)- β -GlcpNAc-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow , как ОПС *K. pneumoniae* O12 [20]. ОПС другого штамма *R. terrigena* имеет уникальную структуру и является кислым благодаря присутствию ацеталя пировиноградной кислоты [21]:

$$\rightarrow 3) - \beta - D - Manp 4, 6Spyr - (1 \rightarrow 3) - \alpha - D - Manp NAc - (1 \rightarrow 3) - \beta - L - Rhap - (1 \rightarrow 4) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D$$

2.3.5. SERRATIA

Serratia marcescens – широкораспространенная бактерия, которая может вызывать госпитальные инфекции, иногда летальные. Все изученные ОПС этого вида являются нейтральными, и большинство из них построены из дисахаридных О-звеньев,

содержащих обычные моносахариды (таблица 9) [19]. Многие ОПС, хотя и принадлежат представителям различных серогрупп, имеют значительное структурное сходство между собой (для наглядности в таблице 9 ОПС сгруппированы по принципу структурного родства).

O14	\rightarrow 2)- β -D-Rib <i>f</i> -(1 \rightarrow 4)- α -D-Gal <i>p</i> NAc-(1 \rightarrow
016	\rightarrow 2)- β -D-Rib <i>f</i> -(1 \rightarrow
O4	\rightarrow 3)- α -L-Rhap2Ac-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow
O27	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow
06	\rightarrow 3)- β -L-Rhap2Ac-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow
019	\rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
O26	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
	\rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
O23	\rightarrow 4)- α -L-Rhap-(1 \rightarrow 4)- β -D-GalpNAc-(1 \rightarrow
05	\rightarrow 3)- β -D-Galf2Ac-(1 \rightarrow 4)- α -D-Glcp-(1 \rightarrow
O20	\rightarrow 3)- β -D-Gal <i>f</i> -(1 \rightarrow 3)- α -D-Gal <i>p</i> -(1 \rightarrow
O24	α -D-Gal p -(1 \rightarrow 4)-
	\rightarrow 3)- β -D-Gal f -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow
O2	\rightarrow 4)- β -D-ManpNAc-(1 \rightarrow 4)- α -D-GlcpNAc-(1 \rightarrow
O21	\rightarrow 4)- α -D-Glc p -(1 \rightarrow 4)- β -D-Man p NAc-(1 \rightarrow
O28	\rightarrow 3)- β -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow 2)- α -D-Man p -(1 \rightarrow
O10	α -D-Glcp-(1 \rightarrow 4)
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow$
O22	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow$
018	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow$
O29	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 6)-\alpha-D-Glc$
08	β -D-GlcpNAc-(1 \rightarrow 3)-
	\rightarrow 6)- α -D-Glc p -(1 \rightarrow 4)- α -D-Gl p -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow

Таблица 9. Структуры ОПС вида Serratia marcescens [7], [19]

Некоторые ОПС *S. marcescens* имеют сходство также с ОПС других бактерий. Так ОПС серогруппы O2 подобен ОПС *Hafnia alvei* 38 (таблица 10), а ОПС серогруппы O4 представляет собой O-ацетилированный вариант ОПС *К. pneumoniae* i28/94 (таблица 8). ОПС *S. marcescens* O19 состоит из двух цепей: короткая цепь, присоединенная к кору, имеет такое же O-звено, что и *К. pneumoniae* O12, а следующая за ней длинная цепь отличается замещением остатка L-Rha (в положении 3, а не 4) и завершается остатком β-Kdop [22]. Аналогичная особенность наблюдается у ОПС серогруппы O26, причем последовательность цепей с 3-замещенными и 4-замещенными остатками рамнозы может отличаться у разных штаммов этой серогруппы.

ОПС Serratia plymuthica S90/4625, единственного изученного из 18 других известных видов этих бактерий, не считая *S. marcescens*, состоит из таких же двух галактановых блоков, что и *K. pneumoniae* O1 (таблица 8), но отличается O-ацетилированием в неизвестном положении [23].

2.3.6. HAFNIA

Штаммы *Hafnia alvei* выделяют как из окружающей среды, так и из клинических образцов. Предложенная для *H. alvei* схема серотипирования включает в себя 39 О-серогрупп, однако она практически не используется в исследованиях О-антигенов из-за плохого соответствия известным структурам ОПС [24].

Кроме обычных моносахаридов, компонентами ОПС *H. alvei* являются Rib, D-6dTal, L-FucN, D-Qui3N, D-Fuc3N, DQui4N и Neu5Ac (таблица 10). Аминосахара, как правило, Nацетилированы, но некоторые несут (*R*)-3-гидроксибутаноильную группу, а в ОПС штамма 1204 присутствует N-формильное производное D-Qui3N. Большинство ОПС являются кислыми, и многие из них фосфорилированы. Некоторые обладают тейхоевоподобной структурой и содержат фосфат глицерина или, как в штамме 1191, уникальный компонент – фосфат L-арабинита, другие имеют гликозилфосфатные группы внутри основной цепи или содежат глицерофосфат или фосфоэтаноламин, присоединенные как боковые заместители.

ОПС штамма 2 имеет самое большое из известных октасахаридное О-звено, а ОПС штамма 1189 состоит из различных по размеру О-звеньев (гекса-, гепта- и октасахаридных) вследствие нестехиометрического гликозилирования по двум положениям. Существуют две группы штаммов со структурно и серологически родственными О-антигенами (структуры их фосфат-содержащих ОПС занимают пять первых рядов в таблице 10). ОПС каждой группы имеют одинаковую основную цепь, но различаются характером глюкозилирования и/или О-ацетилирования. Предложено объединить эти штаммы в две О-серогруппы, а все остальные штаммы отнести к отдельным серогруппам [24].

Несколько ОПС *H. alvei* совпадают по структуре с ОПС других бактерий. Так, одинаковый гексозаминоглюкан присутствует в штамме 38 и Serratia marcescens O2, маннан штамма 1223 имеет такую же структуру, как ОПС *E. coli* O9 и Klebsiella pneumoniae O3, а оба галактана штамма Y166/91 найдены также у *K. pneumoniae* O1.

1187	$\rightarrow 2)-\alpha-D-Glcp-1-P-(O\rightarrow 6)-\alpha-D-GlcpN(R3Hb)-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-$
744, 1194, 1219,	α -D-Glcp-(1 \rightarrow 4)
1221, 114/60	$\rightarrow 2)-\alpha-D-Glcp-1-P-(O\rightarrow 6)-\alpha-D-GlcpN(R3Hb)-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC$
537	α -D-Glcp-(1 \rightarrow 4)
(AICC 13557)	$\rightarrow 2)-\alpha-D-Glcp-1-P-(O\rightarrow 6)-\alpha-D-GlcpN(R3Hb)3Ac-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow $
1199	α -D-GlcpNAc6Ac-(1 \rightarrow 4)-
	$\rightarrow 3)-\beta-D-Quip4NAc-(1\rightarrow 3)-Gro-1-P-(O\rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-6Ac-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D$
1200, 1203, 1205 ^a	α -D-GlcpNAc6Ac-(1 \rightarrow 4)
	$\rightarrow 3)-\beta-D-Quip4NAc-(1\rightarrow 3)-Gro-1-P-(O\rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc6Ac-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc6Ac-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc$
2	$\alpha - D - Glcp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 6) - \beta - D - Glcp - (1 \rightarrow 3) - Glcp - (1 \rightarrow 3) - Glcp - (1 \rightarrow 4) - \beta - D - Glcp - (1 \rightarrow 3) - Glcp - (1 \rightarrow 4) - \beta - D - Glcp - (1 \rightarrow 3) - Glcp - (1 \rightarrow 4) - \beta - D - Glcp - (1 \rightarrow 3) - Glcp - $
	$\rightarrow 4)-\alpha-\text{Neu5Ac-}(2\rightarrow 6)-\alpha-\text{D-Glc}p-(1\rightarrow 6)-\beta-\text{D-Gal}p-(1\rightarrow 3)-\beta-\text{D-Gal}p\text{NAc-}(1\rightarrow 6)-\beta-\text{D-Gal}p-(1\rightarrow 3)-\beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta$
23	$\rightarrow 3)-\beta-D-Quip4NAc-(1\rightarrow 3)-\alpha-D-6dTalp4Ac-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 6)-\alpha-D-Glcp-1-P-(O\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-G$
32	$\rightarrow 4)-\alpha-D-GalpA2, 3Ac-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GlcP$
38	\rightarrow 4)- β -D-ManpNAc-(1 \rightarrow 4)- α -D-GlcpNAc-(1 \rightarrow
39	β -D-Galp-(1 \rightarrow 4) Γ (2 \leftarrow 1)- α -D-GlcpNAc
	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 4)- β -D-Gl cp -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
1185 ⁶	α -D-G1cp-(1 \rightarrow 4)
	$\rightarrow 2)-\beta-D-Quip3N(R3Hb)-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-GlcpA2Ac-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D$
1188	$\alpha-L-Rhap2,3,4Ac-(1\rightarrow 3)$
	\rightarrow 4)- β -D-GlcpA-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow

Таблица 10. Строение ОПС вида Hafnia alvei [7], [24]
1189	$r(4 \leftarrow 1) - q - D - Glcn$ $r(6 \leftarrow 1) - q - D - Glcn - (2 \leftarrow 1) - q - D - Glcn$
	$\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-GlcpA-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 4)-\beta-D-GalpA-(1$
1190	α -D-Galf-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)
	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 2)-\beta-D-Ribf-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 4)-\alpha-D-A)-(1\rightarrow 4)-\alpha-D-(1\rightarrow 4$
1191 ^в	β-D-GlcpNAc-(1 \rightarrow 2) $(4\leftarrow 1)-\alpha$ -D-Glcp
	$\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 1)-L-Ara-ol2Ac-5-P-(O\rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC$
1192 ⁶	$\lceil (2 \leftarrow 1) - \alpha - D - GlcpA2Ac - (4 \leftarrow 1) - \beta - D - Ribf$
	$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-Lhap-(1\rightarrow 4)-(1\rightarrow 4)-($
1194 [25]	α -D-Glcp(1 \rightarrow 6)
	$\rightarrow 2)-\alpha-D-Glcp-1-P-(O\rightarrow 6)-\alpha-D-GlcpN(R3Hb)-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-$
1195	α -D-GlcpNAc-(1 \rightarrow 4)
	$\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 4)-\alpha-D-Glcp-1-P-(O\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-Glcp$
1196	$\rightarrow 2)-\beta-D-Galp-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 4)$
1204 ⁶ \rightarrow 2)-β-D-Quip3NFo-(1 \rightarrow 3)-α-D-GalpNAc-(1 \rightarrow 4)-α-D-GlcpA3Ac-(1 \rightarrow 3)-α-D-Manp-(1 \rightarrow	
	2)- α -D-Man <i>p</i> -(1→3)- β -D-Glc <i>p</i> NAc-(1→
1206	$\rightarrow 4)-\beta-D-GalpA6DaThr-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\beta-D-Ribf-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FalpNAc-(1\rightarrow 3)-\beta-FalpNAc-(1\rightarrow 3)-\beta-FalpNAc-(1\rightarrow 3)-\beta-FalpNAc-(1\rightarrow 3)-\beta-FalpNAc-(1\rightarrow 3)-\beta-FalpNAc-(1\rightarrow 3)-\beta-$
1207°	α -D-Glcp-(1 \rightarrow 6)
	$\rightarrow 4)-\beta-D-GalpNAc-3-(P-1-Gro)-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-$
1209	$\Gamma^{(4\leftarrow 1)-\alpha-L-Rhap}$
	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 4)- α -D-Glc p -(1 \rightarrow 4)- β -D-Glc p A-(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
1210	$\Gamma^{(4\leftarrow 1)-\alpha-L-Rhap}$
	$\rightarrow 3)-\alpha-D-GlcpNAc-1-P-(O\rightarrow 6)-\alpha-D-Galp-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-FD-(1\rightarrow 4)-\beta-D-FD-(1\rightarrow 4)-\beta-D-FD-(1\rightarrow 4)-\beta-D-FD-(1\rightarrow 4)-\beta-D-FD-(1\rightarrow 4)-\beta-D-(1\rightarrow $

1211 ^г	β -D-Glcp-(1 \rightarrow 4)
	$\rightarrow 2) - \beta - D - Glcp - (1 \rightarrow 2) - \beta - D - Fucp 3N(R3Hb) 4Ac - (1 \rightarrow 6) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 6) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 4) - \alpha $
1212 [25]	β -D-Galp-(1 \rightarrow 4) $(2\leftarrow 1)$ - β -D-GlcpNAc
	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 4)- β -D-Glc p -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
1214 [25]	β -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 2)-\beta-D-Fucp3N(R3Hb)4Ac-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha$
1216	$\rightarrow 4)-\alpha-D-Quip3N(R3Hb)-(1\rightarrow 4)-\beta-D-Galp6Ac-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D$
1218 [25]	$\rightarrow 4) - \alpha - D - GalpA2, 3Ac - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - GalpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - (1 \rightarrow 4) - (1 \rightarrow 4) - (1 $
1220	α -D-Glcp-(1 \rightarrow 6)- α -D-Galp-(1 \rightarrow 3) α -D-Glcp-(1 \rightarrow 6)
	$\rightarrow 3)\text{-}\text{Gro-1-}P\text{-}(O\rightarrow 6)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\text{L-}\text{Fuc}p\text{NAc-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{NAc-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\text{L-}\text{Fuc}p\text{NAc-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\text{L-}\text{Fuc}p\text{NAc-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\text{L-}\text{Fuc}p\text{NAc-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\text{L-}\text{Fuc}p\text{NAc-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\text{L-}\text{Fuc}p\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}(1\rightarrow 3)\text{-}\beta\text{-}D\text{-}\text{Glc}p\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta\text{-}\beta$
1221 [25]	α -D-Glcp-(1 \rightarrow 6)
	$\rightarrow 2)-\alpha-D-Glcp-1-P-(O\rightarrow 6)-\alpha-D-GlcpN(R3Hb)-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-$
1222	Γ ^{(3←1)-β-D-Galf}
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap3PEtN4Ac-(1\rightarrow 2)-\beta-D-Ribf-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNA$
1223	$\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-D-AD-AD-AD-AD-AD-AD-AD-AD-AD-AD-AD-AD-A$
1224 [26]	β -D-Glcp-(1 \rightarrow 3) α -D-Glcp-(1 \rightarrow 2)
	$\rightarrow 4)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-1-P-(O\rightarrow 6)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-G$
1529	$\int (3\leftarrow 1)-\alpha-L-Rhap$
	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\beta-GlcpNAc6Ac-(1\rightarrow 3)-\beta-GlcpNAc-(1\rightarrow 3)-\beta-GlcpNAc-$
1546	$\rightarrow 6) - \alpha - D - Glcp3Ac - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 4) - \beta - GalpNAc3Ac - (1 \rightarrow 3) - \alpha - D - Galp - (1 \rightarrow 3) - \beta - D - GalpNAc - (1 \rightarrow 4) - \beta - (1 \rightarrow 4) - (1 \rightarrow 4)$
2670 [27]	$\rightarrow 2) - \beta - \text{Gal}p - (1 \rightarrow 6) - \alpha - \text{Glc}p - (1 \rightarrow 6) - \alpha - \text{Glc}p \text{NAc3OAc} - (1 \rightarrow 4) - \alpha - \text{Gal}p \text{A} - (1 \rightarrow 3) - \beta - \text{Glc}p \text{NAc6Ac} - (1 \rightarrow 6) - \alpha - \text{Glc}p - (1 \rightarrow 6) - \alpha - (1 \rightarrow 6) - \alpha$

Y166/91	\rightarrow 3)- β -D-Gal p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow и \rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Gal f -(1 \rightarrow
481-L	$\lceil (3 \leftarrow 1) - \beta - D - Glcp \alpha - D - Glcp - (1 \rightarrow 4) \rceil$
	$\rightarrow 4) \cdot \alpha \text{-D-Gal}p\text{NAc-1-}P \text{-}(\text{O} \rightarrow 6) \cdot \beta \text{-D-Gal}p \text{-}(1 \rightarrow 3) \cdot \beta \text{-}Galp\text{NAc-}(1 \rightarrow 4) \cdot \alpha \text{-}D \text{-}Glcp\text{NAc-}(1 \rightarrow 4) \cdot \alpha \text{-}D \text{-}D \text{-}Glcp\text{NAc-}(1 \rightarrow 4) \cdot \alpha \text{-}D $

^аВ ОПС штамма 1205 отсутствуют О-ацетильные группы в положении 6 остатка α-D-GlcpNAc, в штамме 1203 – в положении 6 остатка β-D-GlcpNAc и в штамме 1200 – в обоих положениях.

⁶ОПС нестехиометрически О-ацетилирован в неизвестном положении.

^вАрабинит частично заменен на ксилит (~3:1)

^гВ ~10% остатков α-D-Glc*p*NAc ацетильная группа заменена на 3-гидроксибутаноильную группу.

2.3.7. PANTOEA, ENTEROBACTER, FRANCONIBACTER, CRONOBACTER

Pantoea (Enterobacter) agglomerans вызывают инфекции крови и мочевыводящих путей, их обычно выделяют с поверхностей растений, из семян, фруктов, животного или человеческого кала. Изученные ОПС этого вида нейтральные и содержат различные 6-дезоксигексозы и 6-дезокси-N-ацетилгексозамины (таблица 11).

FLI	\rightarrow 2)- α -D-Rhap-(1 \rightarrow 2)- α -D-Rhap-(1 \rightarrow 2)- α -D-Rhap-(1 \rightarrow 2)- α -D-Rhap-(1 \rightarrow		
$62D_1^a$	α -D-Gal p -(1 \rightarrow 6)		
	\rightarrow 2- β -D-Quip3NAc-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- α -D-FucpNAc-(1 \rightarrow		
CIP 55.49	α -D-Glcp-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 6)-		
	\rightarrow 3)- α -L-FucpNAc-(1 \rightarrow 3)- α -L-FucpNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow		
AEP17	α -D-GalpAN-(1 \rightarrow 2)		
	\rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow		
	-3)- α -L-Rhap-(1 \rightarrow 2)- α -LRhap-(1 \rightarrow		

The stand of the s	Таблица 1	1. Строение	ОПС вида	Pantoea	agglomerans	[7]
--	-----------	-------------	----------	---------	-------------	-----

^аПервоначально штамм был идентифицирован как *E. coli*, а позже как *Erwinia herbicola*.

Enterobacter cloacae вызывает заболевания мочевыводящих путей и органов дыхания. До начала нашего исследования, большая часть которого посвящена изучению ОПС этого вида бактерий, была установлена только одна структура ОПС серогруппы O10 [28]:

$$\begin{array}{c} \alpha \text{-D-Glc}p\text{-}(1 \rightarrow 4) \\ \neg 6)\text{-}\alpha\text{-}D\text{-}Manp\text{-}(1 \rightarrow 2)\text{-}\alpha\text{-}D\text{-}Manp\text{-}(1 \rightarrow 3)\text{-}\alpha\text{-}D\text{-}FucpNAc\text{-}(1 \rightarrow 3)\text{-}\alpha\text{-}D\text{-}BucpNAc\text{-}(1 \rightarrow$$

ОПС штамма *Enterobacter*, ранее классифицированный как *Klebsiella pneumoniae* O10, представляет собой линейный рибоманнан, оканчивающийся 3-О-метил-L-рамнозой [6]:

$$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-Ribf-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-Ribf-(1\rightarrow 4)-\alpha-L-Rhap-(1\rightarrow 4)-Rhap-(1\rightarrow 4)-Rhap-(1$$

Штаммы *Franconibacter* spp., классифицируемые в настоящее время как отдельный род, ранее относились к роду *Enterobacter*, а позднее к роду *Cronobacter*. Отличительной чертой ОПС *Franconibacter helveticus* LMG23732 является присутствие основной цепи, являющейся гомополимером 6-дезокси-L-талозы [29]:

$$[2 \leftarrow 1) - \alpha - D - Glcp \\ \rightarrow 3) - \alpha - L - 6dTalp - (1 \rightarrow 2) - \alpha - L - 6dTal$$

ОПС Franconibacter pulveris G3872 (O1) имеет основную цепь, построенную из остатков L-рамнозы и D-рибозы, и дисахаридную боковую цепь из остатков редковстречающегося моносахарида 4-дезокси-D-*арабино*-гексозы (D-ara4dHex) [30]:

$$\rightarrow 2)-\beta-D-Ribf-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow (4\leftarrow 1)-\beta-D-ara4dHexp-(2\leftarrow 1)-\beta-D-ara4dHexp)$$

Сгоповасter spp. (ранее Enterobacter sakazakii) являются условными патогенами, вызывающими бактериемию, энтероколиты и неонатальные менингиты. Большинство ОПС являются кислыми вследствие присутствия гексуроновых кислот, Kdo (*Cronobacter malonaticus* и *Cronobacter sakazakii* O5 и O6) или ди-N-ацетиллегионаминовой кислоты (Leg5Ac7Ac) (*Cronobacter turicensis* O2 и HPB3287) (таблица 12). Многие ОПС содержат производные D-Qui3N и D-Fuc3N, включая ацетильные (*C. sakazakii* O3 и O5, *Cronobacter muytjensii*), N-ацетил-L-аланильные (*C. sakazakii* O1 и HPB 3290, *Cronobacter dublinensis* G3977 и G3983) и (*R*)-3-гидроксибутаноильные (*C. sakazakii* O4 и типа 12, *C. dublinensis* HPB 3169). ОПС трех штаммов *C. dublinensis* является линейным фруктаном \rightarrow 1)- α -Fruf-(2 \rightarrow 1)- β -Fruf-(2 \rightarrow , причем в штамме G2732 около половины остатков α -Fruf 4-O-ацетилированы.

Некоторые ОПС имеют близкородственные структуры, отличаясь О-ацетилированием и наличием или отсутствием остатка глюкозы в боковой цепи. ОПС *C. sakazakii* O1 и HPB 3290 с пентасахаридными О-звенями обладают одинаковым составом, но имеют различную последовательность моносахаридных остатков.

2.3.8. PROTEUS, PROVIDENCIA, MORGANELLA

Структуры О-антигенов были установлены для всех известных 80 О-серогрупп рода *Proteus*. Большинство этих данных приведены в обзоре 2011 года [31], но структуры ОПС нескольких О-серогрупп были установлены позднее. Из них ОПС *Proteus vulgaris* О76 отличается присутствием остатка D-QuiN, N-ацилированного кислой N-[(S)-1-карбоксиэтил)]-L-аланильной группой (аланопином, Salo) [32]:

$$\rightarrow 4)-\beta-D-QuipNSalo-(1\rightarrow 3)-\alpha-D-Galp6Ac-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcPA-(1\rightarrow 3)-\alpha-D-$$

ОПС *Proteus penneri* O80 [33] и *Proteus* sp. O79 [34] также являются кислыми вследствие присутствия амида D-GlcA с L-серином или Kdo, соответственно. O79 ОПС содержит уникальное N-ацетил-L-аланильное производные D-GlcpN.

 $\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GlcpA6LSer4Ac-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow, \rightarrow 4)-\beta-D-GlcpN(LAla2Ac)-(1\rightarrow 5)-\alpha-Kdop-(2\rightarrow 2)-\alpha-D-Glcp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 41)-\beta-D-GlcpNAc-(1\rightarrow 41)-\beta$

Таблица 12. Строение ОПС рода Cronobacter

C. sakazakii O1 [35]	α -D-Glcp-(1 \rightarrow 4)- α -D-GlcpA-(1 \rightarrow 4)-	
	\rightarrow 2)- β -D-Quip3N(LAlaAc)-(1 \rightarrow 6)- β -D-Glcp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow	
C. sakazakii HPB 3290 [36]	α -D-Glcp-(1 \rightarrow 2)	
	$\rightarrow 2)-\beta-D-Quip3N(LAlaAc)-(1\rightarrow 6)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-$	
C. sakazakii $O2^{a}[37]$,	$\Gamma^{(2\leftarrow 1)-\alpha-D-\text{Gal}pA-(4\leftarrow 1)-\alpha-L-\text{Rha}p2,3,4Ac}$	
C. sakazakii HPB 2855 [38]	$\rightarrow 3)-\alpha-L-Rhap4Ac-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 2)-\alpha-D-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-Rhap-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-G$	
C. sakazakii 767 [39]	$\lceil (2 \leftarrow 1) - \alpha - D - Galp - A - (4 \leftarrow 1) - \alpha - L - Rhap \alpha - D - Glcp - (1 \rightarrow 4) \rceil$	
	$\rightarrow 3)-\alpha-L-Rhap4Ac-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 2)-\alpha-D-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-D-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-$	
C. sakazakii O3 [40]	β -D-Glcp-(1 \rightarrow 4)	
	$\rightarrow 4)-\alpha-D-Quip3NAc-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GalpNA$	
C. sakazakii O4 [41]	$[4\leftarrow 1)-\alpha-D-Glcp-(1\rightarrow 6)]$	
	$\rightarrow 2) - \beta - D - Glcp - (1 \rightarrow 2) - \beta - D - Fucp 3N(R3Hb) - (1 \rightarrow 6) - \alpha - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 4) - \alpha - D $	c-(1→
<i>C. sakazakii</i> типа 12 [42]	α -D-Glcp-(1 \rightarrow 6)	
	$\rightarrow 2)-\beta-D-Fucp3N(R3Hb)-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta$	
C. sakazakii O5 [43]	$\rightarrow 2)-\beta-D-Quip3NAc-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 5)-\alpha-Kdop-(2\rightarrow 3)-\beta-L-Rhap2Ac-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc-($	
C. sakazakii O6 [43]	β -D-GlcpNAc-(1 \rightarrow 2)	
	$\rightarrow 4)-\beta-\text{Kdo}p-(2\rightarrow 6)-\beta-\text{D-Glc}p-(1\rightarrow 6)-\beta-\text{D-Gal}p3, 4\text{Ac-}(1\rightarrow 3)-\beta-\text{D-Gal}p\text{NAc-}(1\rightarrow 3)-$	
C. sakazakii O7 [44]	β -D-GlcpNAc-(1 \rightarrow 2)-	
	$\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-(1\rightarrow 3)-\beta-D-($	
C. sakazakii ZORB A 741 [45]	α -Tyvp-(1 \rightarrow 2)	
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp6Ac-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow	

C. dublinensis HPB 3169 [46]	$\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 2)-\beta-D-Quip3N(R3Hb)-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 5)-\alpha-Kdop-(2\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 5)-\alpha-Kdop-(2\rightarrow 3)-\beta-L-Rhap-(2\rightarrow 3)-\beta-L-Rhap-$
C. dublinensis G3983 [47]	α -D-Fucp3N(LAlaAc)-(1 \rightarrow 4)
	$\rightarrow 3)-\beta-D-Galp-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-$
C. dublinensis G3977 [47]	$\alpha-D-Fucp3N(LAlaAc)-(1\rightarrow 4) - \alpha-D-Glcp-(1\rightarrow 2) - \alpha$
	$\rightarrow 3)-\beta-D-Galp-(1\rightarrow 4)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow$
C. dublinensis G2732 [48]	\rightarrow 1)- α -D-Fruf4Ac-(2 \rightarrow 1)- β -D-Fruf-(2 \rightarrow
<i>C. dublinensis</i> G3947, G4061 [48]	\rightarrow 1)- α -D-Fruf-(2 \rightarrow 1)- β -D-Fruf-(2 \rightarrow
C. malonaticus [49]	β -D-GlcpNAc-(1 \rightarrow 2)
	\rightarrow 4)- β -Kdop-(2 \rightarrow 6)- β -D-Glcp-(1 \rightarrow 6)- β -D-Galp-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow
C. muytjensii [50]	$\rightarrow 4) - \alpha - D - Quip3NAc - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 6) - \alpha - D -$
C. muytjensii 3270 [40]	$\rightarrow 4) - \alpha - D - Quip3NAc - (1 \rightarrow 3) - \alpha - L - Rhap - (1 \rightarrow 6) - \alpha - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 6) - \alpha - D - GlcpA - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \alpha - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GalpA - (1 \rightarrow 4) - \beta - (1 \rightarrow 4) - (1 \rightarrow 4) - (1 \rightarrow 4) - (1 \rightarrow 4) - (1 \rightarrow $
C. turicensis O2 [51]	$\rightarrow 4)-\alpha-Legp5Ac7Ac-(2\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\beta-L-Rhap-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpNAc$
C. turicensis HPB3287 [52]	α -D-Glcp-(1 \rightarrow 4)
	\rightarrow 4)- α -Legp5Ac7Ac-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
<i>C. turicensis</i> type 5 (57, 564,	α -D-Glcp-(1 \rightarrow 2)
200) [23]	\rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -L-Rhap-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow
C. universalis NCTC 9529 [54]	$\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow 3)-\beta-D-FD-(1\rightarrow $

^а В штамме серогруппы О2 остаток L-Rhap в основной цепи не ацетилирован.

В роду *Providencia* структуры установлены только для половины из 61 О-серогруппы (таблица 13). Как и ОПС *Proteus* spp., большинство из них являются кислыми из-за наличия гексуроновых и нонулозоновых кислот (Kdo, 8eLeg) и неуглеводных компонентов, таких как аминокислоты и стереоизомерные производные N^{ϵ} -(1-карбоксиэтил)-L-лизина (alaLLys), присоединенного к карбоксильным группам гексуроновых кислот, дикарбоновые кислоты (N-ацетиласпарагиновая кислоты, аланопин), N-ацилирующие аминогруппу аминосахаров, простые эфиры гидроксикислот [молочной (lac) и 2,4-дигидроксипентановой] с моносахаридами, ацеталь пировиноградной кислоты. Также встречаются фосфатные группы, присоединяющие D-глицерамид (*P*2DGroAN)] или находящиеся в виде глицерофосфта в основной цепи ОПС. В составе ОПС *P. alcalifaciens* O38 присутствует D-аланин, связанный с карбоксильной группой N-ацетилмурамовой кислоты, и, таким образом, его О-звено имеет структуру фрагмента пептидогликана клеточной стенки бактерий. Основная цепь ОПС *P. alcalifaciens* O6 имеет такую же структуру, что и гиалуроновая кислота – один из гексозаминогликанов млекопитающих.

Бактерии *Morganella morganii* обычно находят в окружающей среде и нормальной микрофлоре желудочно-кишечного тракта высших животных и человека. Отличительной особенностью единственного изученного ОПС *Morganella morganii* является наличие двух редких моносахаридов: 5-N-ацетимидоил-7-N-ацетил-8-эпилегионаминовой кислоты и разветвленного гептуронамида, названного шеванеллозой, причем последний в одних О-звеньях находится в пиранозной, а в других – в фуранозной формах [55]:

Подобная структура, отличающаяся другим распределением тех же N-ацильных заместителей в остатке 8eLeg и присутствием шеванеллозы только в пиранозной форме, идентифицирована в O-полисахариде бактерий *Shewanella putrefaciens* A6, относящейся к семейству *Shewanellaceae* [56].

Таблица 13. Строение ОПС рода Providencia [7], [57]

P. alcalifaciens O2 [58]	α -Ascp-(1 \rightarrow 4)- α -D-GlcpA-(1 \rightarrow 4)
	\rightarrow 6)- β -D-GlcpNLAla3Ac-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
P. alcalifaciens O3 [59]	α -D-Quip3NFo-(1 \rightarrow 4)
	$\rightarrow 3)-\alpha-D-GalpAN-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-GalpAc-(1\rightarrow 4)-\alpha-D-Ga$
P. stuartii O4	$\int (6 \leftarrow 1) - \beta - D - Quip 4N(4LAspAc)$
	$\rightarrow 3)-\beta-D-Galp-(1\rightarrow 6)-\beta-D-GlcpNAc-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 6)-\beta-D-GlcpNAc-(1\rightarrow 6)-\beta-D-FD-FD-FD-FD-FD-FD-FD-FD-FD-FD-FD-FD-F$
P. alcalifaciens O5	$\rightarrow 4)-\beta-D-Quip3NAc-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F$
P. alcalifaciens O6	$\alpha - \operatorname{Col} p - (1 \rightarrow 2) - \beta - D - \operatorname{Gal} p - (1 \rightarrow 3) - \beta - D - \operatorname{Glc} p \operatorname{NAc} - (1 \rightarrow 6) - \beta - $
	\rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
P. alcalifaciens O7	$\rightarrow 3)-\beta-L-Rhap2Ac-(1\rightarrow 4)-\beta-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpA-(1\rightarrow 4)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-Glcp$
P. alcalifaciens O8 ^a	$\rightarrow 3)-\beta-D-GlcpNAc4R-(1\rightarrow 3)-\beta-D-Galp-(1\rightarrow 2)-Gro-(1\rightarrow P\rightarrow 3)-\beta-D-FucpNAc4N-(1\rightarrow 2)-Gro-(1\rightarrow 2)-Gro-($
P. alcalifaciens O9	β -D-Glcp-(1 \rightarrow 3)
	$\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 6)-\alpha-D-Galp-(1\rightarrow 6)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GalpNAc-$
P. rustigianii O11 [60]	$\alpha - D - Galp NAc A 6 Glu A la - (1 \rightarrow 4) - \alpha - D - Galp NAc - (1 \rightarrow 4) -$
	\rightarrow 3)- α -D-GalpNAcA-(1 \rightarrow 3)- β -D-QuipNAc4NAcyl-(1 \rightarrow
P. alcalifaciens O12	β -D-GlcpNAc-(1 \rightarrow 3) $(2\leftarrow 1)-\beta$ -D-Glcp-(2 \leftarrow 1)- β -D-GlcpNAc
	$\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta-Ac-(1\rightarrow 4)-\beta$
P. rustigiani O14	$\rightarrow 3)-\alpha-D-GalpA6(SalaLLys)-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow $
P. rustigiani O16	\rightarrow 6)- α -D-GlcpNAc3Rlac-(1 \rightarrow 3)- β -L-Rhap-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow
P. stuartii O18	$\rightarrow 4)-\beta-\text{Qui}p3\text{NAc-}(1\rightarrow 6)-\alpha-\text{D-Glc}p\text{NAc-}(1\rightarrow 4)-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 3)-\alpha-\text{D-Gal}p\text{NAc-}(1\rightarrow 3)-\alpha-\text{D-Gal}pNAc-$
P. alcalifaciens O19	$\rightarrow 2) - \beta - D - Fucp 3NAc4Ac - (1 \rightarrow 3) - \alpha - D - Glcp NAc4, 6Spyr - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Galp - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \beta - D - Galp - (1 \rightarrow 4) - $
P. stuartii O20	$\rightarrow 8)-\alpha-8eLegp5Ac7Ac-(2\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-Glc$

P. alcalifaciens O21	$\int (4 \leftarrow 1) - \alpha - D - Fucp 3NFo$
	$\rightarrow 3)-\alpha-D-GalpAN-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)$
P. alcalifaciens O22	$\rightarrow 4)-\beta-D-GalpNAc3(P2DGroAN)-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-FucpNAc4N-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-FucpNAc4N-(1\rightarrow 4)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-FucpNAc4N-(1\rightarrow 4)-\beta-D-FucpNAc4N-(1\rightarrow 4)-\beta-FucpNAc4N-(1\rightarrow 4)-\beta-FucpNAc4$
P. alcalifaciens O23	$\rightarrow 4)-\beta-D-GlcpA6(RalaLLys)-(1\rightarrow 6)-\beta-D-Galp-(1\rightarrow 6)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 6)-\beta-D-GalpNAc-(1\rightarrow 6)-\beta-D-GalpAc-(1\rightarrow 6)-\beta-D-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta-Fac-(1\rightarrow 6)-\beta$
P. alcalifaciens O25	$\Gamma^{(4\leftarrow 1)-\alpha-D-\text{Gal}pA6(RalaLLys)}$
	\rightarrow 6)- β -D-GalpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
P. alcalifaciens O27	$\rightarrow 2)-\alpha-D-Quip4NFo-(1\rightarrow 4)-\alpha-D-GlcpA-(1\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GalpNAc6Ac-(1\rightarrow 4)-\beta-D-GalpNAc6Ac-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow 4)-\beta-FalpNAc-(1\rightarrow $
P. alcalifaciens O28	$(4 \leftarrow 1) - \alpha - L - Fucp - (3 \leftarrow 1) - \alpha - D - GlcpA$
	\rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
P. alcalifaciens O29	β -D-Glc $p(1\rightarrow 4)$
	\rightarrow 6)- α -D-GlcpNAc-(1 \rightarrow 3)- α -L-FucpNAc-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow
P. alcalifaciens O30	$\rightarrow 2)-\beta-\text{Qui}p4\text{NFo-}(1\rightarrow 2)-\beta-\text{D-Rib}f-(1\rightarrow 4)-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 3)-\alpha-\text{D-Fuc}p\text{NAc4N-}(1\rightarrow 4)-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 4)-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta-\beta$
P. alcalifaciens O31 ⁶	$\Gamma^{(4\leftarrow 1)-\beta-D-Manp4R}$
	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 4)- β -D-Gal p NAc-(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
P. alcalifaciens O32	β -D-Glcp-(1 \rightarrow 4)
	\rightarrow 6)- α -D-GlcpNAc3Slac-(1 \rightarrow 3)- α -L-FucpNAc-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow
P. stuartii O33	$\rightarrow 3)-\beta-D-Quip4N(4DAspAc)-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GalpA-(1\rightarrow 3$
P. alcalifaciens O33 [61]	β -D-Glcp-(1 \rightarrow 2) $(4\leftarrow$ 1)-α-D-Fucp3NAc
	\rightarrow 3)- α -D-GalpA-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
P. rustigianii O34	α -D-GalpNAc-(1 \rightarrow 3)
	$\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-L-Fucp-(1\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta$

P. alcalifaciens O35	⁽⁶ ←1)-β-D-Qui <i>p</i> 4NSalo
	$\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-D-FAC-(1$
P. alcalifaciens O36	\rightarrow 7)- β -Kdop-(2 \rightarrow 3)- α -L-6dTalp2Ac-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow
P. alcalifaciens O38	\rightarrow 4)- α -D-GlcpNAc3(<i>R</i> lacDAla)-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow
P. alcalifaciens O39 [62]	r(6←1)-β-D-Quip4NSalo
	\rightarrow 4)- α -D-GalpNAc-(1 \rightarrow)- α -D-Glcp-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -GalpNAc-(1 \rightarrow
P. alcalifaciens O40 [63]	$\rightarrow 4)-\beta-D-Quip3NFo-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GlcpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-FAC-(1\rightarrow 3)-\beta-$
P. stuartii O43	$\rightarrow 2)-\alpha-D-Quip4NAc-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\beta-D-GalpA6LSer-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F$
P. stuartii O44	β -D-GlcpA-(1 \rightarrow 4)-
	$\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-Glcp-(1\rightarrow 4)-\alpha-L-Quip-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow$
P. alcalifaciens O45 [64]	^{(4←1)-β-D-GlcpNAc}
	$\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-GlcpA-(1\rightarrow 3)-\alpha-L-Fucp2Ac-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpA-(1\rightarrow 3)-\alpha-D-GlcPA-($
P. alcalifaciens O46	α -D-Glc p -(1 \rightarrow 3)
	$\rightarrow 3)-\beta-D-GalpA-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 3)-\alpha-D-GlcpNAc6Ac-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 3)-\alpha-D-GlcpNAc6Ac-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 3)-\alpha-D-GlcpNAc6Ac-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 4)-Fucp-(1\rightarrow 4)-$
P. stuartii O47	α -L-Rhap-(1 \rightarrow 3)
	$\rightarrow 2)-\beta-D-Galp-(1\rightarrow 4)-\beta-D-Manp6Ac-(1\rightarrow 3)-\beta-D-Manp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1$
P. alcalifaciens O48	$\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-L-Fucp-(1\rightarrow 2)-\beta-D-GlcpA4Ac-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-$
P. stuartii O49	\rightarrow 4)- α -D-Gal p -(1 \rightarrow 6)- β -D-Gal p -(1 \rightarrow 3)- β -D-Gal p NAc-(1 \rightarrow
P. stuartii O52	$\rightarrow 3)-\beta-D-Quip4N(4DAspAc)-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GlcpNAc-(1\rightarrow 4)-$
P. stuartii O57	$\rightarrow 2) - \alpha - D - Galp - (1 \rightarrow 3) - \alpha - L - Rhap 2Ac - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4) - \alpha - D - Galp A6LAla - (1 \rightarrow 3) - \beta - D - Glcp NAc - (1 \rightarrow 4) - \alpha - D - Glcp - (1 \rightarrow 4$
P. alcalifaciens O60	$\rightarrow 4)-\beta-D-Glcp-(1\rightarrow 3)-\alpha-D-Galp-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GlcpA6LSer-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 4)-\beta-D-GalpN$

^а R обозначает (1*S*,3*R*)-3-гидрокси-1-карбоксибутил.

⁶ R обозначает (*1R*,*3R*)-3-гидрокси-1-карбоксибутил.

Наиболее важными видами рода Yersinia (кроме Yersinia pestis - возбудителя бубонной и легочной чумы, не имеющего О-антигена) являются Yersinia pseudotuberculosis и Yersinia enterocolitica, вызывающие, как правило, инфекции желудочно-кишечного тракта.

В ОПС *Y. pseudotuberculosis* присутствуют все известные природные изомеры 3,6-дидезоксигексоз. Они находятся в боковых цепях ОПС и определяют сероспецифичность большинства из 15 О-серогрупп (таблица 14). Они могут соединятья с основной цепью через другие необычные моносахариды: 6-дезокси-D-*манно*-гептозу (D-6dHep) или разветвленный моносахарид 3,6-дидезокси-4-С-[(*S*)-1-гидроксиэтил]-D-*ксило*-гексозу (йерсиниозу А). Паратоза встречается как в пиранозной, так и в фуранозной форме, другие изомеры – только в пиранозной форме, L-6dAlt – только в фуранозной форме. ОПС серогруппы О10 отличается от ОПС *E. coli* O111 и *S. enterica* O35 только заменой остатка GlcNAc на GalNAc.

Таблица 14. Строение ОПС вида Y. pseudotuberculosis [7], [65-67]

Ola	α -Parf-(1 \rightarrow 3)- β -D-6dHep-(1 \rightarrow 4)-
	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
O1b	α -Parf-(1 \rightarrow 3)
	$\rightarrow 2)-\beta-D-Manp-(1\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-A$
Olc	α -Parf-(1 \rightarrow 3)
	\rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
O2a	α -Abep-(1 \rightarrow 3)-D-6dHepp-(1 \rightarrow 4)-
	\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow
O2b	α -Abep-(1 \rightarrow 3)-
	\rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
O2c	α -Abep-(1 \rightarrow 3)-
	$\rightarrow 6)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow$
03	β -Par <i>p</i> -(1 \rightarrow 4)-
	\rightarrow 2)- α -D-Man p -(1 \rightarrow 3)- α -L-Fuc p -(1 \rightarrow 3)- α -D-Gal p NAc-(1 \rightarrow
O4a	α -Tyvp-(1 \rightarrow 3)-
	$\rightarrow 6)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow$
O4b	α -Tyv <i>p</i> -(1 \rightarrow 3)- β -D-6dHep-(1 \rightarrow 4)-
	\rightarrow 3)- α -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
O5a	α -Ascp-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-Ac-(1\rightarrow 3)-\alpha-D-Ac-(1$

O5b	α -L-Altf-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-Manp-(1\rightarrow 4)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-GalpNAc-(1\rightarrow 3)-\alpha-D-(1\rightarrow 3)-\alpha-D-$
06	α -Colp-(1 \rightarrow 2)- β -YerAp-(1 \rightarrow 3)-
	\rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 6)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
07	α -Colp-(1 \rightarrow 2) α -D-Glcp-(1 \rightarrow 6)
	\rightarrow 6)- β -D-Glcp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
09	α -D-Galp-(1 \rightarrow 3)
	\rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 4)- α -L-FucpNAm-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow
O10	α -Colp-(1 \rightarrow 3) $(6\leftarrow 1)-\alpha$ -Colp
	\rightarrow 4)- α -D-Glcp-(1 \rightarrow 4)- α -D-Galp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
011	α -L-6dAltf-(1 \rightarrow 3)
	$\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 4)-\alpha-D-Manp-(1\rightarrow 3)-\alpha-L-Fucp-(1\rightarrow 3)-\alpha-D-GalpNac-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-\alpha-D-AD-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow 3)-(1\rightarrow $
015	β -Parf-(1 \rightarrow 3)
	\rightarrow 2)- α -L-Fucp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 4)- α -L-Fucp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow

Штаммы Yersinia enterocolitica и некоторых других видов, выделенных из Y. enterocolitica (Y. frideriksenii, Y. kristensenii, Y. intermedia), объединены общей серологической классификационной схемой. Многие линейные ОПС и основные цепи разветвленных ОПС этих бактерий являются гомополимерами D-Rha, L-Rha или L-6dAlt 15). ОПС (таблица Боковыми заместителями разветвленных часто являются обнаружены редковстречающиеся моносахариды, многие из которых только У представителей рода Yersinia. Это D-mpeo-пент-2-улоза (ксилулоза, D-Xlu), 6-дезокси-Dгулоза, разветвленные моносахариды йерсиниозы А и В. Кислые полисахариды нехарактерны для Yersinia spp., и единственными исключениями являются ОПС Y. ruckerii О1 и О2, содержащие N-ацетилмурамовую кислоту или уникальное производное 8-эпилегионаминовой кислоты (8eLeg) с 4-гидроксибутаноильной группой в положении 5, соответственно.

Особенностями ОПС *Y. enterocolitica* O5,27 и O10 является гребенчатая структура, в которой каждый остаток L-рамнозы основной цепи замещен остатком D-ксилулозы. ОПС двух штаммов *Y. kristensenii* O12 напоминают по структуре глицерин-тейхоевые кислоты. Гомополимер Rha4NAc с одинаковой структурой найден у *Y. enterocolitica* O9 и Brucella abortus [68]. ОПС *Y. ruckerii* O1 напоминает по структуре ОПС Salmonella arizonae O61, а ОПС *Y. enterocolitica* O5,27 и *Y. kristensenii* O11,23 сходны по строению с ОПС *E. coli* O97 и O98, соответственно.

Таблица	15.	Строение	ОПС	лругих	вилов	Yersinia [71
таолица	10.	cipotime	0110	APJ1111	ыдов	I CI Stitter L	1

_						
<i>Y. enterocolitica</i> O1,2a,3 ^a ,	\rightarrow 2)- β -L-6dAlt <i>f3Ac</i> -(1 \rightarrow 2)- β -L-6dAlt <i>f3Ac</i> -(1 \rightarrow 3)- β -L-6dAlt <i>f3Ac</i> -(1 \rightarrow					
O2a,2b,3						
<i>Y. enterocolitica</i> O2,3, O3	\rightarrow 2)- β -L-6dAlt p -(1 \rightarrow					
<i>Y. enterocolitica</i> O4,32,	α -YerBpl'Ac-(1 \rightarrow 4)					
<i>Y. intermedia</i> O4,33 ^a						
	\rightarrow 3)- α -D-GalpNAc-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow					
Y. enterocolitica O5,27	β -D-Xluf-(2 \rightarrow 2) Γ (2 \leftarrow 2)- β -D-Xluf					
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -L-Rhap-(1 \rightarrow					
Y. enterocolitica O6,31	\rightarrow 2)- β -D-Gal p -(1 \rightarrow 3)- α -D-6dGul p -(1 \rightarrow					
Y. enterocolitica O8	D-6dGulp- $(1\rightarrow 3)$ L-Fucp- $(1\rightarrow 2)$					
	\rightarrow 4)-D-Manp-(1 \rightarrow 3)-D-Galp-(1 \rightarrow 3)- α -D-GalpNAc-(1 \rightarrow					
Y. enterocolitica O9	\rightarrow 2)- α -D-Rhap4NFo-(1 \rightarrow					
<i>Y. enterocolitica</i> O10	β -L-Xluf-(2 \rightarrow 2)					
	\rightarrow 3)- α -D-Rhap-(1 \rightarrow					
Y. enterocolitica O50 [69]	$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 3)-\alpha-L-FucpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$					
Y. kristensenii O11,23,	$\rightarrow 3)-\alpha-L-QuipNAc-(1\rightarrow 4)-\alpha-D-GalpNAcA3Ac-(1\rightarrow 3)-\alpha-L-QuipNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D-F-D$					
011,24 ^a						
Y. similis O9 [70]	α -D-Galp-(1 \rightarrow 3)					
	\rightarrow 4)- β -D-GlcpNAcA3Ac-(1 \rightarrow 4)- α -L-FucpNAm-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow					
<i>Y. similis</i> O12 [71]	β -YerpA-(1 \rightarrow 4)					
	\rightarrow 3- α -D-Gal p -(1 \rightarrow 4)- α -L-Qui p -(1 \rightarrow 3)- β -D-Glc p NAc-(1 \rightarrow					

Y. kristensenii O12,25	α -D-Glcp-(1 \rightarrow 2) α -D-Glcp-(1 \rightarrow 4)			
	$\rightarrow 2)\text{-}Gro-1-P-(O\rightarrow 6)-\beta\text{-}Glcp-(1\rightarrow 4)-\alpha\text{-}D\text{-}GalpNAc-(1\rightarrow 3)-\alpha\text{-}L\text{-}FucpNAc-(1\rightarrow 3)-\beta\text{-}D\text{-}GlcpNAc-(1\rightarrow 3)-\beta-$			
Y. frideriksenii O16,29	β -YerAp-(1 \rightarrow 2)			
	\rightarrow 2)- α -D-Rhap-(1 \rightarrow 3)- β -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow			
Y. frideriksenii O60 [72]	β -D-4dHexp-(1 \rightarrow 4) β -D-4dHexp-(1 \rightarrow 3)			
	\rightarrow 2)- β -D-Ribf-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow			
Y. kristensenii O25,35	α -D-Glcp-(1 \rightarrow 6)- α -D-Galp-(1 \rightarrow 3) α -D-Glcp-(1 \rightarrow 4)			
	$\rightarrow 2)\text{-}Gro-1-P-(O\rightarrow 6)-\beta\text{-}D\text{-}Glcp-(1\rightarrow 4)-\alpha\text{-}L\text{-}FucpNAc-(1\rightarrow 3)-\beta\text{-}D\text{-}GlcpNAc-(1\rightarrow 3)$			
Y. kristensenii O28	$\Gamma^{(2\leftarrow 1)-\alpha-D-GalpNAcA-(4\leftarrow 1)-\alpha-L-Rhap}$			
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow			
Y. aldovae 6005	β -D-Glcp-(1 \rightarrow 3)			
	$\rightarrow 2)-\beta-D-Glcp-(1\rightarrow 2)-\beta-D-Fucp3N(R3Hb)-(1\rightarrow 6)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 4)-\alpha-D-GalpNAc-(1\rightarrow 4)-\alpha-D-$			
Y. bercovieri O10	α -YerAp-(1 \rightarrow 2)			
	\rightarrow 3)- α -D-Rhap-(1 \rightarrow 3)- α -D-Rhap-(1 \rightarrow			
Y. mollarettii	\rightarrow 2)- β -D-Gal p -(1 \rightarrow 3)- α -D-6dGul p -(1 \rightarrow			
Y. rohdei WA 339	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- α -L-Rhap-(1 \rightarrow 3)- β -L-Rhap-(1 \rightarrow			
Y. ruckerii O1	β -D-GlcpNAc-(1 \rightarrow 3)			
	\rightarrow 8)- α -8eLegp5(4Hb)7Ac-(2 \rightarrow 3)- α -L-FucpNAm-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow			
Y. ruckerii O2	$\rightarrow 4)-\alpha-D-GlcpNAc6Ac3(Rlac)-(1\rightarrow 3)-\alpha-L-QuipNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow$			

^а В ОПС отсутствуют О-ацетильные группы.

2.3.10. *PLESIOMONAS*

Plesiomonas shigelloides – единственный вид в роде – является широко распространённым микроорганизмом, вызывающим желудочно-кишечные инфекции и болезни у людей с ослабленным иммунитетом и новорожденных. Штаммы этого вида разделяют более чем на 100 О-серогрупп, но структуры ОПС установлены только для их незначительной части (таблица 16). ОПС этого вида содержат различные необычные компоненты, такие как D-глииеро-D-манно-гептоза (DD-Hep) и 6-дезокси-D-манно-гептоза (D-6dHep) в ОПС серогруппы O54 и различные аминосахара (L-FucN, L-6dTalN, D-Qui3N, D-QuiN4N, D-GlcN3NA, Pse), несущие необычные N-ацильные группы, включая ацетимидоильную, (R)- или (S)-3-гидроксибутанольную или 3-гидрокси-2,3-диметил-5оксопролильную. ОПС серогруппы О17 обладает повторяющимся звеном, состоящим из двух редко встречающихся моносахаридов: кислоты L-AltNAcA и основного аминосахара D-FucNAc4N. Этот ОПС имеет ту же структуру, что ОПС Shigella sonnei, который генами, предположительно приобретенными кодируется плазмидными путем горизонтального переноса от P. shigelloides O17 [73]. Соответственно эти две бактерии дают перекрестные серологические реакции, и для их раздельной идентификации в клинических изолятах используют оксидазный тест.

2.3.11. ДРУГИЕ РОДЫ

Yokenella regensburgei выделяют из суставной жидкости, дыхательного и кишечного тракта, мочи, мокроты и кала. ОПС четырех изученных штаммов имеют одинаковое строение и трисахаридное О-звено, содержащее остаток LD-Нер и частично О-ацетилированный остаток L-6dTal [74]:

```
\rightarrow2)-\alpha-LD-Hepp-(1\rightarrow3)-L-6d-Talp2/4Ac-(1\rightarrow3)-\alpha-D-FucpNAc-(1\rightarrow
```

Виdvicia aquatica, Pragia fontium и Rahnella aquatilis являются единственными видами в каждом из этих трех новых родов энтеробактерий. Они были выделены в основном из пресной воды, водопроводных труб, а иногда и из клинических образцов, но медицинское значение этих бактерий остается неопределенным. ОПС *В. aquatica* имеет в качестве основной цепи 1,3-поли(глицерин-фосфат), к которой β 1 \rightarrow 2-связями присоединяются боковые остатки D-глюкозы [75]. ОПС *В. aquatica* 20186 содержит в основной цепи разветвленный моносахарид 3,6-дидезокси-4-C-[(*S*)-1-гидроксиэтил]-D-*ксило*-гексозу (йерсиниозу A) [76]:

$$\rightarrow$$
4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow 2)- α -Yerp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow

01 [7]	$\rightarrow 3)-\beta-L-6dTalpNAc4Ac-(1\rightarrow 4)-\alpha-L-FucpNAc-(1\rightarrow 4)-\alpha-L-FucpNAc-(1\rightarrow 4)-\alpha-L-FucpNAc-(1\rightarrow 4)-\alpha-L-FucpNAc-(1\rightarrow 3)-\beta-D-QuipNAc4N(S3Hb)-(1\rightarrow 4)-\alpha-L-FucpNAc-(1\rightarrow 4)-Ac-(1\rightarrow 4)-A$
O17 [7]	\rightarrow 4)- α -L-AltpNAcA-(1 \rightarrow 3)- β -D-FucpNAc4N-(1 \rightarrow
O24 (CNCTC 92-89)	α -RhapNAc-(1 \rightarrow 4)
	\rightarrow 3)- α -FucpNAc-(1 \rightarrow 3)- α -GalpNAc-(1 \rightarrow 3)- α -QuipNAc-(1 \rightarrow
O36 [78]	$\rightarrow 4)-\beta-\text{Pse5Ac7}(R3\text{Hb})-(2\rightarrow 4)-\beta-\text{D-Gal}p-(1\rightarrow 3)-\beta-\text{D-Glc}p\text{NAc-}(1\rightarrow 3)-\beta-\text{D-Glc}pNAc$
O51 [7]	$\rightarrow 4)-\beta-D-GlcpNAc3N(S3Hb)A-(1\rightarrow 4)-\alpha-L-FucpNAm3Ac-(1\rightarrow 3)-\alpha-D-QuipNAc-(1\rightarrow 3)-\alpha-D-QUipNAc-($
O54 [7]	$\lceil (3 \leftarrow 1) - \alpha - L - Rhap - (4 \leftarrow 1) - \beta - D - Galf$
	\rightarrow 4)- β -DD-Hep-(1 \rightarrow 3)- β -D-6dHep2Ac-(1 \rightarrow 4)- α -L-RhapNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow
O74 ^a [7]	\rightarrow 2)- β -D-Quip3NAcyl-(1 \rightarrow 3)- α -L-Rhap2Ac-(1 \rightarrow 3)- α -D-FucpNAc-(1 \rightarrow
22074, 12254 [7]	$\rightarrow 3) \cdot \alpha - L - Rhap - (1 \rightarrow 2) \cdot \alpha - L - Rhap - (1 \rightarrow 2) \cdot \alpha - L - Rhap - (1 \rightarrow 4) \cdot \alpha - D - Galp A - (1 \rightarrow 3) \cdot \alpha - D - Glcp A c - (1 \rightarrow 4) - \alpha - D - Galp A - (1 \rightarrow 3) - \alpha - D - Glcp A c - (1 \rightarrow 4) - \alpha - D - Galp A - (1 \rightarrow 3) - (1$
AM36565 [79]	β -D-GalpNAc-(1 \rightarrow 3)-
	\rightarrow 3)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 4)- α -D-GlcpNAc-(1 \rightarrow

Таблица 16. Строение ОПС вида Plesiomonas shigelloides

^аAcyl обозначает 3-гидрокси-2,3-диметил-5-оксопролил с неизвестной конфигурацией.

Один из изученных ОПС *P. fontium* 27480 является кислым вследствие присутствия остатков D-ManNAc3NAcA [80]:

 \rightarrow 4)- β -D-ManpNAc3NAcA-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 3)- β -L-Rhap-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow

Два другие ОПС, найденные у *P. fontium* 97U116 [81] и 97U124 [82], являются нейтральными, причем ОПС штамма 97U116 (он показан ниже первым) содержит уникальное производное бациллозамина (D-QuiN4N), несущее N-(D-глицероильную) группу (DGroA):

$$\rightarrow$$
3)- α -L-FucpNAc-(1 \rightarrow 3)- α -L-FucpNAc-(1 \rightarrow 3)- β -D-QuipNAc4N(DGroA)-(1 \rightarrow

$$\rightarrow 2) - \alpha - D - Galf - (1 \rightarrow 3) - \alpha - L - Rhap 2Ac - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \alpha - D - GlcpNAc - ($$

У двух представителей *R. aquatilis* обнаружено по два ОПС. Штамм 33071 продуцирует один кислый ОПС, содержащий D-GlcA, и один нейтральный ОПСманнорамнан [83], причем кислый ОПС с такой же структурой присутствует в штамме *R. aquatilis* 95U003 [84]:

 $[2 \leftarrow 1) - \alpha - D - GlcpA - (4 \leftarrow 1) - \alpha - D - Galp - (3 \leftarrow 1) - \beta - D - Glcp \rightarrow 3) - \alpha - D - Manp - (1 \rightarrow 2) - \alpha - D - Manp - (1 \rightarrow 3) - \beta - D - Galp - (1 \rightarrow 3) - \alpha - D - Rhap - (1 \rightarrow 3) - \beta - D - Manp - (1 \rightarrow 3) - \alpha - D - Rhap - (1 \rightarrow 3) - \beta - D - Manp$

Два нейтральных полисахарида – маннан \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 6)- α -D-Manp-(1 \rightarrow и глюкан \rightarrow 6)- α -D-Glcp-(1 \rightarrow – выделены из штамма *R. aquatilis* 3-95 [85]. Однако следует отметить, что глюкан с такой же структурой находят во многих других бактериях, и его не следует рассматривать в качестве специфического полисахарида. *R. aquatilis* 1-95 продуцирует один нейтральный разветвленный полисахарид [86]:

$$\alpha$$
-D-Gal p -(1 \rightarrow 2)

 \rightarrow 3)- β -D-Galf-(1 \rightarrow 3)- α -D-Fucp-(1 \rightarrow

Бактерии родов *Erwinia u Pectobacterium* (новый род, недавно выделенный из рода *Erwinia*) являются патогенами растений, вызывающими их увядание и мягкую гниль. ОПС *Erwinia amylovora* T, единственный исследованный в этом роду, похож по структуре на ОПС *Rahnella aquatilis* 1-95 [86], но в нем вместо галактофуранозы идентифицирована глюкофураноза [87]. Последний моносахарид не был обнаружен в других природных углеводах, и для его подтверждения (или опровержения) требуется повторное исследование ОПС *E. amylovora* T, структура которого была установлена устаревшими методами [6].

ОПС Pectobacterium atrosepticum ssp. carotovora (Erwinia carotovora) GSPB436 имеет основную цепь, построенную из 6-дезоксигексоз [88]:

 α -D-Glc*p*-(1 \rightarrow 3)

 \rightarrow 3)- β -L-Rhap-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-Fucp-(1 \rightarrow

Уникальный высший разветвленный моносахарид, названный эрвиниозой, обнаружен в ОПС *P. atrosepticum* ssp. *atroseptica* (*Erwinia atroseptica*) GSPB9205 [89]:

$$\Gamma^{(2\leftarrow 1)-\alpha-D-\text{Gal}p2\text{Ac-}(3\leftarrow 1)-\text{Sug}}$$

$$\rightarrow 3)-\alpha-D-\text{Man}p-(1\rightarrow 4)-\alpha-L-\text{Rha}p-(1\rightarrow 3)-\alpha-D-\text{Gal}p-(1\rightarrow 4)-\alpha-L-\text{Rha}p-(1\rightarrow 4)-\alpha-L-\text{Rha}p-(1\rightarrow 4)-\alpha-D-\text{Gal}p-(1\rightarrow 4)-\alpha-L-\text{Rha}p-(1\rightarrow 4)-\alpha-D-\text{Gal}p-(1\rightarrow 4)$$

Структура ОПС установлена для еше одного представителя вида *P. atrosepticum*, подвид которого не был определен, – штамма SCRI1039 [90]:

Одинаковый ОПС обнаружен у двух штаммов *Pectobacterium wasabie* IFB5408 и IFB5427 [91], второго изученного из 10 известных видов рода *Pectobacterium*:

Род *Photorhabdus* включает три энтомопатогенных вида, один из которых, *Photorhabdus asymbiotica*, является также условно-патогенным для человека. Его ОПС отличается присутствием двух остатков D-GalpNAcA, один из которых находится в виде амида [92]:

 $\rightarrow 3)-\beta-D-Quip4N(GlyFo)-(1\rightarrow 4)-\alpha-D-GalpNAcAN3Ac-(1\rightarrow 4)-\alpha-D-GalpNAcA3R-(1\rightarrow 3)-\alpha-D-QuipNAc-(1\rightarrow 4)-\alpha-D-QuipNAc-(1\rightarrow 4)-\alpha-D-Qui$

где R = Ac в ОПС *P. asymbiotica* ssp. *asymbiotica* или H в ОПС *P. asymbiotica* ssp. *australis*.

ОПС Photorhabdus temperata ssp. cinerea имеет цвиттерионный характер, благодаря одновременному присутствию D-GlcA, D-FucNAc4N и фосфоэтаноламина [93]:

 \rightarrow 3)- β -D-GalpNAc4PEtN-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-FucpNAc4N-(1 \rightarrow

Нейтральный ОПС *Photorhabdus luminescens* ssp. *laumondii* содержит DD-Нер и N-формильное производное D-Quip3NFo [94]:

Отличительной чертой ОПС *P. temperata* ssp. *temperata*, также нейтрального, является присутствие уникального разветвленного моносахарида 3,6-дидезокси-4-С-[(*S*)-1,2-дигидроксиэтил]-D-*ксило*-гексозы (Sug), представляющего собой 2'-гидроксилированное производное йерсиниозы A [95]:

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В первой части этого раздела рассмотрены основные характеристики бактерий Enterobacter cloacae И Escherichia coli и приведены установленные структуры О-специфических полисахаридов (ОПС) изученных штаммов этих бактерий, а также обсуждаются особенности строения ОПС и подходов к их структурному анализу. Во второй части дана характеристика генных кластеров биосинтеза О-антигенов этих штаммов, включая аннотацию входящих в них генов с учетом установленных структур ОПС. В третьей части описаны подходы к структурному анализу полисахаридов, которые применялись в работе: идентификация моносахаридов настоящей И неуглеводных компонентов, конфигураций установление гликозидных связей, положений замещения И последовательности моносахаридов в О-звене, локализация неуглеводных заместителей. В структурном анализе использовался весь арсенала современных методов, в первую очередь спектроскопия ЯМР, но особое место в этом ряду занимает метод избирательного расщепления гликозидных связей сольволизом трифторуксусной кислотой, предложенный в данном исследовании. Четвертая часть посвящена применению сольволиза CF₃CO₂H для получения олигосахаридных фрагментов ОПС энтеробактерий Shigella flexneri в качестве потенциальных компонентов конъюгатных вакцин для профилактики шигеллёза.

3.1. Строение О-полисахаридов

3.1.1. Полисахариды Enterobacter Cloacae

Enterobacter cloacae – вид грамотрицательных бактерий семейства *Enterobacteriaceae*. По современным представлениям этот вид является частью комплекса *Enterobacter cloacae*, включающего в себя 13 близкородственных видов бактерий, неразличимых по технологии 16S pPHK [96]. Представители этой группы являются симбионтами растений, животных и человека, а также свободно живущими водными и почвенными микроорганизмами. Столь широкое экологическое распространение коррелирует с физиолого-биохимической и генетической (не 16SpPHK) гетерогенностью комплекса.

В медицинском отношении наиболее важным видом является вид *E. cloacae sensu stricto*. Его штаммы выделяют от госпитализированных больных, особенно от новорожденных и в ожоговых отделениях, из различных органов, тканей и жидкостей, включая дыхательные пути, мочеполовую систему, брюшную полость, поверхность тела, кровь, спинномозговую жидкость и др. Они вызывают инфекционные заболевания мочеполовых путей, остеомиелиты и холециститы, менингиты у новорожденных [97, 98]. Благодаря высокой устойчивости к дезинфектантам и антибиотикам, в последние годы

57

Е. cloacae становится одним из доминирующих возбудителей госпитальных инфекций [99]. К спорадическим или групповым случаям инфекций в госпиталях может приводить нестерильность жидкостей для инфузий, оборудования для гемодиализа, мочеприемников и т. д.

Вид *E. cloacae* отличается значительным антигенным разнообразием штаммов, которое может рассматриваться как один из факторов вирулентности, позволяющий бактериям с одним антигеном избегать защитного действия иммунитета, выработанного против штамма с другим антигеном. На основании результатов серологического исследования с использованием 28 антисывороток к термостабильным соматическим О-антигенам, включая 11 абсорбированных сывороток, штаммы *E. cloacae* разделены на 28 О-серогрупп [100]. Представители этих О-серогрупп использовались нами для установления строения ОПС. Ранее структура ОПС было установлена только для одной О-серогруппы *E. cloacae* О10 (NCTC 11579) [28] (она приведена в разделе 2.3.7 литературного обзора).

Типичными изученных ОПС Е. компонентами cloacae являются широко распространенные в природе моносахариды: D-глюкоза, D-галактоза, D-манноза, L-рамноза, (D-GlcA), **D**-глюкуроновая D-галактуроновая кислота кислота (D-GalA), N-ацетил-D-глюкозамин (D-GlcNAc) и N-ацетил-D-галактозамин (D-GalNAc). Из реже встречающихся моносахаридов обнаружены D-фукоза (D-Fuc) и 2-ацетамидо-2-дезокси-D-фукоза (D-FucNAc), а также N-ацетильные производные двух изомеров 5,7-диамино-3,5,7,9-тетрадезоксинон-2-улозоновой кислоты, имеющих L-глицеро-L-манно-конфигурацию (псевдаминовая кислота, Pse) и D-глицеро-D-галакто-конфигурацию (легионаминовая кислота, Leg):

Некоторые ОПС включают О-ацетильные группы, присоединенные к различным моносахаридным остаткам, а ОПС серогруппы О2 содержит пировиноградную кислоту (руг), образующую с остатком GlcNAc циклический ацеталь.

ЕNTEROBACTER CLOACAE O1 (G3054) [101] И O14 (C5529) [102]

ОПС *E. cloacae* O1 состоит из разветвленных пентасахаридных О-звеньев, включающих остаток ди-N-ацетильного производного псевдаминовой кислоты (Pse) и четыре остатка D-галактозы, один из которых находится в фуранозной форме:

Линейное тетрасахаридное О-звено ОПС *Е. cloacae* O14 содержит на один остаток D-галактозы меньше (в нем отстутствует пиранозный остаток, находящийся в боковой цепи ОПС серогруппы O1):

 \rightarrow 4)- β -Pse5Ac7Ac-(2 \rightarrow 3)- β -D-Gal*p*-(1 \rightarrow 6)- β -D-Gal*f*-(1 \rightarrow 3)- α -D-Gal*p*-(1 \rightarrow

ОПС серогрупп O1 и O14 являются близкородственными по структуре – они имеют одинаковые по составу основные цепи, которые отличаются только положениями замещения остатков β-D-галактопиранозы и Pse5Ac7Ac.

Отметим, что псевдаминовая кислота впервые была обнаружена в ОПС *Pseudomonas aeruginosa* и позднее в полисахаридах некоторых других бактерий [103-105]. В составе ОПС *E. cloacae* этот высший моносахарид обнаружен впервые.

Гликозидная связь псевдаминовой кислоты кислотолабильна, и при мягкой кислотной деградации ЛПС серогрупп O1 и O14 для отделения липидной части (липида A) цепи OПС расщепились по связям этого моносахарида, и были получены олигосахариды с остатком Pse5Ac7Ac на восстанавливающем конце, соответствующие O-звеньям OПС (раздел 3.3.5.1). Анализ этих олигосахаридов с помощью спектроскопии ЯМР (Приложение, таблицы 1 и 2) позволил не только установить их структуру, но и идентифицировать входящую в них нонулозоновую кислоту как L-*глицеро*-L-*манно*-изомер (псевдаминовая кислота) путем сравнения химических сдвигов ¹H и ¹³C ЯМР с опубликованными данными для различных изомеров моносахаридов этого класса [105].

Для установления полной структуры ОПС липополисахариды серогрупп O1 и O14 были подвергнуты мягкой щелочной обработке, которая привела к O-дезацилированию липидной части ЛПС и образованию полимеров, пригодных для ЯМР-спектроскопического анализа. В результате отнесения всех сигналов в спектрах ¹H и ¹³C ЯМР (Приложение, таблицы 1 и 2) и анализа связей и последовательности моносахаридов с помощью двумерной корреляционной спектроскопии ЯМР были установлены структуры обоих ОПС.

ENTEROBACTER CLOACAE O2 (G3420)

О-звено разветвленного ОПС *Е. cloacae* О2 состоит из трех моносахаридных остатков, включая два остатка N-ацетил-D-глюкозамина и один остаток L-рамнозы. Оно имеет следующую структуру:

Наряду с О-ацетильной группой, модифицирующей большую часть остатков D-рамнозы, в ОПС присутствует еще один неуглеводный компонент – пировиноградная кислота, образующая с остатком D-GlcNAc циклический ацеталь с (*R*)-конфигурацией ацетального атома углерода (*R*руг). Будучи кислотолабильным, ацеталь частично расщеплялся при мягком кислотном гидролизе ОПС. Модифицированные полисахариды с регулярной структурой, удобные для ЯМР-спектроскопического анализа (Приложение, таблица 3), были получены полным дезацеталированием в более жестких кислотных условиях и О-дезацетилированием в мягких щелочных условиях (раздел 3.3.3).

ЕNTEROBACTER CLOACAE ОЗ (G3421) [106] И О13 (C4115) [140]

Разветвленное гексасахаридное О-звено ОПС *Е. cloacae* ОЗ содержит три остатка L-рамнозы и по одному остатку D-глюкозы, D-галактозы и N-ацетил-D-фукозамина:

$$\begin{array}{c} \alpha \text{-D-Glc}p\text{-}(1\rightarrow 3) \\ \rightarrow 3)\text{-}\beta\text{-}L\text{-}Rhap\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow 2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow 3)\text{-}\alpha\text{-}D\text{-}Galp\text{-}(1\rightarrow 3)\text{-}\alpha\text{-}D\text{-}FucpNAc\text{-}(1\rightarrow 3)\text{-}\alpha\text{-}D\text{-}GalpNC\text{-}(1\rightarrow 3$$

Один из шести присутствующих моносахаридов – D-FucNAc – встречается в природе редко. Интересной особенностью ОПС *E. cloacae* ОЗ является наличие общего с ОПС *Shigella boydii* type 18 [107] олигосахаридного фрагмента β -L-Rhap-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap.

Линейный ОПС *E. cloacae* O13 состоит из пентасахаридных О-звеньев, имеющих такой же моносахаридный состав, как основная цепь ОПС *E. cloacae* O3:

 $\rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - L - Rhap - (1 \rightarrow 2) - \alpha - D - Galp - (1 \rightarrow 3) - \alpha - D - Fucp NAc - (1 \rightarrow 3) - (1 \rightarrow 3)$

ОПС серогруппы O13 отличается от OПС серогруппы O3 положениями замещения двух остатков L-рамнозы, остатка D-галактозы и конфигурацией гликозидной связи одного из остатков L-рамнозы. ОПС *E. cloacae* O13 имеет с OПС *E. cloacae* O7 общий фрагмент, построенный из трех остатков L-рамнозы.

В интерпретации спектров ЯМР ОПС *Е. cloacae* O3 встретились трудности, вызванные совпадением некоторых сигналов трех остатков L-рамнозы, которые не позволили однозначно установить его структуру бездеструктивным путем. В связи с этим вопрос о структуре ОПС был решен с применением предложенного нами сольволиза трифторуксусной кислотой (раздел 3.3.5.3). Сольволиз ОПС привел к расщеплению α -L-рамнозидных связей и образованию олигосахарида, строение которого было установлено с помощью спектроскопии ЯМР и масс-спектрометрии с ионизацией электрораспылением (ИЭР МС). Полученные данные позволили отнести все сигналы в спектрах ¹Н и ¹³С ЯМР ОПС (Приложение, таблица 4) и установить структуру его гексасахаридного О-звена.

При структурном анализе ОПС *E. cloacae* О13 использовался распад по Смиту (раздел 3.3.5.2). Данные спектров ¹Н и ¹³С ЯМР этого ОПС приведены в Приложении в таблице 5.

ENTEROBACTER CLOACAE O6 (G3422)

ОПС *E. cloacae* Об построен из разветвленных тетрасахаридных О-звеньев, содержащих два остатка D-маннозы и по одному остатку L-рамнозы и N-ацетил-D-глюкозамина:

$$\alpha$$
-L-Rhap-(1 \rightarrow 3)
 \rightarrow 4)- α -D-Manp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow

Полная структура этого ОПС была определена с помощью двумерной спектроскопии ЯМР (Приложение, таблица 6) и подтверждена сольволизом трифторуксусной кислотой, в результате которого был получен трисахаридный фрагмент ОПС (раздел 3.3.5.3).

ENTEROBACTER CLOACAE O7 (G2277) [108]

Линейное пентасахаридное О-звено ОПС *Е. cloacae* О7 содержит три остатка L-рамнозы и по одному остатку D-галактуроновой кислоты и N-ацетил-D-глюкозамина. Часть остатков D-GalA, придающих ОПС кислотные свойства, моно-О-ацетилирована в положении 2 или 3 (~30% и ~60% соответственно).

ОПС *E. cloacae* О7 и *Plesiomonas shigelloides* 22074 и 12254 (лит. обзор, таблица 16) имеют одинаковые О-звенья, но они соединены различными связями: α -D-GlcpNAc-(1 \rightarrow 2)- α -L-Rhap y *E. cloacae* или α -D-GlcpNAc-(1 \rightarrow 3)- α -L-Rhap y *P. shigelloides* [109].

Для получения регулярного полисахарида, удобного для ЯМР-спектроскопического анализа (Приложение, таблица 7), ОПС был О-дезацетилирован действием мягкого основания (раздел 3.3.3.1).

ENTEROBACTER CLOACAE O11 (C2559)

Разветвленный ОПС *Е. cloacae* О11 состоит из пентасахаридных О-звеньев, включающих три остатка D-маннозы и по одному остатку 2-ацетамидо-2,6-дидезокси-Dгалактозы (D-FucpNAc) и D-глюкозы:

Такую же основную цепь имеет ОПС *E. cloacae* O10, который отличается только местом присоединения бокового остатка глюкозы (лит. обзор, раздел 2.3.7). На основании близкого структурного родства ОПС и перекрестных серологических реакций, наблюдаемых для *E. cloacae* O10 и O11, мы предлагаем объединить их в одну O-серогруппу в качестве двух подгрупп.

Совпадение ряда сигналов ключевых протонов в спектрах ЯМР ОПС (Приложение, таблица 8а) затрудняло определение положений замещения моносахаридов, и поэтому в структурном анализе ОПС был использован распад по Смиту (раздел 3.3.5.2) с последующией идентификацией полученных олигосахаридов с помощью спектроскопии ЯМР (Приложение, таблица 8б).

ENTEROBACTER CLOACAE O12 (G3969) И O16 (C2649)

Разветвленное гексахаридное О-звено ОПС *Е. cloacae* O12, имеющее две моносахаридные боковые цепи, содержит по два остатка D-глюкозы и L-рамнозы и по одному остатку D-глюкуроновой кислоты и N-ацетил-D-глюкозамина:

Выделенный образец этого ОПС содержал примесь резервного глюкана \rightarrow 6)- α -D-Glc*p*-(1 \rightarrow , который полностью расщепился в результате применения распада по Смиту (раздел 3.3.5.2). Анализ полученного модифицированного полисахарида с уменьшенным повторяющимся звеном и исходного ОПС (в смеси с глюканом) с помощью одномерной и двумерной ¹Н и ¹³С ЯМР спектроскопии (Приложение, таблица 9) позволил однозначно установить структуру О-звена.

ОПС *Е. cloacae* O16 имеет такую же основную цепь и боковую рамнозную цепь, как ОПС *Е. cloacae* O12, но боковой остаток глюкозы у него отсутствует:

$$\alpha-L-Rhap-(1\rightarrow 2)$$

$$\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 6)-\alpha-D-Glcp-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 4)-\beta-D-GlcpA-(1\rightarrow 4)-\beta-D-(1\rightarrow 4)-\beta-(1\rightarrow 4)-\beta$$

Для установления строения этого ОПС использовались сольволиз трифторуксусной кислотой (см. раздел 3.3.5.3) и спектроскопия ЯМР, примененная к полученному при сольволизе олигосахариду и исходному ОПС (Приложение, таблица 10).

Как и предыдущую пару штаммов, мы предлагаем объединить *E. cloacae* O12 и O16 в одну O-серогруппу в качестве двух подгрупп.

ENTEROBACTER CLOACAE O15 (G4233)

В отличие от других исследованных полисахаридов *E. cloacae*, ОПС серогруппы O15 является линейным гомополимером D-маннозы с пентасахаридным O-звеном и имеет следующее строение:

 \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 2)- α -D-

Эта структура не является уникальной, так как ранее такой же полисахарид был идентифицирован у ряда других бактерий (*Escherichia coli* O9, *Klebsiella pneumoniae* O3 и *Hafnia alvei* PCM 1223). Строение ОПС *E. cloacae* O15 было установлено прямым сравнением спектров ЯМР с данными, опубликованными для этого D-маннана ранее [110].

ENTEROBACTER CLOACAE O19 (C6285) [111]

ОПС *Е. cloacae* O19 состоит из тетрасахаридных О-звеньев, содержащих два остатка D-галактозы и по одному остатку N-ацетил-D-галактозамина и ди-N-ацетильного производного легионаминовой кислоты (Leg):

 \rightarrow 4)- α -D-Gal*p*-(1 \rightarrow 4)- α -Leg*p*5Ac7Ac-(2 \rightarrow 3)- β -D-Gal*p*-(1 \rightarrow 3)- β -D-Gal*p*NAc-(1 \rightarrow

Легионаминовая кислота впервые была обнаружена в ОПС *Legionella pneumophila* и позднее в полисахаридах некоторых других бактерий [103-105]. В составе ОПС *E. cloacae* этот высший моносахарид обнаружен в впервые.

Как и у псевдаминовой кислоты, гликозидная связь легионаминовой кислоты кислотолабильна, и ОПС расщеплялся по этим связям при мягкой кислотной деградации ЛПС (раздел 3.3.5.1). ЯМР-спектроскопический анализ (Приложение, таблица 11) образовавшегося олигосахарида с остатком Leg5Ac7Ac на восстанавливающем конце и

полисахарида, полученного мягкой щелочной обработкой ЛПС, позволил идентифицировать Leg5Ac7Ac и установить строение ОПС *E. cloacae* O19.

3.1.2. Полисахариды *Escherichia coli*

Escherichia coli – кишечная палочка – клональный вид бактерий, включающий как комменсальные, так и патогенные штаммы. Содержание этой бактерии в кишечной микрофлоре в норме не превышает 1% процента, но ее роль чрезвычайно велика. Эшерихии являются естественным конкурентом патогенной и условно-патогенной микрофлоры и не позволяют ее представителям свободно заселять кишечник. К патогенным кишечным палочкам относятся возбудители диареи (эшерихиоза) и ряда более серьезных заболеваний, таких как энтероколиты (в 2011 г. штамм *E. coli* O104 вызвал вспышку энтероколита в Северной Европе, унесшую жизни по меньшей мере 22 человек), колиэнтериты, холероподобные и дизентериеподобные инфекции у детей и взрослых. Вероцитотоксинпродуцирующие эшерихии, в первую очередь штаммы *E. coli* O157, отнесятся к особо опасным патогенам, которые являются возбудителями геморрагическего колита и гемолитико-уремического синдрома.

Кишечная палочка – один из наиболее серологически гетерогенных видов бактерий, который на основании сероспецифичности соматических О-антигенов разделают на 180 О-серогрупп. Это разнообразие, сформировавшееся в результате агрессивного воздействия внешней среды, способствует выживаемости отдельных клонов бактерий в различных экологических нишах.

Структуры ОПС известны для большинства О-серогрупп, и, как уже отмечалось в лит. обзоре, их можно найти в интернет-доступной базе данных О-антигенов E. coli (http://nevyn.organ.su.se/ECODAB/). В то же время ОПС нескольких десятков О-серогрупп оставались неисследованными в этом отношении. В настоящей работе нами установлено строение ОПС семи ИЗ них. Большинство изученных ОПС построены ИЗ широкораспростаненных моносахаридов, и только в составе ОПС серогруппы ОЗ9 4-амино-4-дезокси-D-хиновоза обнаружена (D-Qui4N), N-ацилированная остатком (R)-3-гидроксимасляной кислоты (R3Hb). Из других неуглеводных компонентов, кроме N- и О-ацетильных групп, в ОПС серогрупп О46 и О134 присутствует L-треонин, присоединенный к карбоксильной группе D-GlcA.

64

ESCHERICHIA COLI O39 [112]

ОПС *E. coli* ОЗ9 состоит из пентасахаридных О-звеньев, включающих в себя по одному остатку D-маннозы, L-рамнозы, D-галактозы и D-Qui4N(*R*3Hb):

$$\begin{array}{c} \alpha \text{-D-Gal}p\text{-}(1\rightarrow 3) \\ \rightarrow 3)\text{-}\beta\text{-}D\text{-}Quip4N(R3Hb)\text{-}(1\rightarrow 2)\text{-}\alpha\text{-}D\text{-}Manp\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow 3)\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}D\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1\rightarrow 4)\text{-}\alpha\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text{-}\Omega\text$$

Следует отметить, что для Qui4N характерно замещение различными необычными N-ацильными группами. Так, ранее в ОПС *E. coli* O49 [113] был обнаружен этот моносахарид, N-ацилированный остатком (*S*)-3-гидроксимасляной кислоты.

Для определения строения ОПС *E. coli* ОЗ9 были использованы распад по Смиту (раздел 3.3.5.2), сольволиз трифторуксусной кислотой (раздел 3.3.5.3) и спектроскопия ЯМР, примененная как к полученным олигосахаридам, так и к исходному полисахариду (Приложение, таблица 12).

ESCHERICHIA COLI O43 [114]

Разветвленное пентасахаридное О-звено ОПС *Е. coli* О43 содержит по два остатка L-фукозы и D-маннозы и один остаток N-ацетил-D-галактозамина:

В структурном анализе этого ОПС использовались распад по Смиту, приведший к модифицированному линейному полисахариду (раздел 3.3.5.2), и сольволиз трифторуксусной кислотой (раздел 3.3.5.3). Положение О-ацетилирования было установлено сравнением спектров ЯМР исходного ОПС и О-дезацетилированного полисахарида (Приложение, таблица 13).

ESCHERICHIA COLI О46 и О134 [115]

Кислые ОПС *E. coli* O46 и O134 построены из разветвленных тетрасахаридных О-звеньев, содержащих по одному остатку D-галактозы, D-глюкозы, N-ацетил-D-галактозамина и D-глюкуроновой кислоты, а также остаток L-треонина. ОПС обеих O-серогрупп имеют одинаковое строение и отличаются только нестехиометрическим O-ацетилированием по двум положениям в ОПС серогруппы O46:

~70% R-3-L-Thr-6

$$\rightarrow$$
4)- β -D-GlcpA-(1 \rightarrow 6)- β -D-Galp-(1 \rightarrow 6)- β -D-Glcp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow
R = Ac y *E. coli* O46 или R = H y *E. coli* O134

Особенностью этих ОПС является присутствие L-треонина, амидирующего остаток D-GlcA. Ранее в ОПС *E. coli* O110 был обнаружен D-аллотреонин, присоединенный амидной связью к остатку D-GalA [116]. Учитывая, что различие между ОПС *E. coli* O46 и O134 незначительно, мы предлагаем объединить эти бактерии в одну O-серогруппу в качестве двух подгрупп.

Структура ОПС установлена бездеструктивным путем с помощью спектроскопии ЯМР, включая сравнение спектров исходных и О-дезацетилированных полисахаридов (Приложение, таблица 14).

ESCHERICHIA COLI O68 [117]

Разветвленное гептасахаридное О-звено ОПС *E. coli* Об8 содержит четыре остатка D-маннозы и по одному остатку L-рамнозы, D-глюкозы и N-ацетил-D-глюкозамина. ОПС имеет следующее строение:

$$\begin{bmatrix} (3\leftarrow 1)-\alpha-L-Rhap & [(3\leftarrow 1)-\alpha-D-Glcp \\ \rightarrow 6)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcPNAc-(1\rightarrow$$

Структура ОПС была установлена методами спектроскопии ¹Н и ¹³С ЯМР (Приложение, таблица 15) и подтверждена избирательным сольволизом трифторуксусной кислотой (раздел 3.3.5.3).

ESCHERICHIA COLI O80 [118]

ОПС *E. coli* O80 состоит из разветвленных гексасахаридных О-звеньев, включающих в себя по одному остатку D-глюкозы, N-ацетил-D-глюкозамина, N-ацетил-D-галактозамина и D-глюкуроновой кислоты, а также два остатка L-фукозы, образующих две боковые моносахаридные цепи:

$$\begin{bmatrix} (2 \leftarrow 1) - \alpha - L - Fucp \\ \rightarrow 6) - \beta - D - Glcp - (1 \rightarrow 3) - \beta - D - GalpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 3) - \beta - D - GlcpNAc - (1 \rightarrow 4) - \beta - D - GlcpA - (1 \rightarrow 4) -$$

ОПС *E. coli* O80 анализировали с помощью двух методов селективного расщепления гликозидных связей: распада по Смиту (раздел 3.3.5.2) и сольволиза безводной трифторуксусной кислотой (раздел 3.3.5.3). Полученные олигосахариды идентифицировали

методами спектроскопии ¹Н и ¹³С ЯМР и ИЭР МС (раздел 3.3.7) и затем с помощью спектроскопии ЯМР устанавливали структуру исходного ОПС (Приложение, таблица 16).

ESCHERICHIA COLI O169 [119]

ОПС *E. coli* O169 состоит из гексасахаридных О-звеньев, включающих в себя два остатка D-маннозы и по одному остатку D-галактозы, D-глюкозы, N-ацетил-D-галактозамина и D-глюкуроновой кислоты:

 $\begin{array}{c} & \int^{(6\leftarrow 1)-\beta-\text{D-Glc}p} \\ \rightarrow 3)-\alpha-\text{D-Gal}p-(1\rightarrow 6)-\alpha-\text{D-Man}p-(1\rightarrow 2)-\alpha-\text{D-Man}p-(1\rightarrow 3)-\beta-\text{D-Gal}p\text{NAc-}(1\rightarrow L_{(4\leftarrow 1)-\beta-\text{D-Glc}p\text{A}}) \end{array}$

Интересно, что этот ОПС имеет сходное строение с ОПС *Shigella boydii* типов 6 и 10 и *E. coli* O183, которые отличаются от него отсутствием бокового остатка глюкозы, а два последних ОПС, имеющих идентичное строение, – также присутствием остатка D-рибозы, присоединенного к остатку D-GlcA (лит. обзор, таблица 6).

В структурном анализе ОПС *E. coli* О169 использовался распад по Смиту (раздел 3.3.5.2) и спектроскопия ¹Н и ¹³С ЯМР (Приложение, таблица 17).

3.2. ХАРАКТЕРИСТИКА ГЕННЫХ КЛАСТЕРОВ О-АНТИГЕНОВ

Генные кластеры О-антигенов (ГКО) бактерий *E. cloacae* и *E. coli* находятся на хромосоме между консервативными генами *galF* и *gnd*. Типичный ГКО содержит гены трех основных типов: а) гены биосинтеза нуклеотид-активированных предшественников специфических моносахаридных компонентов ОПС (D-маннозы, 6-дезоксигексоз, N-ацетил-D-галактозамина, производных 6-дезоксиаминосахаров и нонулозоновых кислот), б) гены гликозилтрансфераз для последовательного переноса моносахаридов при сборке О-звена, присоединенного к ундекапренилдифофсфатному носителю (UndPP), на цитоплазматической стороне внутренней мембраны и в) гены процессинга О-антигена: флиппазы *wzx* для трансмембранного переноса О-звена и О-антиген-полимеразы *wzy* для полимеризации О-звена на периплазматической стороне мембраны (см. лит. обзор, рис. 2). Гены биосинтеза нуклеотидных предшественников распространенных моносахаридов (D-глюкозы, D-галактозы, N-ацетил-D-глюкозамина) являются генами «домашнего хозяйства» и не дублируются в ГКО.

Предположительные функции генов биосинтеза исследованных ОПС устанавливали путем сравнения генов в секвенированных ГКО с последовательностями в доступных базах данных, в том числе с генами с известными функциями, с учетом полученных данных о структурах ОПС. Эта часть работы выполнена совместно с китайскими генетиками из Института биологических наук и биотехнологии Нанькайского университета (Тяньцзиньская зона экономического и технического развития, г. Тяньцзинь, КНР). Ниже приведены структуры ОПС и состав и организация ГКО *E. cloacae* и *E. coli*, исследованных в настоящей работе. В ГКО гены биосинтеза моносахаридов показаны черным цветом, гены трансфераз – серым и гены процессинга – белым.

3.2.1. ГЕННЫЕ КЛАСТЕРЫ ЕNTEROBACTER CLOACAE

ENTEROBACTER CLOACAE O1 и O14 [101, 102]

E. cloacae O1

$$\label{eq:constraint} \begin{split} & \int^{(4\leftarrow 1)-\alpha-\text{D-Gal}p}_{-3} \\ \rightarrow 8) \text{-}\beta \text{-}\text{Psep5Ac7Ac-}(2\rightarrow 6) \text{-}\beta \text{-}\text{D-Gal}p \text{-}(1\rightarrow 6) \text{-}\beta \text{-}\text{D-Gal}f \text{-}(1\rightarrow 3) \text{-}\alpha \text{-}\text{D-Gal}p \text{-}(1\rightarrow 6) \text{-}\beta \text{-}$$

E. cloacae O14

 $\rightarrow 4) - \beta - Psep5Ac7Ac - (2 \rightarrow 3) - \beta - D - Galp - (1 \rightarrow 6) - \beta - D - Galf - (1 \rightarrow 3) - \alpha - D - Galp - (1 \rightarrow 6) - \beta - D - Galf - (1 \rightarrow 3) - \alpha - D - Galp - (1 \rightarrow 6) - \beta - D - Galf - (1 \rightarrow 6) - \beta - D - Ga$

ГКО *Е. cloacae* O1 и O14, имеющих близкородственные структуры OПC, содержат 12 одинаково организованных и одинаковых по своим функциям генов с высокой степенью гомологии (99-100%). В них присутствует шесть генов биосинтеза нуклеотидактивированных предшественников моносахаридных компонентов OПC, включая пять генов синтеза производного псевдаминовой кислоты CMP-Psep5Ac7Ac (*pseBCFGH*) [120] и ген *glf*, который кодирует мутазу, превращающую UDP-D-Gal*p* в UDP-D-Gal*f*.

Ген *wbaP* кодирует трансферазу, которая переносит D-галактозо-1-фосфат из UDP-D-Gal*p* на липидный носитель UndP, инициируя синтез O-звена (см. лит. обзор, рис. 2). Гены трех гликозилтрансфераз *orf7, orf9* и *orf10* отнесены к трем внутренним гликозидным связям O-звена, причем гены Pse5Ac7Ac-трансфераз двух бактерий (*orf10*), ответственных за образование различных гликозидных связей ($2 \rightarrow 6$ у *E. cloacae* O1 или $2 \rightarrow 3$ у *E. cloacae* O14), имеют наименьшую степень гомологии (99.2% на аминокислотном уровне). Ген галактозилтрансферазы, присоединяющий боковой остаток D-галактозы в серогруппе O1, отсутствует и, следовательно, находится вне ГКО (обычно такие дополнительные гены кодируются в профагах – геномах умеренных бактериофагов, встроенных в хромосому бактерии; например, см. обзор [15]).

Как и гликозилтрансферазы Orf10, O-антиген-полимеразы Wzy образуют различные связи между O-звеньями (1 \rightarrow 8 у *E. cloacae* O1 или 1 \rightarrow 4 у *E. cloacae* O14); их степень гомологии составляет 99,7%. В то же время флиппазы Wzx полностью идентичны, и следовательно, один и тот же фермент этого класса способен переносить через мембрану хотя и родственные, но отличающиеся по структуре O-звенья.

ENTEROBACTER CLOACAE O3 [106] и O13

E. cloacae O3

E. cloacae O13 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -D-Galp-(1 \rightarrow 3)- α -D-FucpNAc-(1 \rightarrow

ГКО *Е. cloacae* O3 включает 13 генов, четыре из которых необходимы для синтеза dTDP-L-Rhap (*rmlBDAC*) [121] и два гена – для синтеза UDP-D-FucpNAc (*orf1* и *orf4*) [122]. Ген *orf2* кодирует D-FucpNAc-1-*P*-трансферазу, которая инициирует биосинтез O-звена, перенося этот моносахарид на липидный носитель UndP (лит. обзор, рис. 2). Хотя O-звено серогруппы O3 является пентасахаридом, в кластере присутствуют гены только трех гликозилтрансфераз (*orf11-orf13*). Это очевидно объясняется тем, что одна из рамнозилтрансфераз (Orf12) является бифункциональной и катализирует образование обеих α -L-рамнопиранозидных связей, а ген глюкозилтрансферазы находится вне OГК, вероятнее всего в профаге. Ген *orf3* является гомологом многих бактериальных ацетилтрансфераз, однако O-ацетильные группы в OПС не обнаружены, и функция этого гена остается неизвестной.

ГКО *Е. cloacae* O13 также состоит из 13 генов, имеющих аналогичные функции и организованных таким же образом, как гены в ГКО *Е. cloacae* O3, что соответствует одинаковому составу и близкому строению основных цепей ОПС этих бактерий. Кроме остутствия бокового остатка глюкозы в ОПС *Е. cloacae* O13, ОПС серогрупп O3 и O13

отличаются друг от друга типами трех гликозидных связяей. Эти различия очевидно обусловлены вариациями генов соответствующих гликозилтрансфераз и О-антигенполимеразы, приводящими к изменению специфичности ферментов в отношении образуемых ими связей. Наибольшее отличие между аминокислотными последовательностями гликозилтрансфераз *E. cloacae* O3 и O13 наблюдается для Orf11: они идентичны только на 17%, тогда как Orf12 и Orf13 идентичны на 81% и 73%, соответственно. Это позволяет отнести Orf11 к гликозидным связям с различной конфигурацией: β -L-Rhap-(1 \rightarrow 4)-L-Rhap в серогруппе O3 и α -L-Rhap-(1 \rightarrow 2)-L-Rhap в серогруппе O13.

ENTEROBACTER CLOACAE O6

$$\alpha$$
-L-Rhap-(1 \rightarrow 3)-
 \rightarrow 4)- α -D-Man*p*-(1 \rightarrow 3)- α -D-Man*p*-(1 \rightarrow 3)- α -D-Glc*p*NAc-(1 \rightarrow

В ГКО *E. cloacae* Об присутствуют гены *rmlBDAC* для синтеза dTDP-L-Rhap [121] и *manB* и *manC* для синтеза GDP-D-Manp [122]. Число гликозилтрансфераз, кодируемых тремя генами *orf8*, *orf10* и *wffE*, соответствует размеру тетрасахаридного О-звена. Ген инициирующей D-GlcpNAc-1-*P*-трансферазы входит в кластер биосинтеза энтеробактериального общего антигена и в ГКО не дублируется. Эта же особенность наблюдается и у всех других бактерий, у которых первым моносахаридом О-звена является N-ацетил-Dглюкозамин. Гены *orf1* и *orf2* аннотировать не удалось, и их функции остаются неизвестными.

ENTEROBACTER CLOACAE O7 [108]

ГКО *Е. cloacae* O7 также имеет в своем составе четыре гена *rmlBDAC*, участвующие в биосинтезе dTDP-L-Rhap [121], но гены *ugd* и *gla*, необходимые для синтеза UDP-D-GalpA [122], очевидно находятся вне ГКО. Присутствуют всего два гена гликозилтрансфераз (*wfiP* и *wfiQ*), одна из которых очевидно является трифункциональной и переносит один за другим

все три остатка α-L-рамнопиранозы. Ген *wfiR* кодирует ацилтрансферазу, очевидно ответственную за О-ацетилирование остатка D-GalpA.

ENTEROBACTER CLOACAE O19 [111]

 $\rightarrow 4) \cdot \alpha \cdot D \cdot Galp \cdot (1 \rightarrow 4) \cdot \alpha \cdot Legp5Ac7Ac \cdot (2 \rightarrow 3) \cdot \beta \cdot D \cdot Galp \cdot (1 \rightarrow 3) \cdot \beta \cdot D \cdot GalpNAc \cdot (1 \rightarrow 3) \cdot \beta \cdot D \cdot (1 \rightarrow 3) \cdot \beta \cdot D \cdot (1 \rightarrow 3) \cdot \beta \cdot D \cdot (1 \rightarrow 3) \cdot (1 \rightarrow 3)$

В ГКО *Е. cloacae* O19 входит 12 генов, включая семь генов, необходимых для синтеза производного легионаминовой кислоты CMP-Legp5Ac7Ac (*lea1-lea7*) [51, 123]. Как и в случае других энтеробактерий, у которых первым моносахаридом О-звена является N-ацетил-D-галактозамин, ген *gnu*, который кодирует 4-эпимеразу, превращающую UndP-D-Glc*p*NAc в UndP-D-Gal*p*NAc [124], находится вне ГКО. В кластере присутствуют гены трех гликозилтрасфераз (*wfiABC*), необходимых для построения тетрасахаридного О-звена.

3.2.2. Генные кластеры *Escherichia coli*

ESCHERICHIA COLI O39 [112]

 α -D-Galp-(1 \rightarrow 3)

 \rightarrow 3)- β -D-Quip4N(R3Hb)-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 4)- α -L-Rhap-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow

ГКО *E. coli* O39 включает 14 генов. Из них четыре гена (*rmlBDAC*) кодируют ферменты биосинтеза dTDP-L-Rhap, гены *vioA* и *vioB* отвечают за синтез dTDP-D-Qui4N(*R*3Hb) [121], а гены *manB* и *manC* – за синтез GDP-D-Man [122]. Гены *wccQRS* и *wekZ* кодируют четыре гликозилтрансферазы, что соответствует пентасахаридному O-звену.

ESCHERICHIA COLI O43 [114]

В состав ГКО *E. coli* O43 входит 12 генов, в том числе два гена для синтеза GDP-D-Manp (manC и manB) и три гена для синтеза GDP-L-Fucp из GDP-D-Manp (gmm, gmd и fcl) [122]. Присутствуют гены четырех гликозилтрансфераз (orf2,4,6,11), необходимых для сборки пентасахаридного O-звена, а также ген orf3, который кодирует ацилтрансферазу, O-ацетилирующую остаток D-маннозы.

ESCHERICHIA COLI O46, O134 [115]

E. coli O46

E. coli 0134

 $\begin{tabular}{l} & \label{eq:constraint} & \end{tabular} \end{tabular} \end{tabular} \rightarrow & \end{tabular} \end{t$

ОПС *E. coli* O46 и O134 имеют одинаковые углеводные структуры и отличаются только наличием в первом из них О-ацетильных групп. ГКО этих бактерий также идентичны и содержат гены процессинга О-антигена (*wzx* и *wzy*), гены трех гликозилтрасфераз (*welQRS*), необходимых для построения тетрасахаридного О-звена, а также ген *welP*, предположительно отвечающий за присоединение L-треонина к остатку D-GlcA. Гены ацилтрансфераз, обеспечивающих О-ацетилирование в ОПС *E. coli* O46, в кластере отсутствуют, и, вероятнее всего, находятся в профаге (или в профагах).

ESCHERICHIA COLI O68 [117]

 $\begin{bmatrix} (3\leftarrow 1)-\alpha-L-Rhap & [(3\leftarrow 1)-\alpha-D-Glcp & -(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-GlcpNA$

ГКО *E. coli* Об8 содержит 11 генов. В их числе четыре гена, кодирующих ферменты биосинтеза dTDP-L-Rhap (*rmlBDAC*) [121], и два гена, ответственные за синтез GDP-D-Manp (*manC* и *manB*) [122]. Тот факт, что только три гена гликозилтрансфераз (*wekA*, *wceA* и *wbaD*)
обеспечивают сборку гептасахаридного О-звена, может быть объяснен тем, что α-D-маннозилтрансфераза WceA является трифункциональной, а ген глюкозилтрансферазы, присоединяющей боковой остаток D-глюкозы, находится вне ГКО.

ESCHERICHIA COLI O80 [118]

В состав ГКО *E. coli* O80 входит 12 генов. Из них пять генов (gmd, fcl, gmm, manC и manB) необходимы для биосинтез GDP-L-Fuc [122], а ген gne кодирует 4-эпимеразу, превращающую UDP-GlcNAc в UDP-D-GalNAc. Гены четырех гликозилтрасфераз (orf8-orf10 и orf12) обеспечивают сборку гексасахаридного О-звена, что свидетельствует о бифункциональности фукозилтрансферазы.

ESCHERICHIA COLI O169 и O183 [119]

E. coli O169

E. coli **O183**

$$\begin{array}{c} & \left[(6 \leftarrow 1) \cdot \beta \cdot D \cdot Glcp \right] \\ \rightarrow 3) \cdot \alpha \cdot D \cdot Galp \cdot (1 \rightarrow 6) \cdot \alpha \cdot D \cdot Manp \cdot (1 \rightarrow 2) \cdot \alpha \cdot D \cdot Manp \cdot (1 \rightarrow 3) \cdot \beta \cdot D \cdot Galp NAc \cdot (1 \rightarrow \ (4 \leftarrow 1) \cdot \beta \cdot D \cdot Glcp A \end{array} \right] \\ & \left[(4 \leftarrow 1) \cdot \beta \cdot D \cdot Glcp A \right] \\ & \left[off^{1} \quad off^{2} \quad vr^{1} \quad off^{4} \quad off^{5} \quad ran^{0} \quad ran^{0$$

 $\rightarrow 3)-\alpha-D-\text{Gal}p-(1\rightarrow 6)-\alpha-D-\text{Man}p-(1\rightarrow 2)-\alpha-D-\text{Man}p-(1\rightarrow 3)-\beta-D-\text{Gal}p\text{NAc}-(1\rightarrow (4\leftarrow 1)-\beta-D-\text{Gl}cp\text{A}-(4\leftarrow 1)-\beta-D-\text{Rib}f$

ОПС *E. coli* O169 и O183 имеют близкородственные струкуры, отличающиеся отсутствием в ОПС серогруппы O183 бокового остатка D-глюкозы и присутствием остатка D-рибозы, присоединенного к боковому остатку D-GlcpA. На 5'-конце ГКО этих бактерий

имеются семь одинаковых генов, включая два гена для синтеза GDP-D-Man (manC и manB) [122], тогда как гены для синтеза UDP-D-GlcpA и UndP-D-GalpNAc находятся вне ГКО. Присутствуют пять генов гликозилтрансфераз (orf1,2,4,5,12), обеспечивающих сборку гексасахаридного О-звена. Кроме того, в ГКО включены инсерционные последовательности (IS-элементы), аннотированные как ISAs1, ISEc1 и IS481, которые связаны с эволюцией генных кластеров рассматриваемых бактерий. Как можно заключить из их сравнения, ГКО E. coli O169 образовался из ГКО E. coli O183 путем рекомбинации, спровоцированной включением IS-элементов. Результатами этого события стали утрата генов рибофуранозилтрансферазы *orf*8 и флиппазы *wzx* и приобретение гена глюкозилтрансферазы orf12 и нового гена флиппазы wzx [119].

* * *

Таким образом, структуры ОПС исследованных бактерий в целом соответствуют генному составу ГКО. В то же время гены биосинтеза нуклеотид-активированных предшественников гексуроновых кислот (UDP-GlcpA и UDP-GalpA) находятся вне ГКО, как это отмечалось ранее и для других энтеробактерий (например, см. обзор [14]). В ряде случаев в ГКО отсутствуют также гены транфераз, ответственных за присоединение боковых моносахаридных остатков и за О-ацетилирование. Наконец, ГКО *Е. cloacae* O3 и O6 содержат «лишние» гены, функции которых остаются неизвестными.

3.3. Структурный анализ О-полисахаридов

Исследованные ОПС являются регулярными полимерами, построенными из повторяющихся олигосахаридных единиц (О-звеньев). Структурный анализ таких полимеров сводится к установлению строения О-звена и типа связи между звеньями. Для этого необходимо решить следующие задачи:

- Установление качественного и количественного состава О-звена, в том числе определение абсолютных конфигураций моносахаридов и хиральных неуглеводных заместителей.
- 2. Установление размеров моносахаридных циклов.
- 3. Определение конфигураций гликозидных связей.
- 4. Установление положений гликозилирования моносахаридных остатков.
- 5. Определение последовательности моносахаридных остатков в О-звене.
- 6. Локализация неуглеводных заместителей.

В случае ОПС с замаскированной регулярностью, вызванной присутствием О-ацетильных групп в нестехиометрическом количестве, проводилось О-дезацетилрование. После установления строения образовавшегося регулярного полисахарида положение О-ацетильных групп определяли сравнением спектров ЯМР модифицированного и исходного полимеров (см. раздел 3.3.3.1).

3.3.1. Выделение и деградация липополисахаридов

Липополисахариды выделяли из бактериальных клеток экстракцией горячим водным фенолом по модифицированному методу Вестфаля [37, 125]. После удаления фенола диализом без разделения водного и фенольного слоев экстракта сопутствующие белки и нуклеиновые кислоты отделяли осаждением трихлоруксусной кислотой.

ЛПС являются амфифильными соединениями, образующими в водных растворах мицеллы, что затрудняет их исследование с помощью спектроскопии ЯМР. В связи с этим для структурного анализа ОПС проводили расщепление ЛПС на углеводную и липидную компоненты мягким кислотным гидролизом 2% уксусной кислотой при 100 °C до выпадения осадка липида (1,5-3 часа), который отделяли центрифугированием. ОПС выделяли из супернатанта хроматографией на геле Sephadex G-50 Superfine.

За исключением ацеталя пировиноградной кислоты в ОПС *E. cloacae* O2, который частично расщеплялся (см. раздел 3.3.3.2), и производных нонулозоновых кислот Pse (*E. cloacae* O1 и O14) и Leg (*E. cloacae* O19), все компоненты ОПС и гликозидные связи были устойчивы в этих условиях. ОПС, содержащие Pse5Ac7Ac и Leg5Ac7Ac, выделить не удалось, так как при мягком кислотном гидролизе ЛПС кислотолабильные гликозидные связи этих моносахаридов полностью расщеплялись, и образовались олигосахариды, соответствующие O-звеньям ОПС (см. раздел 3.3.5.1). Для получения полисахаридов с нонулозоновыми кислотами, пригодных для структурного анализа, ЛПС О-дезацилировали в мягких щелочных условиях (12% NH₄OH, 37 °C, 16 часов).

3.3.2. Компонентный анализ полисахаридов

Компонентный анализ ОПС проводили после полного кислотного гидролиза 2 М трифторуксусной кислотой (120 °C, 2 часа). Образующиеся свободные моносахариды превращали в полностью ацетилированные полиолы, которые идентифицировали методом ГЖХ с использованием соответствующих производных заведомых моносахаридов. Так, например, в ходе установления структуры ОПС *E. coli* Об8 в результате полного кислотного гидролиза с последующим боргидридным восстановлением и ацетилированием методом ГЖХ были идентифицированы рамноза, манноза, глюкоза и N-ацетилглюкозамин (рис. 3). Их соотношение ~1:3:1:0,3 отличалось от состава О-звена, в котором эти компоненты

присутствуют в соотношении 1:4:1:1, что было вызвано различными факторами отклика пламенно-ионизационного детектора для каждого из моносахаридов (известно, что особенно низкие по относительной интенсивности сигналы дают аминосахара, как это и имеет место в рассматриваемом случае).

Рис. 3. Хроматограмма смеси ацетилированных полиолов, полученнных из ОПС E. coli O68.

Методом ГЖХ в виде ацетилированных полиолов детектировали нейтральные моносахариды (гексозы, 6-дезоксигексозы) и аминосахара (кроме кислотолабильного Qui4N в ОПС *E. coli* O39), тогда как кислые моносахариды (гексуроновые и нонулозоновые кислоты) и Qui4N, а также неуглеводные компоненты (треонин, пировиноградная кислота, 3-гидрокимасляная кислота) идентифицировали бездеструктивным путем с помощью спектроскопии ЯМР в ходе структурного анализа ОПС.

Определение абсолютных конфигураций моносахаридов проводили методом ГЖХ в виде ацетилированных гликозидов с (*S*)-2-октанолом, полученных алкоголизом продуктов кислотного гидролиза ОПС с последующим ацетилированием. В качестве соединений сравнения использовали диастереомеры ацетилированных гликозидов соответствующих моносахаридов с (*S*)- и (*R*)-октанолом. Абсолютные конфигурации нонулозоновых кислот устанавливали бездеструктивным путем на основании известных закономерностей, описывающих влияние соседних моносахаридов с известной конфигурацией на химические сдвиги ¹³С ЯМР [105].

Абсолютную конфигурацию хиральных неуглеводных компонентов определяли с помощью ГЖХ ацетилированных эфиров треонина и трифторацетилированных эфиров

3-гидроксимасляной кислоты с (*S*)-2-октанолом. Конфигурация ацеталя пировиноградной кислоты следовала из химических сдвигов ¹³С ЯМР, различных для (*S*)- и (*R*)-изомеров [126].

3.3.3. Химические модификации полисахаридов

Для получения полисахаридов, более удобных для ЯМР-спектроскопического анализа, и локализации неуглеводных заместителей (нестехиометрических О-ацетильных групп или остаточного количества ацеталя пировиноградной кислоты после кислотной деградации ЛПС) ОПС с замаскированной регулярностью подвергали химическим модификациям, которые приводили к удалению нестехиометрических заместителей и образованию регулярных полимеров.

3.3.3.1. О-ДЕЗАЦЕТИЛИРОВАНИЕ

О-Ацетильные группы в нестехиометрическом количестве присутствовали в четырех исследованных ОПС (*E. cloacae* O2 и O7, *E. coli* O43 и O46). Их наличие затрудняло отнесение спектров ЯМР из-за расщепления сигналов моносахаридов на несколько серий с различной интенсивностью. О-Ацетильные группы удаляли в мягких щелочных условиях действием 12% гидроксида аммония (37 °C, 16 часов). После отнесения сигналов в спектрах ЯМР О-дезацетилированного полисахарида локализацию О-ацетильных групп в исходном ОПС проводили путем сравнения спектров ЯМР О-дезацетилированного и исходного полисахаридов с использованием известных закономерностей в эффектах О-ацетилирования [127].

Например, спектр ¹³С-ЯМР полисахарида *E. coli* O43 (рис. 4, верхний) содержал сигналы различной интенсивности, что указывало на нерегулярность структуры ОПС. В то же время сигнал метильной группы при $\delta_{\rm H}$ 2.18 м.д. и $\delta_{\rm C}$ 21.6 м.д. свидетельствовал о присутствии в ОПС О-ацетильных групп. Судя по соотношению интегральных интенсивностей сигналов О-ацетильной группы при $\delta_{\rm H}$ 2.18 м.д. и N-ацетильной группы остатка D-GlcNAc при $\delta_{\rm H}$ 2.03 м.д., степень О-ацетилирования ОПС составляла ~70%. Сравнение двумерных спектров ¹H,¹³C HSQC О-дезацетилированного и исходного ОПС выявило слабопольное смещение большей части корреляционного пика H-2/C-2 остатка β -D-Man (**B**) от 4.26/68.5 м.д. к 5.67/69.5 м.д., вызванное дезэкранирующим эффектом О-ацетильной группы (α -эффект О-ацетилирования [127]) и указывающее на частичное О-ацетилирование остатка **B** в положение 2. Этот вывод подтверждался сильнопольным смещением на 0,4 и 1,9 м.д. сигналов атомов углерода C-1 и C-3 этого же остатка, соответственно (β -эффект О-ацетилировании [127]) (рис. 4).

Рис. 4. Структура и спектры ¹³С ЯМР исходного (вверху) и О-дезацетилированного (внизу) полисахаридов из *E. coli* O43.

3.3.3.2. Дезацеталирование

В ОПС Е. *cloacae* O2 пировиноградная кислота присоединяется к остатку N-ацетилглюкозамина в положения 4 и 6, образуя 1,3-диоксановый цикл (циклический ацеталь). Как уже отмечалось, при мягкой кислотной деградации ЛПС этот ацеталь частично расщеплялся, и в результате ОПС терял свою регулярность. Для целей ЯМРспектроскопического анализа полученный нерегулярный полисахарид полностью дезацеталировали путем гидролиза 2% уксусной кислотой в более жестких условиях (105 °C, 6 часов). Положение ацеталя пировиноградной кислоты в исходном ОПС определяли путем сравнения его спектров ЯМР со спектрами модифицированного полисахарида.

3.3.4. Анализ методом метилирования

Метилирование – наиболее удобный химический метод установления положений замещения моносахаридов в олиго- и полисахаридах. Он включает идентификацию с помощью ГЖХ/масс-спектрометрии частично метилированных ацетатов полиолов, полученных кислотным гидролизом продукта метилирования с последующим боргидридным восстановлением и ацетилированием.

Хотя для большинства исследованных ОПС вопрос о замещении моносахаридов решался бездеструктивным путем с помощью двумерной спектроскопии ЯМР (см. раздел 3.3.6), в

некоторых случаях метилирование оказалось незаменимым. Так, это относится к ОПС *E. coli* O39, который был выделен в смеси с резервным полисахаридом – маннаном. Подробно установление строения этого ОПС, включающее анализ методом метилирования, описано в разделе 3.3.8.

3.3.5. Избирательное расщепление полисахаридов

3.3.5.1. Мягкий кислотный гидролиз

Как уже отмечалось, при деградации ЛПС 2% уксусной кислотой ОПС, содержащие производные Pse и Leg, расщеплялись по гликозидным связям этих моносахаридов, давая олигосахариды с нонулозоновыми кислотами на восстанавливающем конце.

E. cloacae O14

$$\rightarrow 3)-\beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\text{D-Gal}f-(1\rightarrow 3)-\alpha-\text{D-Gal}p-(1\rightarrow 4)-\beta-\text{Pse}p5\text{Ac7Ac-}(2\rightarrow \downarrow \ \beta-\text{D-Gal}p-(1\rightarrow 6)-\beta-\text{D-Gal}f-(1\rightarrow 3)-\alpha-\text{D-Gal}p-(1\rightarrow 4)-\text{Pse}5\text{Ac7Ac}$$

E. cloacae O19

$$\rightarrow 3)-\beta-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 4)-\alpha-Legp5Ac7Ac-(2\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 4)-\alpha-D-Galp-(1\rightarrow 4)-Leg5Ac7Ac$$

* * *

В работе использовались еще два метода избирательного расщепления гликозидных связей: распад по Смиту и сольволиз трифторуксусной кислотой – реагентом, предложенным для этой цели в настоящей работе. В зависимости от строения ОПС эти методы применялись как для упрощения его структуры путем отщепления боковых моносахаридных остатков, так и для получения олигосахаридных фрагментов. Олигосахариды с выходами 16-37% выделяли с помощью хроматографии на геле TSK HW-40 (S) и анализировали методами спектроскопии ЯМР и ИЭР МС.

3.3.5.2. РАСПАД ПО СМИТУ

Возможность применения распада по Смиту определяется наличием в полисахариде одного или нескольких моносахаридов со свободной вицинальной диольной группировкой. Перийодатное окисление диольной группы происходит с разрывом углерод-углеродной связи и делает гликозидную связь окисленного моносахарида кислотолабильной. Образовавшиеся альдегидные группы восстанавливают для предотвращения образования внутримолекулярных ацеталей и проводят мягкий кислотный гидролиз, расщепляющий полисахарид по местам разрушенных моносахаридов. При этом, если окисляются только моносахариды боковых цепей, продуктом распада является модифицированный полисахарид, а если затрагиваются моносахаридные остатки основной цепи, образуется олигосахарид (или олигосахариды). В настоящей работе распад по Смиту использован для избирательного расщепления шести ОПС.

Распад по Смиту ОПС *E. cloacae* O12 с разветвленным гексасахаридным O-звеном привел к отщеплению боковых моносахаридных остатков и образованию модифицированного линейного полисахарида с тетрасахаридным повторяющимся звеном. При этом резервный $\beta1 \rightarrow 6$ -глюкан, экстрагировавшийся из клеток вместе с ОПС, полностью расщепился, что также облегчило последующий анализ полисахарида с помощью спектроскопии ЯМР.

$$\rightarrow$$
3)- α -L-Rhap-(1 \rightarrow 6)- α -D-Glcp-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow

Аналогичным образом с помощью распада по Смиту удалось не только провести избирательное расщепление ОПС *E. coli* O39, но и освободиться от сопутствующего резервного маннана (см. раздел 3.3.8). В ОПС деградации подверглись моносахаридный остаток, находящийся в боковой цепи, и один из остатков в основной цепи. В результате был получен олигосахарид с 1-дезоксиэритритом в качестве агликона, который образовался из окисленного остатка рамнозы.

$$\alpha \text{-D-Gal}p - (1 \rightarrow 3)_{\uparrow}$$

$$\rightarrow 3) - \alpha \text{-D-Glc}p \text{NAc} - (1 \rightarrow 3) - \beta \text{-D-Qui}p 4 \text{N}(R3\text{Hb}) - (1 \rightarrow 2) - \alpha \text{-D-Man}p - (1 \rightarrow 4) - \alpha \text{-L-Rha}p - (1 \rightarrow 4) - \alpha \text{-L-Rha$$

$$\alpha$$
-D-GlcpNAc-(1 \rightarrow 3)- β -D-Quip4N(R3Hb)-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)-1dEry-ol

При распаде по Смиту ОПС *E. cloacae* O11 образовались два олигосахарида, соответствущие фрагментам $A \rightarrow B$ и $C \rightarrow D$ основной цепи. При этом если второй фрагмент имел ожидаемый агликон – глицерин, образовавшийся из 6-замещенного остатка маннозы **D**, то

в первом фрагменте агликон являлся продуктом переацеталирования в расщепившемся 2-замещенном остатке маннозы **B**.

Распад по Смиту разветвленного ОПС *E. coli* О43 привел к линейному полисахариду в результате окисления и последующего отщепления бокового остатка фукозы.

В ОПС *E. coli* O80 расщепились оба боковых остатка фукозы и остаток глюкозы в основной цепи с образованием олигосахарида с глицерином в качестве агликона.

$$\alpha-\text{L-Fuc}p-(1\rightarrow 4) \qquad \alpha-\text{L-Fuc}p-(1\rightarrow 2) \\ \rightarrow 3)-\beta-\text{D-Gal}p\text{NAc-}(1\rightarrow 4)-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 3)-\beta-\text{D-Glc}p\text{NAc-}(1\rightarrow 6)-\beta-\text{D-Glc}p-(1\rightarrow 4)-\beta-\text{D-Glc}p\text{A-}(1\rightarrow 3)-\beta-\text{D-Glc}p\text{NAc-}(1\rightarrow 3)-\text{Gro}$$

В ОПС *E. coli* O169 расщепилось большинство гликозидных связей, и образовался олигосахарид с эритритом в качестве агликона, включающий только те моносахаридные остатки, которые были замещены в ОПС в положение 3.

 β -D-GalpNAc-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow 2)-Ery-ol

3.3.5.3. Сольволиз трифторуксусной кислотой

Избирательное сольволитическое (в том числе гидролитическое) расщепление широко используется в структурном анализе гетерополисахаридов. Метод основан на том, что гликозидные связи различных моносахаридов отличаются по своей устойчивости. В настоящей работе для этой цели предложен новый реагент – безводная трифторуксусная кислота. Сольволиз этим реагентом протекает через образование гликозилтрифторацетатов, это было продемонстрировано в специальном эксперименте с метил-а-Lкак рамнопиранозидом, который при обработке CF₃CO₂H при 60 °C в течение 30 мин на 50% превратился 1-О-трифторацетил-α-L-рамнопиранозу. В применении к полисахаридам достаточно высокая селективность расщепления достигалась при сольволизе при 40-50 °C в течение 4-7 часов. Водная обработка продуктов сольволиза после удаления кислоты в токе воздуха приводила к свободным олигосахаридам или модифицированным полисахаридам, которые выделяли хроматографией на геле TSK HW-40 (S). В некоторых случаях для удобства последующего ЯМР-спектроскопического анализа [128] олигосахариды превращали боргидридным восстановлением в соответствующие олигозилполиолы.

Сольволиз ОПС *E. cloacae* O3, *E. cloacae* O16 и *E. coli* O39 показал, что наиболее легко расщепляются α -рамнопиранозидные связи, что приводит к олигосахаридам с остатком рамнозы на восстанавливающем конце (эти связи выделены жирным шрифтом и подчеркнуты в приведенных ниже структурах ОПС). Примечательно, что β -рамнозидные связи, присутствующие в ОПС *E. cloacae* O3, в этих условиях не расщеплялись.

E. cloacae O3

$$\begin{array}{c} \alpha \text{-L-Rhap-}(\underline{1 \rightarrow 2}) \\ \underline{\rightarrow 6} \text{-} \alpha \text{-D-Glc}p\text{-}(1 \rightarrow 4)\text{-}\beta\text{-D-Glc}p\text{A-}(1 \rightarrow 3)\text{-} \alpha\text{-}\text{D-Glc}p\text{NAc-}(1 \rightarrow 3)\text{-} \alpha\text{-}\text{L-Rhap-}(\underline{1 \rightarrow 3}) \\ \downarrow 50 \ ^{\circ}\text{C}, \ 7 \ ^{\circ}\text{uac} \\ \alpha \text{-} \text{D-Glc}p\text{-}(1 \rightarrow 4)\text{-}\beta\text{-}\text{D-Glc}p\text{A-}(1 \rightarrow 3)\text{-} \alpha\text{-}\text{D-Glc}p\text{NAc-}(1 \rightarrow 3)\text{-} \alpha\text{-}\text{L-Rhap} \end{array}$$

E. coli O39

$$\alpha \text{-D-Gal}p - (1 \rightarrow 3)_{\uparrow}$$

$$\rightarrow 3) - \alpha \text{-D-Glc}p \text{NAc-}(1 \rightarrow 3) - \beta \text{-D-Qui}p 4 \text{N}(R3\text{Hb}) - (1 \rightarrow 2) - \alpha \text{-D-Man}p - (1 \rightarrow 4) - \alpha \text{-L-Rha}p - (1 \rightarrow 4) - \alpha - \alpha \text{-L-R$$

В ОПС *E. coli* Об8 избирательно расщепилась гликозидная связь бокового остатка α-L-Rhap и образовался модифицированный полисахарид с уменьшенным О-звеном.

E. coli O68

$$\begin{bmatrix} (3\leftarrow 1) - \alpha - L - Rhap \\ \hline (3\leftarrow 1) - \alpha - D - Glcp \\ \rightarrow 6) - \alpha - D - Manp - (1\rightarrow 2) - \alpha - D - Manp - (1\rightarrow 2) - \beta - D - Manp - (1\rightarrow 3) - \alpha - D - Glcp NAc - (1\rightarrow 2) - \alpha - D - Manp$$

$$\label{eq:constraint} \begin{split} & [(3\leftarrow 1)-\alpha-D-Glcp] \\ \rightarrow 6)-\alpha-D-Manp-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 2)-\beta-D-Manp-(1\rightarrow 3)-\alpha-D-GlcpNAc-(1\rightarrow 3)-\alpha-D-Glc$$

В ОПС *Е. cloacae* Об, *Е. coli* О43 и *Е. coli* О80, кроме гликозидных связей α -L-Rhap и α -L-Fucp, расщеплялись также связи β -D-GlcpNAc и β -D-GalpNAc, в результате чего были получены олигосахариды с N-ацетилгексозаминами на восстанавливающем конце (кроме ОПС *Е. coli* О43, из которого образовался олигосахарид с остатком фукозы на восстанавливающем конце). Интересно, что ОПС *Е. coli* О80 расщеплялся легче других полисахаридов, и его дисахаридные фрагменты были получены уже за 1 час при 40 °C.

E. cloacae O6

$$\begin{array}{c} \alpha \text{-L-Rhap-}(\underline{1 \rightarrow 3}) \\ \underline{\rightarrow 4} \text{-}\alpha \text{-}D \text{-}Manp-(1 \rightarrow 3) \text{-}\alpha \text{-}D \text{-}Manp-(1 \rightarrow 3) \text{-}\beta \text{-}D \text{-}GlcpNAc-}(\underline{1 \rightarrow} \\ \downarrow 50 \text{ °C}, 4 \text{ чaca} \\ \alpha \text{-}D \text{-}Manp-(1 \rightarrow 3) \text{-}\alpha \text{-}D \text{-}Manp-(1 \rightarrow 3) \text{-}\beta \text{-}D \text{-}GlcpNAc \\ 83 \end{array}$$

E. coli O43 α -L-Fucp-(1 \rightarrow 3) \rightarrow 4)- β -D-Manp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 3)- α -L-Fucp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow \downarrow 50 °C, 4 чaca β -D-Manp-(1 \rightarrow 3)- α -D-Manp-(1 \rightarrow 3)-L-Fucp E. coli O80 α -L-Fucp-(1 \rightarrow 2) \rightarrow 6)- β -D-Glcp-(1 \rightarrow 3)- β -D-GalpNAc-(1 \rightarrow 4)- β -D-GlcpA-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow

 β -D-GlcpA-(1 \rightarrow 3)-D-GlcpNAc + β -D-Glcp-(1 \rightarrow 3)-D-GalpNAc

3.3.6. Спектроскопия ЯМР

ЯМР-спектроскопический анализ [128] для получения структурной информации об ОПС и выделенных олигосахаридных фрагментах ОПС проводился на спектрометре с рабочей частотой для протонов 600 МГц. Спектры ¹³С-ЯМР регистрировали на спектрометре с рабочей частотой для атомов углерода 125 МГц. Анализ включал следующие этапы.

1. Получение информации о регулярности ОПС, размере О-звена, природе моносахаридов и неуглеводных заместителей на основании числа и положения сигналов ¹Н и ¹³С при первичном анализе спектров ЯМР. В случае замаскированной регулярности нестехиометрические О-ацетильные группы удаляли мягкой щелочной обработкой и проводили сравнение спектров ЯМР исходного и О-дезацетилированного полисахаридов.

2. Отнесение сигналов в спектрах ЯМР с использованием двумерных экспериментов, коррелирующих химические сдвиги протонов с протонами (COSY – COrrelation SpectroscopY, TOCSY – TOtal Correlation SpectroscopY) и протонов с атомами углерода (HSQC – Heteronuclear Single-Quantum Coherence).

3. Установление стереохимии, размеров циклов моносахаридов и конфигураций гликозидных связей на основании констант спин-спинового взаимодействия вицинальных протонов ${}^{3}J_{\rm H.H}$ и характерных химических сдвигов 1 H и 13 С ЯМР.

4. Определение положения гликозилирования моносахаридов и мест присоединения О-заместителей (О-ацетильных групп, ацеталя пировиноградной кислоты) по характерным смещениям сигналов ¹³С ЯМР (эффектам замещения).

5. Определение положения N-заместителей аминосахаров по корреляциям NH-

84

протонов с CH-протонами в двумерных экспериментах TOCSY и ROESY при съемке спектров в смеси H₂O/D₂O, что позволяет детектировать NH-протоны.

6. Установление последовательности моносахаридов в О-звене на основании корреляций в двумерном эксперименте ROESY между пространственно сближенными аномерными протонами и протонами при связевых атомах углерода соседних моносахаридов.

7. Независимое установление положений замещения моносахаридных остатков и их последовательности на основании корреляций в двумерном спектре ¹H,¹³C HMBC между аномерными протонами и связевыми атомами углерода (рис. 5) и аномерными атомами углерода и протонами при связевых атомах углерода.

Рис. 5. Фрагмент двумерного спектра 1 H, 13 C HMBC и структура ОПС *E. cloacae* O16. Соответствующие части спектров 1 H и 13 C ЯМР показаны вдоль горизонтальной и вертикальной осей, соответственно.

Пример локализации О-ацетильных групп в ОПС *E. coli* Об8 приведен в разделе 3.3.3.1, а установление структуры ОПС *E. coli* ОЗ9 с использованием одномерной и двумерной спектроскопии ЯМР в качестве примера подробно описано в разделе 3.3.8.

3.3.7. МАСС-СПЕКТРОМЕТРИЯ

Для подтверждения строения олигосахаридов, полученных избирательным расщеплением ОПС, проводили определение их молекулярной массы методом ИЭР МС высокого разрешения. Для олигосахаридов, содержащих кислотные компоненты (гексуроновые и нонулозоновые кислоты), регистрировали отрицательные ионы, для нейтральных олигосахаридов – отрицательные или положительные ионы (например, рис. 6).

Рис. 6. Масс-спектр высокого разрешения с ионизацией электрораспылением и регистрацией катионов и структура олигосахарида из ОПС *E. cloacae* O3. Рассчитанная молекулярная масса M = 823,3321 Да.

3.3.8. ПРИМЕР УСТАНОВЛЕНИЯ СТРУКТУРЫ О-ПОЛИСАХАРИДА E. COLI ОЗ9

В качестве примера использования отработанной, но в то же время гибкой стратегии структурного анализа ОПС, которая применима к сложным гетерополисахаридам, в этом разделе рассмотрено установление строения ОПС *E. coli* O39 [112]. Сложность анализа этого ОПС заключалась в том, что он был выделен в смеси с резервным маннаном, который не удалось отделить ни гель-хроматографией, ни ионообменной хроматографией, так как оба полисахарида имели близкую молекулярную массу и были нейтральными. В связи с этим комплексное структурное исследование с применением химических и физических методов было проведено на смеси полисахаридов.

Липополисахарид был выделен из сухих бактериальных клеток водно-фенольной экстракцией по методу Вестфаля [125]. Мягкая кислотная деградация ЛПС привела к полисахаридному материалу (ПСМ), ЯМР-спектроскопический анализ которого был затруднен из-за присутствия в спектрах сигналов различной интенсивности. Спектр ¹³С-ЯМР (рис. 7) не содержал сигналов при ~21 м. д., что свидетельствовало об отсутствии в ПСМ О-ацетильных групп, и таким образом, структурная гетерогенность не была связана с нестехиометрическим О-ацетилированием. Спектр не содержал также сигналов в области 35-40 м.д., в которой резонируют 3-дезокси-группы (CH₂) нонулозоновых кислот с кислотолабильными гликозидными связями, которые могли частично расщепиться при деградации ЛПС. По данным спектра ³¹Р ЯМР в ОПС отсутствовали фосфатные групп, которые также могли присутствовать в нестехиометрическом количестве.

В то же время в спектре ¹³С-ЯМР были хорошо видны характеристичные сигналы метильных групп (С-6) двух 6-дезоксигексоз в области 18 м. д., гидроксиметильных групп (С-6) трех гексоз при 61-63 м. д. и двух атомов углерода, связанных с азотом, при ~54 и ~57 м. д., принадлежащих аминосахарам, а также остатка 3-гидроксибутановой кислоты (3Hb), включая сигналы групп CH₃, CH₂ и CHOH при ~23, ~46 и ~66 м. д., соответственно (рис. 7).

анализ ПСМ методом ГЖХ Моносахаридный ацетилированных полиолов, полученных после полного кислотного гидролиза ОПС, показал присутствие в его составе Rha, Man, Gal и GlcN в соотношении 1:3:1:0.5. Анализ ГЖХ ацетилированных гликозидов с (S)-2-октанолом [129-131] показал, что Man, Gal и GlcNAc имеют D-конфигурацию, a Rha – L-конфигурацию. Еще один моносахаридный компонент ПСМ – производное 4-амино-4,6дидезокси-D-глюкозы (Qui4N) с остатком 3-гидроксибутановой кислоты на аминогруппе не обнаруживался при анализе из-за известной кислотолабильности моносахаридов этого класса, вследствие которой они полностью разрушаются в стандартных условиях кислотного гидролиза (2 M CF₃CO₂H, 120 °C, 2 часа). Производное D-Qui4N(R3Hb) идентифицировано путем детального анализа двумерных спектров ЯМР (см. ниже), а (R)-конфигурация 3-гидроксибутановой кислоты была установлена методом ГЖХ трифторцетилированного эфира с (S)-2-октанолом, полученного путем гидролиза ОПС с последующим алкоголизом и трифторацетилированием.

В результате анализа ПСМ методом метилирования [132] с помощью ГЖХ-массспектрометрии ацетилированных полиолов в качестве основных компонентов были идентифицированы следующие частично метилированные моносахариды: 2,3,4,6-тетра-*О*-метилгалактоза (из терминального остатка галактозы), 4,6-ди-*О*-метилгексоза (из 2,3-дизамещенного остатка маннозы), 6-дезокси-2,3-ди-*О*-метилрамноза (из 4-замещенного остатка рамнозы) и 2-дезокси-4,6-ди-*О*-метил-2-(*N*-метил)ацетамидоглюкоза (из 3-замещенного остатка N-ацетил-D-глюкозамина) (рис. 8).

Рис. 8. Анализ ГЖХ ацетатов частично метилированных полиолов, полученных из ПСМ.

Таким образом, ОПС имеет разветвленное строение, на невосстанавливающем конце боковой цепи находится остаток галактозы, а в узле разветвления – остаток маннозы. Как и при моносахаридном анализе, производное кислотолабильного моносахарида Qui4N обнаружено не было. Кроме основных компонентов при анализе, были обнаружены минорные частично метилированные моносахариды, полученные из различным образом замещенных гексозных остатков: терминального, 2-, 3- и 6-замещенных, 2,3- и 2,6-дизамещеных. С учетом данных моносахаридного анализа эти соединения очевидно являются производными маннозы, и их идентифицация указывает на присутствие в ПСМ, кроме ОПС, также разветвленного маннана.

Дальнейшее исследование потребовало избирательного расщепления ПСМ с идентификацией образовавшихся олигосахаридных фрагментов. Распад по Смиту привел к олигосахариду (OC1), выделенному хроматографией на геле TSK HW-40 (S). Следующая структура OC1 была установлена с помощью одномерной и двумерной спектроскопии ЯМР:

$$\alpha$$
-D-GlcpNAc-(1 \rightarrow 3)- β -D-Quip4N(R3Hb)-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)-1dEry-ol OC1
A B C

где 1dEry-ol – 1-дезоксиэритрит, образовавшийся из 4-замещенного остатка рамнозы.

Спектр ¹³С-ЯМР ОС1 (рис. 9) содержал сигналы трех аномерных атомов углерода, двух атомов углерода, связанных с азотом (С-2 остатка GlcN и С-4 остатка Qui4N), трех *C*H₃-C

групп (C-6 остатка Qui4N, C-1 остатка 1dEry-ol и C-4 остатка 3Hb), одной метиленовой группы (C-2 остатка 3Hb), трех гидроксиметильных групп (C-6 остатков GlcN и Man, C-4 остатка 1dEry-ol), 13 других атомов углерода, связанных с кислородом и одной N-ацетильной группы.

Рис. 9. Спектр ¹³С-ЯМР олигосахарида (ОС1), полученного из ПСМ с помощью распада по Смиту.

Сигналы ¹Н и ¹³С в спектрах ЯМР ОС1 были отнесены к определенным протонам и атомам углерода с использованием двумерных экспериментов COSY, TOCSY, ROESY и HSQC, коррелирующих химические сдвиги ¹H/¹H и ¹H/¹³С (Приложение, таблица 12). Анализ констант ³ $J_{\rm H.H}$ [133] и сравнение химических сдвигов ¹Н и ¹³С ЯМР ОС1 и соответствующих моносахаридов [134, 135] позволили идентифицировать спиновые системы остатков Man, GlcN и Qui4N, обозначенных как **A-C** соответственно, а также 3Hb и 1dEry-ol.

Относительно большая величина константы спин-спиного взаимодействия $J_{1,2} \sim 7$ Гц и небольшая величина $J_{1,2} < 4$ Гц указывали на то, что остаток Qui4N находится в β -пиранозной форме, а остаток GlcN – в α -пиранозной форме, соответственно. Химический сдвиг 74,1 м.д. атома C-5 остатка Man свидетельствовал об его α -конфигурации (C-5 аномерных форм маннозы α -Manp и β -Manp резонирует при 73.7 и 77.4 м.д., соответственно [134]).

Двумерный эксперимент ROESY, позволяющий наблюдать взаимодействия между пространственно сближенными протонами, выявил следующие корреляции между аномерными протонами и протонами при связевых атомах углерода соседних моносахаридов: GlcN H-1/Qui4N H-3, Qui4N H-1/Man H-2 и Man H-1/1dEry-ol H-3. Эти данные определяли положения замещения и последовательность моносахаридов в OC1.

Анализ спектра ¹³С ЯМР ОС1 с использованием известных закономерностей в эффектах гликозилирования [136] позволил установить абсолютную конфигурацию остатка Qui4N, что не удалось сделать при моносахаридном анализе из-за высокой кислотолабильности этого моносахарида. Так, величина слабопольного смещения сигнала С-1 составила 6,1 м. д., что свидетельствовало об одинаковой абсолютной конфигурации моносахаридов в дисахаридном фрагменте β -Quip4N-(1→2)- α -D-Manp (по лит. данным это смещение составляет ~6 м. д. для одинаковой конфигурации и >8 м. д. для различной

конфигурации моносахаридных компонентов таких дисахаридов [134]).

Для локализации N-ацильных групп спектры ЯМР снимали не в D₂O, а в смеси H_2O/D_2O (9:1), что позволило детектировать не только CH-, но и NH-протоны и напрямую выявить корреляции между протонами N-ацильного заместителя и несущего его аминосахара. В спектре ¹H-ЯМР OC1 присутствовали сигналы двух NH-протонов при 7,93 и 8,17 м.д., которые с помощью двумерного эксперимента ¹H,¹H TOCSY были отнесены к NH-2 остатка GlcN и NH-4 остатка Qui4N, соответственно. Двумерный эксперимент ROESY (рис. 10) показал корреляции протона NH-2 с протонами CH₃ ацетильной группы (сигнал при 2,07 м.д.) и протона NH-4 с протонами CH₂ (H-2) остатка 3Hb (сигнал при 2,36 м.д.). Таким образом, N-(3-гидроксибутаноильная) группа находится на остатке Qui4N, а N-ацетильная группа локализована на остатке GlcN.

Рис. 10. Двумерный спектр ¹H,¹H ROESY и структура OC1 из ОПС *E. coli* O39. Соответствующие части спектра ¹H ЯМР показаны вдоль осей. Наблюдаются корреляции NH-протонов моносахаридов с CH-протонами соответствующих N-ацильных заместителей: NH-2 остатка GlcN с N-ацетильной группой (Ac) и NH-4 остатка Qui4N с H-2 3-гидроксибутаноильной группы (3Hb).

Структура OC1 была подтверждена методом ИЭР МС в режиме регистрации отрицательных ионов. В спектре присутствовал пик молекулярного иона [М-H]⁻ при *m/z* 701,2981 Да (рассчитанная молекулярная масса OC1 702,3059 Да).

Для установления места присоединения бокового остатка галактозы было проведено избирательное сольволитическое расщепление ПСМ трифторуксусной кислотой, которое, как ожидалось, не должно было затронуть галактозидную связь. В выбранных условиях сольволиза (40 °C, 5 часов) расщепилась только одна рамнопиранозидная связь, и был выделен пентасахарид ОС2 с остатком рамнозы на восстанавливающем конце, который соответствовал О-звену ОПС.

Полное отнесение сигналов в спектрах ¹Н и ¹³С ЯМР ОС2 (Приложение, таблица 12) было проведено, как описано для ОС1, с использованием гомоядерной и гетероядерной двумерной спектроскопии ЯМР (на рис. 11 приведен двумерный спектр ¹H,¹³C HSQC OC2). В дополнение к спиновым системам моносахаридов, присутствующих в ОС1, в ОС2 были идентифицированы спиновые системы остатков галактозы (**E**) и рамнозы (**D**), находящейся на восстанавливающем конце в форме α - и β -аномеров (**D** α и **D** β).

Рис. 11. Фрагменты двумерного спектра ¹H,¹³C HSQC и структура OC2 из OПC *E. coli* O39. Соответствующие части спектров ¹H и ¹³C ЯМР показаны вдоль горизонтальной и вертикальной осей, соответственно.

Присоединение остатка галактозы в ОС2 к остатку маннозы в положение 3 было установлено в двумерном эксперименте ROESY и подтверждено экспериментом ¹H,¹³C HMBC, который выявил корреляции между аномерным протоном H-1 остатка галактозы (**E**) и связевым атомом углерода C-3 остатка маннозы (C). В этом же эксперименте была подтверждена структура основной цепи ОС2, которая согласуется со структурой ОС1.

$$E \quad \alpha-D-Galp-(1\rightarrow 3)$$

$$\alpha-D-GlcpNAc-(1\rightarrow 3)-\beta-D-Quip4N(R3Hb)-(1\rightarrow 2)-\alpha-D-Manp-(1\rightarrow 4)-L-Rha \qquad OC2$$

$$A \qquad B \qquad C \qquad D$$

Заключительным этапом структурного анализа было определение типа связи между О-звеньями ОПС, представленными ОС2. Сигналы ¹Н и ¹³С ЯМР моносахаридных компонентов ОПС в спектрах ЯМР ПСМ были отнесены с использованием данных спектров ЯМР ОС2 (Приложение, таблица 12). Сравнение двумерных спектров ¹H,¹³C HSQC выявило смещение в слабое поле сигнала C-3 остатка GlcNAc от 72,3 м. д. в спектре ОС2 к 80,9 м. д. в спектре ОПС. Это слабопольное смещение отражает α -эффект гликозилирования и указывает на замещение остатка GlcNAc в положение 3. Положение сигнала C-5 остатка рамнозы при 69,0 м.д. свидетельствовало об α -конфигураци этого моносахарида (C-5 аномерных форм рамнозы α -Rhap и β -Rhap резонирует при 69,5 и 73,2 м. д., соответственно [134]).

Все данные, полученные с помощью избирательного расщепления и ЯМРспектроскопического анализа ОПС, согласовывались с результатами анализа методом метилирования. Таким образом, ОПС *E. coli* ОЗ9 имеет следующую структуру:

 $\begin{array}{c} \alpha \text{-D-Gal}p\text{-}(1 \rightarrow 3) \\ \neg \end{array} \\ \rightarrow 3)\text{-}\alpha\text{-}D\text{-}GlcpNAc\text{-}(1 \rightarrow 3)\text{-}\beta\text{-}D\text{-}Quip4N(R3Hb)\text{-}(1 \rightarrow 2)\text{-}\alpha\text{-}D\text{-}Manp\text{-}(1 \rightarrow 4)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1 \rightarrow 3)\text{-}\beta\text{-}D\text{-}Quip4N(R3Hb)\text{-}(1 \rightarrow 2)\text{-}\alpha\text{-}D\text{-}Manp\text{-}(1 \rightarrow 4)\text{-}\alpha\text{-}D\text{-}Manp\text{-}(1 \rightarrow 4)\text{-}\alpha\text{-}D\text{-}Manp\text{-}$

Эта структура полностью соответствует также составу генного кластера биосинтеза О-антигена *E. coli* ОЗ9 (раздел 3.2.2), и, таким образом, основной полимер в ПСМ является О-специфическим полисахаридом этой бактерии. Структура минорного маннана, сопутствующего ОПС, осталась невыясненной.

3.4. Получение олигосахаридных фрагментов ОПС Shigella flexneri

В настоящей работе показана возможность использования CF₃CO₂H также для избирательного сольволитического расщепления ОПС шигелл Флекснера – возбудителей шигеллеза (бактериальной дизентерии) с целью получения их олигосахаридных фрагментов [137]. Эти олигосахариды после функционализации восстанавливающего конца и коньюгации с белком или другим носителем могут быть использованы для получения

антидизентерийных конъюгатных вакцин. Структуры ОПС всех типов шигелл Флекснера известны [15, 138]. Нами было проведено расщепление ОПС S. flexneri типов Y, 2a, 3a и 6, из которых три последние являются наиболее широко распространенными возбудителями шигеллеза.

ОПС типов Y, 2a и 3a имеют одинаковую основную цепь, построенную из остатков α-L-Rhap и β-D-GlcpNAc. ОПС типа У линейный, а ОПС типов 2a и 3a модифицированы α-D-глюкозилированием и O-ацетилированием. Линейный ОПС S. flexneri типа 6 построен из остатков α -L-Rhap, β -D-GalpNAc и β -D-GalpA.

ОПС были подвергнуты сольволизу CF₃CO₂H в течение 1 часа при 40 °C, продукты были разделены с помощью хроматографии на геле TSK HW-40 (S) и изучены методами спектроскопии ¹Н и ¹³С ЯМР и ИЭР МС в режиме регистрации отрицательных ионов [139]. Исследование продуктов, полученных из ОПС S. flexneri типа 2a, было затруднено нестехиометрическим О-ацетилированием, и они были О-дезацетилированы перед анализом.

В кислом ОПС S. flexneri типа 6 наименее стабильной оказалась связь β-D-GalpNAc-(1→2)-L-Rhap, которая избирательно (~80%) расщепилась с образованием приблизительно равных количеств тетрасахарида и октасахарида, соответствующих мономеру и димеру О-звена, а также небольшого количества (~15%) тримера.

S. flexneri 6

$$\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 40 °C, 1 час
$$\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-D-GalNAc \quad (мономер) + \alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (димер) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (димер) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (димер) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (димер) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (димер) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpNAc-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-\beta-D-GalpNAc-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 3)-D-GalNAc \quad (dumep) + 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 4)-\beta-D-GalpA-(1\rightarrow 4)-\beta-D-GalpA$$$$

 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 2)- α -L-Rhap-(1 \rightarrow 4)- β -D-GalpA-(1 \rightarrow 3)-D-GalNAc

Напротив, в нейтральных ОПС *S. flexneri* типов Y и 2а гликозидная связь
$$\beta$$
-D-GlcpNAc оказалась более устойчивой, чем α -рамнозидная, и расщеплению подверглась связь α -L-Rhap-(1 \rightarrow 3)-D-GlcpNAc с селективностью 75-80%. В результате были получены три фракции: мономер, димер и тример О-звена (тетрасахарид, октасахарид и додекасахарид в соотношении ~1:1:2 из типа Y, пентасахарид, декасахарид и пентадекасахарид в соотношении ~3:1,5:1 из типа 2а, соответственно). То что основным продуктом из ОПС типа 2а оказался мономер, а из ОПС типа Y – тример, очевидно связано с глюкозилированием 3-замещенного остатка Rha с наиболее лабильной гликозилной связью в ОПС типа 2а.

$$\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 40 °C, 1 час \beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-L-Rha (мономер) + \beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3)-\beta-D-GlcpNAc-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 2)-\alpha-L-Rhap-(1\rightarrow 3)-\alpha-L-Rhap-(1\rightarrow 3$$

S. flexneri 2a

ОПС *S. flexneri* типа За оказался более устойчивым к сольволизу. Так, через З часа образовалась смесь высших олигосахаридов, наименьшим из которых был тример О-звена. Смесь мономера и димера в соотношении ~1:З удалось получить только при более продолжительной обработке (15 часов при 40 °C), однако селективность была низкой (~30%), и произошло частичное дезацетилирование (~30%). Более высокая стабильность ОПС типа За, по-видимому, объясняется О-ацетилированием остатка Rha в положение 2, стабилизирующим гликозидную связь этого моносахарида.

$$\begin{array}{c} \alpha \text{-D-Glc}p\text{-}(1\rightarrow3) & \text{AcO-2} \\ \rightarrow 3)\text{-}\beta\text{-}D\text{-}Glcp\text{-}NAc\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3) \\ & \downarrow 40 \text{ °C}, 15 \text{ чac} \\ \alpha \text{-}D\text{-}Glcp\text{-}(1\rightarrow3) & \text{AcO-2} \\ \beta \text{-}D\text{-}Glcp\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3)\text{-}L\text{-}Rha \quad (\text{мономер}) \\ & + \\ \alpha \text{-}D\text{-}Glcp\text{-}(1\rightarrow3) & \text{AcO-2} \\ \beta \text{-}D\text{-}Glcp\text{-}NAc\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3) \\ & \alpha \text{-}D\text{-}Glcp\text{-}(1\rightarrow3) & \text{AcO-2} \\ & \beta \text{-}D\text{-}Glcp\text{-}NAc\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3) \\ & \alpha \text{-}D\text{-}Glcp\text{-}(1\rightarrow3) & \text{AcO-2} \\ & 3)\text{-}\beta\text{-}D\text{-}Glcp\text{-}NAc\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow2)\text{-}\alpha\text{-}L\text{-}Rhap\text{-}(1\rightarrow3)\text{-}L\text{-}Rhap \end{array} \right\}$$

Таким образом, сольволиз CF_3CO_2H является удобным высокоселективным способом получения димеров и тримеров О-звеньев из ОПС *S. flexneri* типов Y, 2a и 6 или тримера и более крупных олигосахаридов из типа 3a. При необходимости этим способом в более мягких условиях (20 или 30 °C) могут быть получены олигосахариды и больших размеров. Существенным является то, что сольволиз в течение короткого времени не затрагивает О-ацетильные группы, с которыми часто связаны специфические иммунодетерминанты О-антигенов.

3.5. Заключение

Настоящая работа является частью структурно-генетического исследования О-специфических полисахаридов (О-антигенов) двух видов энтеробактерий: *Enterobacter cloacae* и *Escherichia coli*, проводимого совместно химиками ИОХ РАН и генетиками Нанькайского университета (Тяньдзинь, КНР). Его основная цель – создание химической и генетической основы для классификации этих микроорганизмов. В работе установлено строение ОПС представителей ранее неизученных О-серогрупп, включая 12 штаммов *E. cloacae* и 7 штаммов *E. coli*, и проведена аннотация генов в генных кластерах биосинтеза их О-антигенов.

Полученные данные подтвердили обоснованность включения большинства исследованных штаммов в отдельные О-серогруппы, основанного на результатах серологического изучения О-антигенов. В то же время, они показали, что положение в классификационной схеме штаммов ряда О-серогрупп *E. cloacae* и *E. coli* должно быть пересмотрено на основании выявленного сходства структур ОПС в сочетании с данными

нового серологического исследования, проведенного китайскими партнерами. Это а) *E. cloacae* O1 и O14, ОПС которых отличаются наличием бокового остатка галактозы и положениями замещений двух моносахаридных остатков в основной цепи, б) *E. cloacae* O10 и O11 с ОПС, отличающимися только положением бокового остатка глюкозы, в) *E. cloacae* O12 и O16, ОПС которых отличаются только наличием или отсутствием бокового остатка глюкозы, соответственно, и г) *E. coli* O46 и O134 с единственным отличием между ОПС, заключающимся в нестехиометрическом O-ацетилировании L-треонина и остатка GalNAc у *E. coli* O46. Каждую их этих четырех пар бактерий предложено объединить в одну O-серогруппу в качестве подгрупп.

Проведенное структурное исследование ОПС позволило определить функции генов О-антигенов предсказанными биосинтеза путем сравнения с аминокислотными последовательностями, представленными В доступной базе данных GenBank, с использованием онлайн программы BLAST и с учетом полученных данных о строении ОПС. Анализ, проведенный совместно с китайскими партнерами, выявил присутствие в кластерах всех генов, необходимых для биосинтеза изученных ОПС, в том числе генов, кодирующих ферменты путей синтеза специфических компонентов ОПС (нонулозоновых кислот, 6-дезоксигексоз, их ациламинопроизводных и других) и необходимого числа трансфераз для сборки О-звеньев и присоединения неуглеводных заместителей. Полученные данные могут быть использованы для разработки методов молекулярного типирования клинических и природных изолятов энтеробактерий и экспресс-диагностики вызываемых ими инфекций с использованием в качестве мишеней специфических генов биосинтеза О-антигенов.

Важную роль в структурном анализе ОПС в данном исследовании играла одномерная и двумерная спектроскопия ЯМР на протонах и ядрах ¹³С. Однако в некоторых случаях бездеструктивный анализ этим методом осложнялся недостаточной разрешенностью спектров высокомолекулярных полисахаридов, множественными совпадениями сигналов или наличием в образце дополнительного полисахарида, не являющегося О-антигеном, что не позволяло надежно установить строение ОПС. Для преодоления этих трудностей избирательное расщепление ОПС последующей илентификацией проводилось с образующихся олигосахаридных фрагментов. Их спектры ЯМР были существенно лучше разрешены, чем спектры ОПС, и для их анализа могла быть использована массспектрометрия.

Для избирательного расщепления ОПС в настоящей работе применялся как традиционный метод – распад по Смиту, так и предложенный нами сольволиз трифторуксусной кислотой. Как и другие сольволитические реагенты, ранее включенные в

арсенал методов структурного анализа полисахаридов в лаборатории химии углеводов ИОХ РАН, – безводный фтористый водород и трифторметансульфокислота, трифторуксусная кислота обладает высокой селективностью, не вызывает заметной деструкции сахаров и не затрагивает амидные связи, что делает ее пригодной для выделения олигосахаридов, содержащих N-ацилированные аминосахара и амиды уроновых кислот. В то же время она лишена недостатков ранее использовавшихся реагентов, таких как их чрезвычайная ядовитость, высокая стоимость CF₃SO₃H, высокая летучесть (т. кип. ~20 °C) и трудность работы с HF, требующей специальных герметичных тефлоновых реакторов. За исключением случаев присутствия нонулозоновых кислот с кислотолабильными гликозидными связями, сольволиз CF₃CO₂H обладает большей селективностью, чем частичный кислотный гидролиз.

Применение сольволиза к различным ОПС выявило определенные закономерности в устойчивости гликозидных связей различных моносахаридов к расщеплению. Наиболее лабильными оказались связи 6-дезокси-α-гексопираноз и 2-ацетамидо-2,6-дидезоксиβ-гексопираноз, в то время как связи гексопираноз, гексуроновых кислот, 2-ацетамидо-2дезокси- и 2-ацетамидо-2,6-дидезокси-α-гексопираноз в выбранных условиях реакции стабильны. Таким образом, CF₃CO₂H является значительно более мягким реагентом, чем HF и CF₃SO₃H, которые расщепляют также α- и β-гексопиранозидные и 2-ацетамидо-2,6-дидезокси-α-гексопиранозидные связи, а в некоторых случаях также связи гексуроновых кислот и 2-ацетамидо-2-дезокси-α-гексопираноз даже при более низких температурах. Сольволиз CF₃CO₂H, возможно в сочетании с сольволизом CF₃SO₃H, дает широкие возможности для избирательного расщепления гликозидных связей и может быть использован в структурном анализе различных сложных природных углеводов.

Кроме целей структурного анализа полисахаридов, сольволиз CF_3CO_2H был использован для получения олигосахаридных фрагментов (мономеров и олигомеров O-звеньев) ОПС энтеробактерий *Shigella flexneri*. При этом выяснилось, что направление и легкость протекания реакции могут зависеть от химического окружения, в частности от присутствия или отсутствия гексуроновой кислоты в составе ОПС и от наличия боковых гликозильных заместителей и O-ацетильных групп. Бактерии *S. flexneri* являются возбудителями шигеллеза (бациллярной дизентерии), и полученные олигосахариды могут быть использованы для получения конъюгатных вакцин, необходимых для эффективной профилактики этого заболевания. Аналогичный подход может быть использован для выделения олигосахаридных фрагментов полисахаридных антигенов других патогенных бактерий в качестве потенциальных компонентов средств вакцинопрофилактики.

97

4. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4.1. Бактериальные штаммы и выращивание

Штаммы Enterobacter cloacae и Escherichia coli были получены из следующих сертифицированных коллекций микроорганизмов: Института медицинских и ветеринарных наук (Аделаида, Австралия), Государственного серологического института (Копенгаген, Дания), Коллекции культур Университета Гетеборга (Швеция), Центра биологических коллекций Института микробиологии АН КНР и Американской коллекции типированных культур. В этих коллекциях содержится полный набор всех известных к настоящему времени типовых штаммов Escherichia и Enterobacter.

Бактерии выращивали в лаборатории функциональной геномики микробов Колледжа ТЕДА Нанкайского университета (г. Тянь-дзинь, КНР). Выращивание проводилось на жидкой среде Лурия-Бертани (8 л) в 10-литровом ферментере Biostat C-10 («В. Braun Biotech International», Германия) при постоянной аэрации, температуре 37 °C и pH 7,0. Бактериальную массу отделяли центрифугированием в конце логарифмической фазы роста, промывали водой и высушивали.

4.2. Выделение липополисахаридов и О-полисахаридов

Липополисахариды выделяли из сухих бактериальных клеток экстракцией горячим водным фенолом по модифицированному методу Вестфаля [125]. К сухим измельченным бактериальным клеткам добавляли 45%-ный (по весу) водный фенол в соотношении 100 мл раствора на 6 г клеток, смесь интенсивно перемешивали в течение 30 минут при 70 °C. После охлаждения смеси фенол удаляли диализом против дистиллированной воды в течение трех суток с ежесуточной заменой воды, клетки отделяли центрифугированием, супернатант концентрировали до объема 100 мл, нуклеиновые кислоты и белки осаждали добавлением 50%-ного водного раствора трихлоруксусной кислоты до pH 2. Осадок отделяли центрифунгированием, супернатант диализовали против дистиллированной воды в течение двух суток, лиофилизовали и получали очищенные препараты ЛПС с выходами от 5 до 28%.

Кислотную деградацию ЛПС проводили 2% уксусной кислотой при 100 °С до выпадения осадка липида (1,5-3 часа), который отделяли центрифугированием (13000 g, 20 мин). Супернатант фракционировали хроматографией на колонке (56 × 2,6 см) с гелем Sephadex G-50 Superfine («Amersham Biosciences», Швеция) в 0,05 М пиридиний-ацетатном буфере (pH 4,5), контролируя элюцию с помощью дифференциального рефрактометра (Кпаuer, Германия). Главным углеводным продуктом кислотной деградации ЛПС из большинства штаммов являлись ОПС, элюирующиеся непосредственно вслед за холостым

объемом колонки. В случае присутствия нонулозоновых кислот с кислотолабильными гликозидными связями (ЛПС *E. cloacae* O1, O14 и O19) были получены олигосахариды, соответствующие О-звеньям ОПС.

Для структурного исследования кислотолабильных ОПС было проведено О-дезацилирование ЛПС в мягких щелочных условиях обработкой 12% NH₄OH при 37 °C в течение 16 часов. Осадок отделяли центрифугированием (13000×g, 20 мин) и О-дезацилированные ЛПС выделяли хроматографией на геле Sephadex G-50 Superfine. Аналогично проводили О-дезацилирование ОПС, содержащих О-ацетильные группы, модифицированные полисахариды выделяли хроматографией на геле TSK HW-40 (S) («Merck», Германия). Выходы ОПС и олигосахаридов приведены в таблице 17.

Таблица 17. Выходы ОПС или (где указано) олигосахаридов, полученных из ЛПС

Микроорганизм	% (от веса ЛПС)
E. cloacae O1 (олигосахарид)	20
E. cloacae O2	6
E. cloacae O3	14,4
<i>E. cloacae</i> O6	25
E. cloacae O7	12,7
E. cloacae O11	19,2
E. cloacae O12	12,6
<i>E. cloacae</i> O13	24
<i>E. cloacae</i> O14 (олигосахарид)	6,5
<i>E. cloacae</i> O15	17
E. cloacae O16	7,5
<i>E. cloacae</i> O19 (олигосахарид)	25
E. coli O39	18
E. coli O43	41
E. coli O46	39
E. coli O68	39
E. coli O80	52
E. coli O134	30
E. coli O169	32

4.3. Определение состава полисахаридов

4.3.1. Анализ моносахаридов методом ГЖХ в виде ацетатов полиолов

Аминосахара и нейтральные сахара определяли в виде ацетилированных полиолов [131] методом ГЖХ на хроматографе Maestro (Agilent 7820) («Интерлаб», Россия) с колонкой HP-5 (0.32 мм × 30 м) в градиенте температуры от 160 °C (1 мин) до 290 °C (7 °C/мин). ОПС (0,5 мг) гидролизовали 2 М трифторуксусной кислотой (120 °C, 2 часа), гидролизат восстанавливали боргидридом натрия (0,5 мл, 10 мг/мл) в 1 М NH₄OH (20 °C, 16 часов), затем подкисляли конц. уксусной кислотой (30 мкл), прибавляли 10%-ную АсOH в метаноле (0,5 мл) и растворитель удаляли в токе воздуха. Для полного удаления борной кислоты трижды добавляли метанол (0,5 мл) с последующим удалением растворителя в токе воздуха. Полученные полиолы ацетилировали смесью уксусный ангидрид–пиридин (1:1, 120 °C, 40 мин), разбавляли смесь водой, ацетилированные производные выделяли экстракцией этилацетатом (1:1), органический слой отделяли и концентрировали до объема 0,1 мл. Ацетаты полиолов идентифицировали с использованием производных, полученных из соответствующих заведомых моносахаридов.

4.3.2. Определение абсолютных конфигураций компонентов

Нейтральные сахара анализировали методом ГЖХ в виде ацетилированных гликозидов с (*S*)-2-октанолом [131] в градиенте температуры от 160 °С (1 мин) до 290 °С (7°С/мин). Полисахарид (0,5 мг) гидролизовали 2 М СF₃СООН (120 °С, 2 часа), кислоту удаляли током воздуха, к остатку добавляли (*S*)-2-октанол (0,1 мл) и CF₃CO₂H (15 μ л), нагревали (80 °С, 16 часов), избыток реагента удаляли в токе воздуха, полученные гликозиды ацетилировали смесью уксусный ангидрид–пиридин (1:1, 100 °С, 1 час) и анализировали ГЖХ, как описано выше.

Уроновые кислоты анализировали методом ГЖХ в виде ацетилированных (R)-2-октиловых эфиров (R)-2-октилгликозидов в градиенте температуры от 160 °С (1 мин) до 290 °С (7 °С/мин). Гиролизат полисахарида (0,5 мг) обрабатывали (R)-2-октанолом в присутствии CF₃CO₂H, как описано выше при получении (S)-2-октилгликозидов, ацетилировали и анализировали методом ГЖХ.

Аминосахара анализировали методом ГЖХ в виде N,O-ацетилированных (*R*)-2-октилгликозидов, которые получали как описано выше после N-ацетилирования продуктов гидролиза полисахарида в насыщенном водном растворе NaHCO₃ (0,2 мл) при

0 °С добавлением уксусного ангидрида тремя порциями по 10 мкл с интервалом 10 мин с последующей деионизацией катионитом КУ-2 (H⁺-форма) и упариванием.

L-Треонин анализировали методом ГЖХ в виде ацетилированного эфира с (*S*)-2октанолом в градиенте температуры от 100°С (1 мин) до 250 °С (7 °С/мин). Производное получали как описано для нейтральных сахаров после N-ацетилирования продуктов гидролиза, как описано для аминосахаров.

(**R**)-3-Гидроксибутановую кислоту идентифицировали методом ГЖХ в виде трифторацетилированных (*S*)-2-октиловых эфиров в градиенте температуры от 130 °C (1 мин) до 250 °C (3 °C/мин). Трифторацетилирование проводили действием (CF₃CO)₂ (0,2 мл, 4 °C, 16 часов).

4.4. МЕТИЛИРОВАНИЕ

Получение натрий-метилсульфинилметанида (CH₃SOCH₂Na). NaH из 50%-ной масляной суспензии (1 г) промывали пентаном (2×15 мл) в герметичном стеклянном сосуде, снабженном двумя иглами: одна для добавления растворителя и пропускания азота, а другая для удаления выделяющегося в ходе реакции водорода. Затем NaH высушивали в токе азота при перемешивании на магнитной мешалке, добавляли диметилсульфоксид (10 мл) и продолжали перемешивание при нагревании (50-55 °C) до прекращения выделения водорода. Полученный раствор натрий-метилсульфинилметанида хранили при -10 °C в запаянных контейнерах по 2 мл в каждом.

(0.5)Метилирование полисахаридов. Раствор полисахарида мг) В диметилсульфоксиде (0,5 мл) помещали в герметичный стеклянный контейнер с пробкой, снабженной двумя иглами, в течение 5 мин пропускали через него сухой азот. Затем к раствору добавляли шприцом натрий-метилсульфинилметанид (0,25 мл), перемешивали 2 часа при 20 °C. Реакционную смесь охлаждали до 0 °C, добавляли CH₃I (0,25 мл), избыток которого через 2 часа удаляли током сухого азота. Реакционную смесь пропускали через патрон SEP-PAK (Waters), патрон промывали 20 объемами воды и элюировали метилированный полисахарид последовательно 2 объемами этанола и 2 объемами ацетонитрила. После удаления растворителей в токе воздуха полученный метилированный полисахарид гидролизовали 2 М CF₃CO₂H в течение 2 часов при 120 °C. Метилированные моносахариды восстанавливали и ацетилировали, как описано при получении полностью ацетилированных полиолов (раздел 4.3.1), и анализировали методом ГЖХ/массспектрометрии на приборе Hewlett-Packard HP 5989А с капиллярной колонкой (30 м) с неподвижной фазой HP-5ms в градиенте температуры от 150 °C (3 мин) до 290 °C (5 °C/мин).

101

4.5. Избирательное расщепление

4.5.1. Сольволиз трифторуксусной кислотой

Сольволиз ОПС (10-20 мг) трифторуксусной кислотой (0,5-1 мл) проводили в стеклянном герметичном контейнере при нагревании до необходимой температуры. Кислоту удаляли в токе воздуха, остаток растворяли в воде и хроматографировали на геле TSK HW-40 (S) в 1% уксусной кислоте. Условия сольволиза и выходы продуктов приведены в таблице 18.

Полисахарид	Температура (°С)	Время (час)	Продукты	Выход (%)
E. cloacae O16	50	7	тетрасахарид	24
E. cloacae O3	50	4	пентасахарид	20
E. cloacae O6	50	4	трисахарид	16
E. coli O39	40	5	пентасахарид	20
E. coli O43	50	4	трисахарид	20
E. coli O68	50	16	гексахарид	60
E. coli O80	50	6	два дисахарида	38
S. flexneri 2a	40	1	пентасахарид	14
			декасахарид	26
S. flexneri 3a	40	15	пентасахарид	4
			декасахарид	7
S. flexneri Y	40	1	тетрасахарид	15
			октасахарид	21
S. flexneri 6	40	1	тетрасахарид	27
			октасахарид	29

Таблица 18. Условия сольволиза ОПС безводной CF₃CO₂H и выход продуктов

4.5.2. РАСПАД ПО СМИТУ

Раствор ОПС (10 мг) в водном 0,1 М NaIO₄ (0,5 мл) выдерживали 48 часов в темноте при 20 °C, добавляли 20 мг NaBH₄, через 16 часов подкисляли уксусной кислотой, диализовали 24 часа против дистиллированной воды, модифицированный полисахарид гидролизовали 2%-ной уксусной кислотой (100 °C, 2 часа) и выделяли продукты хроматографией на колонке (2,8 × 90 см) с гелем TSK HW-40 (S) в 1%-ной уксусной кислоте.

4.6. МАСС-СПЕКТРОМЕТРИЯ С ИОНИЗАЦИЕЙ ЭЛЕКТРОРАСПЫЛЕНИЕМ

Анализ ИЭР МС проводили на масс-спектрометре высокого разрешения micrOTOF II (Bruker Daltonics). Диапазон сканирования масс *m/z* 50–3000, калибровка использовалась как внешняя, так и внутренняя (Electrospray Calibrant Solution, Fluka). Образцы (~50 нг/мкл) растворяли в смеси воды и ацетонитрила (1:1 по объему) и вводили шприцем в распылитель со скоростью потока 3 мкл/мин, в качестве газа-распылителя использовали азот (4 л/мин). Разность потенциалов на капиллярном входе составляла 4500 В или –3000 В при регистрации анионов и катионов, соответственно, выходная разность потенциалов 150 В, температура интерфейса 180 °C.

4.7. Спектроскопия ЯМР

Образцы лиофилизовали двукратно из 99,9%-ной D₂O для замены подвижных протонов на атомы дейтерия, затем растворяли в 99,96%-ной D₂O. Для микроколичеств образцов использовали ампулы Shigemi. Спектры снимали на спектрометрах Bruker DRX-500 и Bruker Avance II 600, сбор и обработку данных проводили с помощью программы Bruker TopSpin 2.1. В качестве внутреннего стандарта использовали натрий-3-триметилсилил-пропаноат-2,2,3,3-d₄ ($\delta_{\rm H}$ 0 м. д., $\delta_{\rm C}$ ⁻¹,6 м. д.), температуру (25-50 °C) выбирали с учетом положения остаточного сигнала растворителя (HDO). В экспериментах с детектированием сигналов протонов остаточный сигнал HDO подавляли предоблучением в течение 1 секунды. Для детектирования NH-протонов съемку спектров ЯМР проводили в смеси H₂O/D₂O (9:1 по объему).

В экспериментах по двумерной спектроскопии ЯМР использовали следующие параметры:

COSY, разрешение 512 × 1024, заполнение нулями до 1024 по оси t1, 8 прохождений на одну строку, спектральное окно 3501 Hz, релаксационная задержка 1 сек.

TOCSY, разрешение 512 × 1024, заполнение нулями до 1024 по оси t1, 16 прохождений на одну строку, длительность MLEV17 спин-лока 60 мсек, релаксационная задержка 1 сек.

ROESY, разрешение 512 × 1024, заполнение нулями до 1024 по оси t1, 16 прохождений на одну строку, спектральное окно 3501 Hz, время смешивания 200 мсек, релаксационная задержка 1 сек.

 1 H, 13 C HMQC, разрешение 256 × 1024, заполнение нулями до 512 по оси t1, 40 прохождений на одну строку, спектральное окно 3501 Hz по оси t1 и 11875 Hz по оси t2, релаксационная задержка 1 сек.

¹H,¹³C HMBC, разрешение 512 \times 1024, заполнение нулями до 1024 по оси t1, 80 прохождений на одну строку, спектральное окно 1873,0 Hz по оси t1 и 17530 Hz по оси t2, релаксационная задержка 1,5 сек, задержка для развития многосвязевых корреляций 60 мсек (оптимизирована для КССВ 8 Гц).

Аподизацию осуществляли по обеим осям t1 и t2 с помощью синусоидальной функции в эксперименте COSY или квадратичной синусоидальной функции в остальных экспериментах.

выводы

1. Установлены новые структуры О-специфических полисахаридов важных в медицинском отношении бактерий: 12 О-серогрупп энтеробактера клоаки (*Enterobacter cloacae*) и 7 О-серогрупп кишечной палочки (*Escherichia coli*). Полученные данные вносят существенный вклад в создание химической основы для классификации штаммов этих энтеробактерий, необходимой для серодиагностики и эпидемиологического мониторинга.

2. Для большинства исследованных штаммов подтверждена обоснованность их включения в отдельные О-серогруппы. В то же время на основании выявленного близкого структурного родства О-специфических полисахаридов и серологических данных предложено объединить каждую из пар бактерий *E. cloacae* O1 и O14, O10 и O11, O12 и O16 и *E. coli* O46 и O134 в одну О-серогруппу в качестве подгрупп.

3. С помощью биоинформатического анализа показано соответствие установленных структур О-специфических полисахаридов генному составу генных кластеров О-антигенов и предсказаны функции генов биосинтеза О-специфического полисахарида каждого штамма.

 Расширен арсенал методов избирательного расщепления углеводов: для получения олигосахаридных фрагментов полисахаридов предложен сольволиз трифторуксусной кислотой, позволяющий с высокой избирательностью расщеплять гликозидные связи 6-дезокси-α-гексопираноз и N-ацетил-β-гексозаминов.

5. С помощью сольволиза трифторуксусной кислотой получены олигосахаридные фрагменты О-специфических полисахаридов *Shigella flexneri* типов Y, 2a, 3a и 6, которые могут быть использованы как компоненты противодизентерийных конъюгатных вакцин.

СПИСОК ЛИТЕРАТУРЫ

- Knirel, Y.A. Bacterial polysaccharide structure and biosynthesis // Encyclopedia of Biophysics, 2013, Springer, Heidelberg-New York-Dordrecht-London. P 162-168.
- Knirel Y.A. O-Specific polysaccharides of gram-negative bacteria // Microbial Glycobiology: Structures, Relevance and Applications. Elsevier, Amsterdam, 2009. P. 57–73
- 3. Jansson P.E. The chemistry of O-polysaccharide chains in bacterial lipopolysaccarides // *Endotoxin in Health and Disease*, Marcel Dekker, New York, 1999. P. 155-178.
- Wilkinson, S. G. Bacterial lipopolysaccharides Themes and variations. // Prog. Lipid Res., 1996, 35, 1996, 283-343
- Книрель Ю.А., Кочетков Н.К. Структура липополисахаридов грамотрицательных бактерий. Ш. Структура О-специфических полисахаридов // Биохимия, 1994, 59, 1784-1851.
- Kenne L., Lindberg B. Bacterial polysaccharides. // *The Polysaccharides*, Academic Press, New York, 1983. P. 287–363
- Knirel Y.A. Structure of O-antigens // Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells // Springer, Wien-New York, 2011. P. 41-116.
- Paszkiewicz M., Tokarska-Pietrzak E., Golebiowski M., Kunikowska D., Stepnowski, P. Plasmid-and chromosomal genes-encoded two separate O-polysaccharide chains of *Salmonella* Uccle (O: 3,54) Structural elucidation // J. Struct. Biol., 2013, 184, 367-374.
- Knirel Y.A., Kocharova N.A., Bystrova O.V., Katzenellenbogen E., Gamian A. Structures and serology of the O-specific polysaccharides of bacteria of the genus *Citrohacter // Arch. Immunol. Ther. Exp.*, 2002, 50, 379-392.
- Ovchinnikova O.G., Kocharova N.A., Katzenellenbogen E., Zatonsky G.V., Shashkov A.S., Knirel Y.A., Lipinski T., Gamian A. Structures of two O-polysaccharides of the lipopolysaccharide of *Citrobacter youngae* PCM 1538 (serogroup O9) // *Carbohydr. Res.*, 2004, **339**, 881-884.
- Katzenellenbogen E., Kocharova N.A., Gorska-Fraczek S., Gamian A., Shashkov A.S., Knirel Y.A. Structural and serological studies on the O-antigen show that *Citrobacter youngae* PCM 1505 must be classified to a new *Citrobacter* O-serogroup // *Carbohydr. Res.*, 2012, 360, 52-55.
- Katzenellenbogen E., Kocharova N.A., Shashkov A.S., Gorska-Fraczek S., Gamian A., Knirel Y.A. Structure of the O-polysaccharide of *Edwardsiella tarda* PCM 1156 // *Carbohydr. Res.*, 2013, **374**, 45-48.

- Stenutz R., Weintraub A., Widmalm G. The structures of *Escherichia coli* O-polysaccharide antigens // *FEMS Microbial. Rev.*, 2006, **30**, 382-403.
- Liu B., Knirel Y. A., Feng L., Perepelov A. V., Senchenkova S. N., Wang Q., Wang L. Structure and genetics of *Shigella* O-antigens // *FEMS Microbial. Rev.*, 2008, **32**, 627-653; 2010, **34**, 606.
- Книрель Ю.А., Сунь Ц.-Ж., Сенченкова С.Н., Перепелов А.В., Шашков А.С., Сюй, Ц.-Г. Модификации О-антигенов, обусловливающие антигенное разнообразие шигелл Флекснера, и опосредующие их генетические механизмы // Биохимия, 2015, 80, 1072-1087.
- West N. P., Sansonetti P., Mounier, J., Exley R. M., Parsot C., Guadagnini, S., Tang, C. M. Optimization of virulence functions through glucosylation of *Shigella* LPS // *Science*, 2005, 307, 1313-1317.
- Vinogradov E., Frirdich E., MacLean L.L., Perry M.B., Petersen B.O., Duus J.O., Whitfield C. Structures of lipopolysaccharides from *Klebsiella pneumonia*. Elucidation of the structure of the linkage region between core and polysaccharide O-chain and identification of the residues at the non-reducing termini of the O-chains // *J. Biol. Chem.*, 2002, 277, 25070-25081.
- Kubler-Kielb J., Whitfield C., Katzenellenbogen E., Vinogradov E. Identification of the methyl phosphate substituent at the non-reducing terminal mannose residue of the O-specific polysaccharides of *Klebsiella pneumoniae* O3, *Hafnia alvei* PCM 1223 and *Escherichia coli* O9/O9a LPS // Carbohydr. Res., 2012, 347, 186-188.
- Aucken H.M., Wilkinson S.G., Pitt T.L. Re-evaluation of the serotypes of *Serratia marcescens* and separation into two schemes based on lipopolysaccharide (O) and capsular polysaccharide (K) antigens // *Microbiology*, 1998, **144**, 639–653.
- Mertens K., Müller-Loennies S., Stengel P., Podschun R., Hansen D. S., Mamat, U. Antiserum against *Raoultella terrigena* ATCC 33257 identifies a large number of *Raoultella* and *Klebsiella* clinical isolates as serotype O12 // *Innate Immun.*, 2010, 16, 366-380.
- Leone S., Molinaro A., Dubery I., Lanzetta R., Parrilli M. The O-specific polysaccharide structure from the lipopolysaccharide of the Gram-negative bacterium *Raoultella terrigena // Carbohydr. Res.*, 2007, 342, 1514–1518.
- Vinogradov E., Petersen B.O., Duus J.O., Radziejewska-Lebrecht J. The structure of the polysaccharide part of the LPS from *Serratia marcescens* serotype O19, including linkage region to the core and the residue at the non-reducing end // *Carbohydr. Res.* 2003, 338, 2757–2761.

- Aucken H.M., Oxley D., Wilkinson S.G. Structural and serological characterisation of an O-specific polysaccharide from *Serratia plymuthica // FEMS Microbiol. Lett.*, 1993, **111**, 295–300.
- Romanowska E. Immunochemical aspects of *Hafnia alvei* O antigens. // *FEMS Immunol. Med. Microbiol.*, 2000, 27, 219–225.
- 25. Duan Z., Niedziela T., Lugowski C., Cao B., Wang T., Xu L., Yang B., Liu B., Wang, L. Genetic diversity of O-antigens in *Hafnia alvei* and the development of a suspension array for serotype detection // *PloS One*, 2016, **11**, e0155115.
- Katzenellenbogen E., Kocharova N.A., Pietkiewicz J., Gamian A., Shashkov A.S., Knirel Y.A. Studies on the O-antigen of *Hafnia alvei* PCM 1224 structurally and serologically related to the O-antigen of *H. alvei* 481-L // *Carbohydr. Res.*, 2013, 367, 5-9.
- 27. Bobko E., Tyras M., Jachymek W. New complete structure of *Hafnia alvei* clinical isolate strain PCM 2670 semi-rough lipopolysaccharide // *Carbohydr. Res.*, 2013, **374**, 67-74
- Moule A.L., Kuhl P.M., Galbraith L., Wilkinson S.G. Structure of the O-specific polysaccharide from *Enterobacter cloacae* strain N.C.T.C. 11579 (serogroup O10) // *Carbohydr. Res.*, 1989, 186, 287–293.
- Szulta S., Czerwicka M., Forsythe S.J., Ossowska K., Dziadziuszko H., Kaczynski Z. Structural characterization of the O-polysaccharide isolated from *Franconibacter helveticus* LMG23732 T // *Carbohydr. Res.*, 2016, **431**, 39-41.
- Wang M., Arbatsky N.P., Xu L., Shashkov A.S., Wang L., Knirel Y.A. O antigen of *Franconibacter pulveris* G3872 (O1) is a 4-deoxy-D-*arabino*-hexose-containing polysaccharide synthesized by the ABC-transporter-dependent pathway // *Microbiology*, 2016, 162, 1103-1113.
- Knirel Y.A., Perepelov A.V., Kondakova A.N., Senchenkova S.N., Sidorczyk Z., Rozalski A., Kaca W. Structure and serology of O-antigens as the basis for classification of *Proteus* strains // *Innate Immun.*, 2011, 17, 70-96.
- 32. Siwinska M., Shashkov A.S., Kondakova A.N., Drzewiecka D., Zablotni A., Arbatsky N.P., Valueva O.A.,, Zych K., Sidorczyk Z., Knirel Y.A. Structure of the alanopine-containing Opolysaccharide and serological cross-reactivity of the lipopolysaccharide of *Proteus vulgaris* HSC 438 classified into a new *Proteus* serogroup, O76 // *Microbiology*, 2013, **159**, 1036-1043.
- 33. Siwinska M., Levina E.A., Ovchinnikova O.G., Drzewiecka D., Shashkov A.S., Rozalski A., Knirel Y.A. Classification of a *Proteus penneri* clinical isolate with a unique O-antigen structure to a new *Proteus* serogroup, O80 // *Carbohydr. Res.*, 2015, 407, 131-136.
- 34. Arbatsky N.P., Drzewiecka D., Palusiak A., Shashkov A. S., Zablotni A., Siwinska M., Knirel Y.A. Structure of a Kdo-containing O polysaccharide representing *Proteus* O79, a newly described serogroup for some clinical *Proteus* genomospecies isolates from Poland // *Carbohydr. Res.*, 2013, **379**, 100-105.
- Arbatsky N.P., Wang M., Shashkov A S., Feng L., Knirel Y.A., Wang L. Structure of the Opolysaccharide of *Cronobacter sakazakii* O1 containing 3-(*N*-acetyl-L-alanyl)amino-3,6dideoxy-D-glucose // *Carbohydr. Res.*, 2010, 345, 2095-2098.
- MacLean L.L., Pagotto F., Farber J.M., Perry M.B. Structure of the antigenic repeating pentasaccharide unit of the LPS O-polysaccharide of *Cronobacter sakazakii* implicated in the Tennessee outbreak // *Biochem. Cell Biol.*, 2009, 87, 459-465.
- Arbatsky N.P., Wang M., Shashkov A S., Chizhov A.O., Feng L., Knirel Y.A., Wang L. Structure of the O-polysaccharide of *Cronobacter sakazakii* O2 with a randomly O-acetylated L-rhamnose residue // *Carbohydr. Res.*, 2010, 345, 2090-2094.
- MacLean L.L., Vinogradov E., Pagotto F., Farber J.M., Perry M.B. The structure of the Oantigen of *Cronobacter sakazakii* HPB 2855 isolate involved in a neonatal infection // *Carbohydr. Res.*, 2010, 345, 1932-1937.
- Czerwicka M., Forsythe S.J., Bychowska A., Dziadziuszko H., Kunikowska D., Stepnowski P., Kaczynski Z. Structure of the O-polysaccharide isolated from *Cronobacter sakazakii* 767 // *Carbohydr. Res.*, 2010, 345, 908-913.
- Arbatsky N.P., Sun Y., Shashkov A.S., Wang M., Liu B., Daeva E.D., Wang L., Knirel Y.A. Structure and genetics of the O-antigen of *Cronobacter sakazakii* G2726 (serotype O3) closely related to the O-antigen of *C. muytjensii* 3270 // *Carbohydr. Res.*, 2012, 355, 50-55.
- Shashkov A.S., Wang M., Turdymuratov E.M., Hu S., Arbatsky N.P., Guo X., Wang L., Knirel Y.A. Structural and genetic relationships of closely related O-antigens of *Cronobacter* spp. and *Escherichia coli*: *C. sakazakii* G2594 (serotype O4)/*E. coli* O103 and *C. malonaticus* G3864 (serotype O1)/*E. coli* O29 // *Carbohydr. Res.*, 2015, **404**, 124-131.
- Marszewska K., Czerwicka M., Forsythe S.J., Ossowska K., Dziadziuszko H., Kaczynski Z. Structural studies of O-polysaccharide isolated from *Cronobacter sakazakii* Sequence Type 12 from a case of neonatal necrotizing enterocolitis // *Carbohydr. Res.*, 2015, **407**, 55-58.
- Shashkov A.S., Arbatsky N.P., Knirel Y.A. Structures and genetics of Kdo-containing Oantigens of *Cronobacter sakazakii* G2706 and G2704, the reference strains of serotypes O5 and O6 // *Carbohydr. Res.*, 2011, **346**, 1924-1929.
- 44. Arbatsky N.P., Wang M., Daeva E.D., Shashkov A.S., Feng L., Knirel Y.A., Wang, L. Elucidation of the structure and characterization of the gene cluster of the O-antigen of

Cronobacter sakazakii G2592, the reference strain of C. sakazakii O7 serotype // Carbohydr. Res., 2011, **346**, 1169-1172.

- Szafranek J., Czerwicka M., Kumirska J., Paszkiewicz M., Lojkowska, E. Repeating unit structure of *Enterobacter sakazakii* ZORB A 741 O-polysaccharide // *Polish J. Chem.*, 2005, 79, 287-295.
- 46. MacLean L.L., Vinogradov E., Pagotto F., Perry M.B. Structure of the O-antigen polysaccharide present in the lipopolysaccharide of *Cronobacter dublinensis* (subspecies *lactaridi* or *lausannensis*) HPB 3169 // Can. J. Microbiol., 2012, 58, 540-546.
- Arbatsky N.P., Wang M., Turdymuratov E.M., Hu S., Shashkov A.S., Wang L., Knirel Y.A. Related structures of the O-polysaccharides of *Cronobacter dublinensis* G3983 and G3977 containing 3-(N-acetyl-L-alanyl)amino-3,6-dideoxy-D-galactose // *Carbohydr. Res.*, 2015, 404, 132-137.
- 48. Арбатский Н.П., Минь Ван, Турдымуратов Э.М., Кондакова А.Н., Шашков А.С., Книрель Ю.А. Структура фруктанов из трех штаммов *Cronobacter dublinensis // Изв. АН. Сер. хим.*, 2015, **64**, 1192-1195.
- MacLean L.L., Vinogradov E., Pagotto F., Farber J.M., Perry M.B. Characterization of the Oantigen in the lipopolysaccharide of *Cronobacter (Enterobacter) malonaticus* 3267 // *Biochem. Cell Biol.*, 2009, 87, 927-932.
- MacLean L.L., Pagotto F., Farber J.M., Perry M.B. The structure of the O-antigen in the endotoxin of the emerging food pathogen *Cronobacter (Enterobacter) muytjensii* strain 3270 // *Carbohydr. Res.*, 2009, 344, 667-671.
- Sun Y., Arbatsky N.P., Wang M., Shashkov A.S., Liu B., Wang L., Knirel Y.A. Structure and genetics of the O-antigen of *Cronobacter turicensis* G3882 from a new serotype, *C. turicensis* O2, and identification of a serotype-specific gene // *FEMS Immunol. Med. Microbiol.*, 2012, 66, 323-333.
- 52. MacLean L.L., Vinogradov E., Pagotto F., Perry M.B. Characterization of the lipopolysaccharide O-antigen of *Cronobacter turicensis* HPB3287 as a polysaccharide containing a 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (legionaminic acid) residue // *Carbohydr. Res.*, 2011, **346**, 2589-2594.
- Czerwicka M., Marszewska K., Forsythe S.J., Bychowska A., Mazgajczyk A., Dziadziuszko H., Ossowska K., Stepnowski P., Kaczynski Z. Chemical structure of the O-polysaccharides isolated from *Cronobacter turicensis* sequence type 5 strains 57, 564, and 566 // *Carbohydr. Res.*, 2013, 373, 89-92.

- Marszewska K., Czerwicka M., Forsythe S.J., Saldak E., Szulta S., Dziadziuszko H., Ossowska K., Kaczynski Z. The structure of O-polysaccharide isolated from *Cronobacter universalis* NCTC 9529^T// *Carbohydr. Res.*, 2014, **398**, 77-79.
- 55. Kilcoyne M., Shashkov A.S., Senchenkova S.N., Knirel Y.A., Vinogradov E.V., Radziejewska-Lebrecht J., Galimska-Stypa R., Savage A.V. Structural investigation of the O-specific polysaccharides of *Morganella morganii* consisting of two higher sugars // *Carbohydr. Res.*, 2002., 337, 1697-1702.
- 56. Shashkov A.S., Torgov V.I., Nazarenko E.L., Zubkov V.A., Gorshkova N.M., Gorshkova R.P., Widmalm G. Structure of the phenol-soluble polysaccharide from *Shewanella putrefaciens* strain A6 // *Carbohydr. Res.*, 2002, **337**, 1119-1127.
- 57. Овчинникова О.Г., Рожальски А., Лю Б., Книрель Ю.А. О-антигены бактерий рода *Providencia*: структура, серология, генетика и биосинтез // *Биохимия*, 2013, **78**, 1023-1045.
- Ovchinnikova O.G., Moryl M., Shashkov A.S., Chizhov A.O., Arbatsky N.P., Shpirt A.M., Rozalski A., Knirel Y.A. Structure of the O-polysaccharide of *Providencia alcalifaciens* O2 containing ascarylose and N-(L-alanyl)-D-glucosamine // *Carbohydr. Res.*, 2015, 401, 11-15.
- Ovchinnikova O.G., Kondakova A.N., Kocharova N.A., Shashkov A.S., Knirel Y.A., Rozalski A. Structure of the O-polysaccharide of *Providencia alcalifaciens* O3 containing 3,6-dideoxy-3-formamido-D-glucose and D-galacturonamide // *Carbohydr. Res.*, 2012, 361, 27-32.
- Ovchinnikova O.G., Arbatsky N.P., Chizhov A.O., Kocharova N.A., Shashkov A.S., Rozalski A., Knirel Y.A. Structure of a polysaccharide from *Providencia rustigianii* O11 containing a novel amide of 2-acetamido-2-deoxygalacturonic acid with L-glutamyl-L-alanine // *Carbohydr. Res.*, 2012, **349**, 95-102.
- Ovchinnikova O.G., Shashkov A.S., Chizhov A.O., Moryl M., Rozalski A., Knirel Y.A. Structure of the O-polysaccharide from the lipopolysaccharide of *Providencia alcalifaciens* O33 // *Carbohydr. Res.*, 2014, **390**, 67-70.
- Ovchinnikova O.G., Liu B., Guo D., Kocharova N.A., Shashkov A.S., Chen M., Feng L., Rozalski A., Knirel Y.A., Wang, L. Localization and molecular characterization of putative O antigen gene clusters of *Providencia* species // *Microbiology*, 2012, **158**, 1024-1036.
- Ovchinnikova O.G., Liu B., Guo D., Kocharova N.A., Bialczak-Kokot M., Shashkov A.S., Feng L., Rozalski A., Wang L., Knirel, Y.A. Structural, serological, and genetic characterization of the O-antigen of *Providencia alcalifaciens* O40 // *FEMS Immunol. Med. Microbiol.*, 2012, 66, 382-392.

- Ovchinnikova O.G., Shashkov A.S., Moryl M., Liu B., Rozalski A., Knirel Y.A. Structure and gene cluster organization of the O-antigen of *Providencia alcalifaciens* O45: H25 // *Carbohydr*. *Res.*, 2014, **398**, 72-76.
- 65. Оводов Ю.С., Горшкова Р.П. Липополисахариды псевдотуберкулезного микроба // *Химия природ. соединений*, 1988, **2**, 163-171.
- 66. Bruneteau M., Minka S. Lipopolysaccharides of bacterial pathogens from the genus *Yersinia*: a mini-review // *Biochimie*, 2003, **85**, 145-152.
- Ovodov Y.S., Gorshkova R.P., Tomshich S.V., Komandrova N.A., Zubkov V.A., Kalmykova E.N., Isakov V.V. Chemical and immunochemical studies on lipopolysaccharides of some *Yersinia* species-a review of some recent investigations // J. Carbohydr. Chem., 1992, 11, 21-35.
- 68. Meikle P.J., Perry M.B., Cherwonogrodzky J.W., Bundle D.R. Fine structure of A and M antigens from *Brucella* biovars // *Infect. Immun.*, 1989, **57**, 2820-2828.
- Beczala A., Duda K.A., Skurnik M., Holst O. The structure of the O-specific polysaccharide of the lipopolysaccharide from *Yersinia enterocolitica* serotype O:50 strain 3229 // *Carbohydr*. *Res.*, 2012, **359**, 97-101.
- Beczala, A., Ovchinnikova O.G., Datta N., Mattinen L., Knapska K., Radziejewska-Lebrecht J., Holst O., Skurnik, M. Structure and genetic basis of *Yersinia similis* serotype O:9 O-specific polysaccharide // *Innate Immun.*, 2015, 2, 3-16.
- 71. De Castro C., Kenyon J.J., Cunneen M.M., Molinaro A., Holst O., Skurnik M., Reeves P.R. The O-specific polysaccharide structure and gene cluster of serotype O:12 of the *Yersinia pseudotuberculosis* complex, and the identification of a novel L-quinovose biosynthesis gene // *Glycobiology*, 2013, 23, 346-353.
- Sizova O.V., Shashkov A.S., Shaikhutdinova R.Z., Ivanov S.A., Dentovskaya S.V., Knirel Y.A. Structure of the O-polysaccharide of *Yersinia frederiksenii* H5636/81 (serotype O:60) containing 4-deoxy-D-*arabino*-hexose // *Carbohydr. Res.*, 2016, 65, 1625-1629.
- Shepherd J.G., Wang L., Reeves P.R. Comparison of O-antigen gene clusters of *Escherichia coli* (*Shigella*) Sonnei and *Plesiomonas shigelloides* O17: Sonnei gained in current plasmid-borne O-antigen genes from *P. shigelloides* in a recent event. *Infect.Immun.*, 2000, 68, 6056-6061.
- Jachymek W., Niedziela T., Petersson C., Lugowski C., Czaja J., Kenne L. Structures of the Ospecific polysaccharides from *Yokenella regensburgei* (*Koserella trabulsii*) strains PCM 2476, 2477, 2478, and 2494: high-resolution magic-angle spinning NMR investigation of the O-

specific polysaccharides in native lipopolysaccharides and directly on the surface of living bacteria // *Biochemistry*, 1999, **38**, 11788-11795.

- Zdorovenko E.L., Varbanets L.D., Brovarskaya O.S., Valueva O.A., Shashkov A.S., Knirel Y.A. Lipopolysaccharide of *Budvicia aquatica* 97U124: immunochemical properties and structure // *Microbiology*, 2011, 80, 372-377.
- 76. Zdorovenko E.L., Valueva O.A., Varbanets L.D., Shashkov A.S., Knirel Y.A. Structure of the O-antigen of *Budvicia aquatica* 20186, a new bacterial polysaccharide that contains 3,6dideoxy-4-C-[(S)-1-hydroxyethyl]-D-xylo-hexose (yersiniose A) // Carbohydr. Res., 2012, 352, 219-222.
- Lundqvist L.C., Kaszowska M., Sandstrom C. NMR study of the O-specific polysaccharide and the core oligosaccharide from the lipopolysaccharide produced by *Plesiomonas shigelloides* O24:H8 (strain CNCTC 92/89) // *Molecules*, 2015, 20, 5729-5739.
- 78. Kaszowska M., Stojkovic K., Niedziela T., Lugowski C. The O-antigen of *Plesiomonas shigelloides* serotype O36 containing pseudaminic acid // *Carbohydr. Res.*, 2016, **434**, 1-5.
- Sawen E., Ostervall J., Landersjo C., Edblad M., Weintraub A., Ansaruzzaman M., Widmalm G. Structural studies of the O-antigenic polysaccharide from *Plesiomonas shigelloides* strain AM36565 // *Carbohydr. Res.*, 2012, 348, 99-103.
- Valueva O.A., Zdorovenko E.L., Kachala V.V., Varbanets L.D., Arbatsky N.P., Shubchynskyy V.V., Shashkov A.S., Knirel Y.A. Structure of the O-polysaccharide of *Pragia fontium* 27480 containing 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid // *Carbohydr. Res.*, 2011, 346, 146-149.
- Zdorovenko E.L., Valueva O.A., Varbanets L.D., Shubchinskiy V.V., Shashkov A.S., Knirel Y.A. Structure of the O-polysaccharide of the lipopolysaccharide of *Pragia fontium* 97U116 // *Carbohydr. Res.*, 2010, 345, 1812-1815.
- Valueva O.A., Zdorovenko E.L., Varbanets L.D., Shubchinskiy V.V., Shashkov A.S., Knirel Y.A. Structural studies of the O-polysaccharide of *Pragia fontium* 97U124 containing 2-acetamido-2,4,6-trideoxy-4-(D-glyceroyl)amino-D-glucose // *Carbohydr. Res.*, 2012, 355, 96-99.
- 83. Zdorovenko E.L., Varbanets L.D., Zatonsky G.V., Zdorovenko G.M., Shashkov A.S., Knirel Y.A. Isolation and structure elucidation of two different polysaccharides from the lipopolysaccharide of *Rahnella aquatilis* 33071^T // *Carbohydr. Res.*, 2009, **344**, 1259-1262.
- Zdorovenko E.L., Varbanets L.D., Zatonsky G.V., Kachala V.V., Zdorovenko G.M., Shashkov A.S., Knirel Y.A. Structure of the O-specific polysaccharide of the lipopolysaccharide of *Rahnella aquatilis* 95U003 // *Carbohydr. Res.*, 2008, **343**, 2494-2497.

- Zdorovenko E.L., Varbanets L.D., Zatonsky G.V., Ostapchuk A.N. Structures of two putative O-specific polysaccharides from the *Rahnella aquatilis* 3-95 lipopolysaccharide // *Carbohydr*. *Res.*, 2006, **341**, 164-168.
- Zdorovenko E.L., Varbanets L.D., Zatonsky G.V., Ostapchuk A.N. Structure of the O-polysaccharide of the lipopolysaccharide of *Rahnella aquatilis* 1-95 // *Carbohydr. Res.*, 2004, 339, 1809-1812.
- Ray T.C., Smith A.R., Wait R., Hignett R.C. Structure of the sidechain of lipopolysaccharide from *Erwinia amylovora* T // *Eur. J. Biochem.*, 1987, **170**, 357-361.
- Senchenkova S.N., Knirel Y.A., Shashkov A.S., Ahmed M., Mavridis A., Rudolph K. Structure of the O-polysaccharide of *Erwiniacarotovora* ssp. *carotovora* GSPB436 // *Carbohydr. Res.*, 2003, 338, 2025-2027.
- 89. Сенченкова С.Н., Шашков А.С., Книрель Ю.А., Ахмед М., Мавридис А., Рудольф К. Структура О-полисахарида *Erwinia carotovora* ssp. *atroseptica* GSPB9205, содержащего новый высший разветвленный моносахарид // Изв. АН. Сер.хим., 2005, 54, 1239-1241.
- Czerwicka M., Marszewska K., Bychowska A., Dziadziuszko H., Brzozowski K., Lojkowska E., Stepnowski P., Kaczynski Z. Chemical structure of the O-polysaccharide isolated from *Pectobacterium atrosepticum* SCRI1039 // *Carbohydr. Res.*, 2011, 346, 2978-2981.
- Ossowska K., Czerwicka M., Sledz W., Zoledowska S., Motyka A., Szulta S., Lojkowska E., Kaczynski Z. The structure of O-polysaccharides isolated from plant pathogenic bacteria *Pectobacterium wasabiae* IFB5408 and IFB5427 // *Carbohydr. Res.*, 2016, **426**, 46-49.
- 92. Kondakova A.N., Kirsheva N.A., Shashkov A.S., Shaikhutdinova R.Z., Arabtsky N.P., Ivanov S.A., Anisimov A.P., Knirel, Y. A. Low structural diversity of the O-polysaccharides of *Photorhabdus asymbiotica* subspp. *asymbiotica* and *australis* and their similarity to the O-polysaccharides of taxonomically remote bacteria including *Francisella tularensis*. *Carbohydr. Res.*, 2011, **346**, 1951-1955.
- 93. Kondakova A.N., Kirsheva N.A., Arbatsky N.P., Shaikhutdinova R.Z., Shashkov A.S., Ivanov S.A., Anisimov A.P., Knirel Y.A. Structure of a zwitterionic O-polysaccharide from *Photorhabdus temperata* subsp. *cinerea* 3240 // *Carbohydr. Res.*, 2015, 407, 1-4.
- 94. Kondakova A.N., Kirsheva N.A., Shashkov A.S., Shaikhutdinova R.Z., Arbatsky N.P., Ivanov S.A., Anisimov A.P., Knirel, Y. A. Structure of the O-polysaccharide of *Photorhabdus luminescens* subsp. *laumondii* containing D-glycero-D-manno-heptose and 3, 6-dideoxy-3-formamido-D-glucose // Carbohydr. Res., 2012, 351, 134-137.
- 95. Arbatsky N.P., Shashkov A.S., Kirsheva N.A., Kondakova A.N., Shaikhutdinova R.Z., Ivanov S.A., Anisimov A.P., Knirel Y.A. Structure of the O-polysaccharide of *Photorhabdus*

temperata subsp. *temperata* XlNach^T containing a novel branched monosaccharide, 3, 6dideoxy-4-*C*-[(*S*)-1, 2-dihydroxyethyl]-D-*xylo*-hexose // *Carbohydr. Res.*, 2015, **403**, 202-205.

- 96. Hoffmann H., Roggenkamp A. Population genetics of the nomenspecies *Enterobacter cloacae* // *Appl. Environ. Microbiol.*, 2003, **69**, 5306-5318.
- 97. Dalben M., Varklja G., Basso M., Krebs V.L.J., Gibelli M.A., Heijden I., Rossi F., Duboc G., Levin A.S., Costa S.F. Investigation of an outbreak of *Enterobacter cloacae* in a neonatal unit and review of the literature // J. Hosp. Infect., 2008, 70, 7-14.
- 98. Fernandez A., Pereira M.J., Suarez J.M., Poza M., Trevino M., Villalon P., Saez-Nieto J.A., Regueiro B.J., Villanueva R., Bou G. Emergence in Spain of a multidrug resistant *Enterobacter cloacae* clinical isolate producing SFO-1 extended-spectrum β-lactamase // J. Clin. Microbiol., 2011, 49, 822-828.
- 99. Bush K., Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae //
 Curr. Opin. Microbiol., 2010, 13, 558-564.
- Gaston M.A., Bucher C., Pitt T.L. O serotyping scheme for *Enterobacter cloacae // J. Clin. Microbiol.*, 1983, 18, 1079-1083.
- 101. Perepelov A.V., Wang M., Filatov A.V., Guo X., Shashkov A.S., Wang L., Knirel Y.A. Structure and genetics of the O-antigen of *Enterobacter cloacae* G3054 containing di-N-acetylpseudaminic acid // *Carbohydr. Res.*, 2015, **407**, 59-62.
- 102. Perepelov A.V., Han, R., Filatov A.V., Wang. M., Shashkov A.S., Wang L., Knirel Y.A. Structural and genetic characterization of the O-antigen of *Enterobacter cloacae* C5529 related to the O-antigen of *Enterobacter cloacae* G3054 // *Carbohydr. Res*, 2017, 443-444, 49-52.
- 103. Zunk M., Kiefel M.J. The occurrence and biological significance of the α-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria. *RSC Adv.*, 2014, 4, 3413-3421.
- Knirel Y.A. Shevelev S.D., Perepelov A.V. Higher aldulosonic acids: components of bacterial glycans. *Mendeleev Commun.*, 2011, 21, 173-182.
- 105. Knirel Y.A., Shashkov A.S., Tsvetkov Y.E., Jansson P.E., Zaehringer U. 5,7-Diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: chemistry and biochemistry // Adv. Carbohydr. Chem. Biochem., 2003, 58, 371-417.
- 106. Perepelov A.V., Filatov A.V., Wang M., Shashkov A.S., Wang L., Knirel Y.A. Structure and gene cluster of the O-antigen of *Enterobacter cloacae* G3421 // *Carbohydr. Res.*, 2016, 427, 55-59.

- 107. Feng L., Senchenkova S. N, Wang W., Shashkov A.S., Liu B., Shevelev S.D., Liu D., Knirel Y.A., Wang L., Structural and genetic characterization of the *Shigella boydii* type 18 O antigen // *Gene*, 2005, **355**, 79-86.
- 108. Perepelov A.V., Wang M., Filatov A.V., Guo X., Shashkov A.S., Wang L., Knirel Y.A. Structural and genetic studies of the O-antigen of *Enterobacter cloacae* G2277 // Carbohydr. *Res.*, 2014, **387**, 10-13.
- 109. Linnerborg M., Widmalm G., Weintraub A., Albert M. J. Structural elucidation of the O-antigen lipopolysaccharide from two strains of *Plesiomonas shigelloides* that share a type-specific antigen with *Shigella flexneri* 6, and the common group 1 antigen with *Shigella flexneri* 6, and the common group 1 antigen with *Shigella flexneri* 8, and the common group 1, 839-844.
- 110. Katzenellenbogen E., Kocharova N.A., Zatonsky G.V., Kubler-Kielb J., Gamian A., ShashkovA.S., Knirel Y.A., Romanowska E. Structural and serological studies on *Hafnia alvei* O-specific polysaccharide of α-D-mannan type isolated from the lipopolysaccharide of strain PCM 1223 // FEMS Immunol. Med. Microbiol., 2001, **30**, 223-227.
- 111. Filatov A.V., Wang M., Wang W., Perepelov A.V., Shashkov A.S., Wang L., Knirel Y.A. Structure and genetics of the O-antigen of *Enterobacter cloacae* C6285 containing di-Nacetyllegionaminic acid // *Carbohydr. Res.*, 2014, **392**, 21-24.
- 112. Perepelov A.V., Filatov A.V., Wang Q., Lvov V.L., Qian Y., Shashkov A.S., Wang L., Knirel Y.A. Structure elucidation and gene cluster annotation of the O-antigen of *Escherichia coli* O39; application of anhydrous trifluoroacetic acid for selective cleavage of glycosidic linkages // *Carbohydr. Res.*, 2014, **388**, 30-36.
- 113. Перепелов А.В., Ванг К., Сенченкова С.Н., Шевелев С.Д., Шашков А.С., Фенг Л., Книрель Ю.А., Ванг Л. Структура и характеристика генного кластера О-антигена *Escherichia coli* O49, содержащего 4,6-дидезокси-4-[(S)-3-гидроксибутаноиламино]-Dглюкозу // Биохимия, 2008, 73, 498-503.
- Perepelov A.V., Guo X., Filatov A.V., Liu B., Knirel Y.A. Structure and gene cluster of the O-antigen of *Escherichia coli* O43 // *Carbohydr. Res.*, 2015, 416, 32-36.
- 115. Perepelov A.V., Wang Q., Filatov A.V., Xia X., Shashkov A.S., Weintraub A., Widmalm G., Wang. L., Knirel Y.A. Structures and gene clusters of the closely related O-antigens of *Escherichia coli* O46 and O134, both containing D-glucuronoyl-D-allothreonine // *Carbohydr. Res.*, 2015, **409**, 20-24. Corrigendum in: *Carbohydr. Res.*, 2016, **436**, 54.
- 116. Perepelov A.V., Wang Q., Senchenkova S.N., Feng L., Shashkov A.S., Wang L., Knirel Y.A. Structure and gene cluster of the O-antigen of *Escherichia coli* O110 containing an amide of D-galacturonic acid with D-allothreonine // *Carbohydr. Res.*, 2013, **368**, 57-60.

- 117. Jiang L., Perepelov A.V., Filatov A.V., Liu B., Shashkov A.S., Senchenkova N.S., Wang L., Knirel Y.A. Structure and gene cluster of the O-antigen of *Escherichia coli* O68 // *Carbohydr*. *Res.*, 2014, **397**, 27-30.
- 118. Senchenkova S.N., Guo X., Filatov A.V., Perepelov A.V., Liu B., Shashkov A.S., Knirel Y.A. Structure elucidation and gene cluster characterization of the O-antigen of *Escherichia coli* O80 // Carbohydr. Res., 2016, **432**, 83-87.
- 119. Perepelov A.V., Shashkov A.S., Guo X., Filatov A.V., Weintraub A., Widmalm G., Knirel, Y.A. Structure and genetics of the O-antigen of *Escherichia coli* O169 related to the Oantigen of *Shigella boydii* type 6 // *Carbohydr. Res.*, 2015, **414**, 46-50.
- 120. Senchenkova S.N., Zhang Y., Perepelov A.V., Guo X., Shashkov A.S., Weintraub A., Liu B., Widmalm G., Knirel Y.A. Structure and gene cluster of the O-antigen of *Escherichia coli* O165 containing 5-*N*-acetyl-7-*N*-[(*R*)-3-hydroxybutanoyl]pseudaminic acid // *Glycobiology*, 2016, **26**, 345-342.
- 121. Samuel G., Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly // *Carbohydr. Res.*, 2003, **338**, 2503-2519.
- 122. Hao Y., Lam J.S. Pathways for the biosynthesis of NDP sugars. // Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells // Springer, Wien-New York, 2011. P. 195-235.
- 123. Glaze P.A., Watson D.C., Young N.M., Tanner M.E. Biosynthesis of CMP-N,N'diacetyllegionaminic acid from UDP-N,N'-diacetylbacillosamine in *Legionella pneumophila* // *Biochemistry*, 2008, 47, 3272-3282.
- 124. Cunneen M.M., Liu B., Wang L., Reeves P.R. Biosynthesis of UDP-GlcNAc, UndPP-GlcNAc and UDP-GlcNAcA involves three easily distinguished 4-epimerase enzymes, Gne, Gnu and GnaB // PloS One, 2013, 8, e67646.
- 125. Westphal O. Bacterial lipopolysaccharide-extraction with phenol water and further application of procedure *//Methods Carbohydr. Chem.*, 1965, **1**, 83-91.
- 126. Garegg P.J., Jansson P.E., Lindberg B., Lindh F., Lonngren J., Kvarnstrom I., Nimmich W. Configurations of the acetal carbon of pyruvic acid acetals in some bacterial polysaccharides // Carbhydr. Res., 1980, 78, 127-132.
- 127. Jansson P.E., Kenne L., Schweda E. Nuclear magnetic resonance and conformational studies on monoacetylated methyl D-gluco- and D-galacto-pyranosides // J. Chem. Soc., Perkin Trans. 1, 1987, 377-383.
- 128. Duus J.O., Gotfredsen C.H., Bock K. Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations // *Chem. Rev.*, 2000, **100**, 4589-4614.

- Gerwig G.J., Kamerling J.P., Vliegenthart J.F. Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary GLC // *Carbohydr. Res.*, 1978, **62**, 349-357.
- Gerwig G.J., Kamerling J.P., Vliegenthart J.F. Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary GLC // *Carbohydr. Res.*, 1979, 77, 1-7.
- Leontein K., Lindberg B., Lonngren J. Assignment of absolute configuration of sugars by glc of their acetylated glycosides formed from chiral alcohols // *Carbohydr. Res.*, 1978, **62**, 359-362.
- 132. Conrad H. E. Methylation of carbohydrates with methylsulfinyl anion and methyl iodide in dimethyl sulfoxide: Methylation of *Aerobacter aerogenes* A3 (S1) capsular polysaccharide and 3-O-α-D-glucopyranosyluronic acid-D-mannose // *Methods Carbohydr. Chem.*, 1972, 6, 361-364.
- 133. Altona C, Haasnoot C.A.G. Prediction of *anti* and *gauche* vicinal proton-proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings // Org. Magn. Reson., 1980, 13, 417-429.
- 134. Lipkind G.M., Shashkov A.S., Knirel Y.A., Vinogradov E.V., Kochetkov N K. A computer-assisted structural analysis of regular polysaccharides on the basis of ¹³C-n.m.r data // Carbohydr. Res., 1988, 175, 59-75.
- 135. Perepelov, A.V., Babicka D., Senchenkova S.N., Shashkov A.S., Moll H., Rozalski A., Zahringer U., Knirel Y.A. Structure of the O-specific polysaccharide of *Proteus vulgaris* O4 containing a new component of bacterial polysaccharides, 4,6-dideoxy-4-{N-[(*R*)-3hydroxybutyryl]-l-alanyl}-amino-D-glucose // *Carbohydr. Res.*, 2001, **331**, 195-202.
- 136. Shashkov A.S., Lipkind G.M., Knirel Y.A., Kochetkov N.K. Stereochemical factors determining the effects of glycosylation on the ¹³C chemical shifts in carbohydrates // Magn. Reson. Chem., 1988, 26, 735-747.
- 137. Lvov V.L., Filatov A.V., Perepelov A.V., Shpirt A.M., Shashkov A.S., Chizhov A.O., Knirel Y.A. Solvolysis with trifluoroacetic acid: an efficient method for selective cleavage of polysaccharides // Mendeleev Commun., 2016, 26, 279-281.
- 138. Perepelov A.V., Shekht M.E., Liu B., Shevelev S.D., Ledov V.A., Senchenkova S.N., Lvov V.L., Shashkov A.S., Feng L., Aparin P.G., Wang L., Knirel Y.A. *Shigella flexneri* O-antigens revisited: final elucidation of the O-acetylation profiles and a survey of the O-antigen structure diversity // *FEMS Immunol. Med. Microbiol.*, 2012, 66, 201-210.

- 139. Tsedilin A.M., Fakhrutdinov A.N., Eremin D.B., Zalesskiy S.S., Chizhov A.O., Kolotyrkina N.G., Ananikov V.P. How sensitive and accurate are routine NMR and MS measurements? // Mendeleev Commun., 2015. 25, 454-456.
- 140. Perepelov A.V., Xu G., Filatov A.V., Zhang X., Shashkov A.S., Wang M., Knirel Y.A. Structural and gene cluster of the O-antigen of *Enterobacter cloacae* C4115 // Carbohydr. Res., 2017, 448, 110-114.

ПРИЛОЖЕНИЕ

Табулированные данные спектров ¹Н и ¹³С ЯМР полисахаридов и олигосахаридов

Остаток Ядро 2 3 (3ax, 3eq) 5 6 (6a, 6b) 7 8 9 1 4 OC^{a} $^{1}\mathrm{H}$ 4.14 3.56 3.66 3.92 3.70 β -D-Galp-(1 \rightarrow 3.77; 3.79 ^{13}C 104.5 72.1 73.9 69.9 76.0 62.2 \rightarrow 6)- β -D-Gal*f*-(1 \rightarrow $^{1}\mathrm{H}$ 5.17 4.18 4.07 4.06 4.01 3.77; 4.07 ^{13}C 110.3 77.9 82.6 84.1 70.9 72.3 \rightarrow 3)- α -D-Galp-(1 \rightarrow 1 H 5.04 3.88 3.84 4.12 4.17 3.72; 3.72 ^{13}C 97.3 68.4 78.7 70.5 72.1 62.4 1 H 1.84; 2.05 4.21 4.34 4.14 4.24 4.11 1.15 \rightarrow 4,8)- β -Pse5Ac7Ac ^{13}C 175.2 97.7 73.5 33.4 71.4 49.2 70.9 53.6 13.9 1 H 5.03 3.75 3.69 3.93 3.93 3.76; 3.76 α -D-Galp-(1 \rightarrow ^{13}C 97.8 69.2 70.5 70.7 72.5 62.8 О-Дезацилированный ЛПС^б ${}^{1}\mathrm{H}$ 4.39 3.52 3.63 3.75 \rightarrow 4)- β -D-Galp-(1 \rightarrow 3.90 3.41; 3.58 ^{13}C 104.6 72.2 73.7 69.9 74.7 64.8

Таблица 1. Данные спектров ЯМР олигосахарида (OC), полученного при мягком кислотном гидролизе ЛПС, и О-дезацилированного ЛПС *E. cloacae* O1 (G3054) (здесь и далее δ, м.д.)

\rightarrow 6)- β -D-Gal <i>f</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.15	4.15	4.01	4.02	3.98	3.73; 4.06			
	¹³ C	110.3	82.6	78.1	84.2	71.2	72.5			
\rightarrow 4)- α -D-Gal <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.05	3.85	3.80	4.09	4.15	3.72; 3.72			
	¹³ C	97.8	68.5	78.8	70.6	72.5	62.7			
→4,8)-β-Pse5Ac7Ac	$^{1}\mathrm{H}$			1.62; 2.53	3.87	3.87	4.12	4.25	4.20	1.24
	¹³ C	175.1	103.8	34.3	72.0	48.7	73.2	54.1	74.1	14.3
α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	5.00	3.74	3.66	3.88	4.19				
	¹³ C	97.8	69.2	70.4	70.6	72.2	62.6			

Сигналы N-ацетильной группы находятся при ^аб_н 1.97 и 1.99 м.д., δ_C 23.2, 23.5 (Me), 174.6 и 175.2 (CO) м.д.; $^{\delta}\delta_H$ 1.91 и 1.96 м.д., δ_C 23.1, 23.3 (Me) и 174.4-175.1 (CO) м.д.

Таблица 2. Данные спектров ЯМР олигосахарида (OC), полученного при мягком кислотном гидролизе ЛПС, и О-дезацилированного ЛПС *E. cloacae* O14 (G5529)

Остаток	Ядро	1	2	3 (3ax, 3eq)) 4	5	6 (6a, 6b)	7	8	9
OC ^a										
β -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	4.44	3.56	3.63	3.93	3.69	3.74; 3.77			
	^{13}C	104.6	72.1	73.9	70.0	76.2	62.3			

\rightarrow 6)- β -D-Gal <i>f</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.13	4.15	4.06	4.05	4.00	3.77; 4.07			
	¹³ C	110.4	82.9	77.9	84.1	71.0	72.3			
\rightarrow 3)- α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	5.04	3.88	3.73	4.08	4.24	3.75; 3.75			
	¹³ C	97.6	68.3	78.4	70.8	72.4	62.9			
→4)-β-Pse5Ac7Ac	$^{1}\mathrm{H}$			1.86; 2.11	4.23	4.33	4.11	4.16	4.11	1.09
	¹³ C	175.2	97.5	33.3	72.1	49.2	70.5	54.2	68.2	16.7
О-Дезацилированный ЛПС ⁶										
\rightarrow 3)- β -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	4.38	3.58	4.11	3.92	3.62	3.62; 3.74			
	¹³ C	104.0	70.5	76.4	67.9	76.0	62.0			
\rightarrow 6)- β -D-Gal <i>f</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.11	4.16	4.04	4.04	3.99	3.75; 4.03			
	¹³ C	110.2	82.4	77.7	84.0	70.8	72.5			
\rightarrow 3)- α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	5.06	3.89	3.71	4.09	4.17	3.72; 3.72			
	¹³ C	97.4	67.9	78.6	70.3	72.1	62.5			
→4)-β-Pse5Ac7Ac	$^{1}\mathrm{H}$			1.62; 2.53	3.88	3.87	3.87	3.98	4.10	1.24
	¹³ C	174.5	103.8	34.3	71.8	48.7	74.7	54.5	69.8	14.3
\rightarrow 3)-β-D-Gal <i>p</i> -(1→ →6)-β-D-Gal <i>f</i> -(1→ →3)-α-D-Gal <i>p</i> -(1→ →4)-β-Pse5Ac7Ac	¹ H ¹³ C ¹ H ¹³ C ¹ H ¹³ C ¹ H ¹³ C	4.38 104.0 5.11 110.2 5.06 97.4 174.5	3.58 70.5 4.16 82.4 3.89 67.9	4.11 76.4 4.04 77.7 3.71 78.6 1.62; 2.53 34.3	3.92 67.9 4.04 84.0 4.09 70.3 3.88 71.8	3.62 76.0 3.99 70.8 4.17 72.1 3.87 48.7	3.62; 3.74 62.0 3.75; 4.03 72.5 3.72; 3.72 62.5 3.87 74.7	3.98 54.5	4.10 69.8	1.24 14.3

Сигналы N-ацетильной группы находятся при ^аб_н 1.97 и 2.02 м.д., б_с 23.2, 23.5 (Ме) и 175.2 (СО) м.д.; ^бб_н 1.94 и 1.98 м.д., б_с 23.2, 23.4 (Ме) и 174.5 (СО) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
→3)-β-D-GlcpNAc-(1→	$^{1}\mathrm{H}$	4.71	3.88	3.97	3.67	3.43	3.69; 4.03
	¹³ C	104.6	55.8	78.1	75.1	67.1	65.6
\rightarrow 3)- β -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	4.79	4.14	3.56	3.37	3.33	1.28
	¹³ C	101.7	71.7	83.6	72.3	73.6	17.9
\rightarrow 3)- β -D-Glc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.76	3.67	3.73	3.57	3.47	3.73; 3.92
	¹³ C	100.1	57.3	74.9	78.6	76.1	62.4

Таблица 3. Данные спектров ЯМР О-дезацилированного ЛПС Е. cloacae O2 (G3420)

Сигналы N-ацетильной группы находятся при $\delta_{\rm H}$ 2.02 и 2.05 м.д., $\delta_{\rm C}$ 22.8, 23.9 (Me) и 175.8 (CO) м.д.; сигналы ацеталя пировиноградной кислоты в положениях 4 и 6 остатка **A** находятся при $\delta_{\rm H}$ 1.49 м.д., $\delta_{\rm C}$ 26.0 (Me), 102.9 (C-2) и 176.5 (CO) м.д.

Таблица 4. Данные спектров ЯМР ОПС *E. cloacae* O3 (G3421) и олигосахарида (OC), полученного сольволизом CF₃CO₂H с последующим восстановлением NaBH₄

Остаток	Ядро	1 (1a, 1b)	2	3	4	5	6 (6a, 6b)
ОПС ^а							
α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.14	3.58	4.08	3.43	4.20	3.74; 3.85
	¹³ C	95.1	72.9	74.0	72.2	72.7	62.0
\rightarrow 3)- β -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	4.70	4.15	3.64	3.42	3.42	1.38
	¹³ C	102.0	69.0	79.0	71.7	73.6	18.7
\rightarrow 3,4)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.05	4.34	4.04	3.77	3.83	1.31
	¹³ C	103.2	67.2	73.1	80.1	70.0	18.2
\rightarrow 2)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.29	4.07	3.89	3.51	3.70	1.32
	¹³ C	101.1	79.8	71.1	73.2	70.7	18.0
\rightarrow 3)- α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	5.18	3.97	3.97	4.01	3.90	3.71; 3.77
	¹³ C	95.8	70.9	74.0	70.9	72.5	62.1
\rightarrow 3)- α -D-Fuc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	5.01	4.38	4.11	4.04	4.33	1.23
	¹³ C	96.0	48.9	74.0	68.8	68.0	16.8

OC^6							
α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.14	3.82	3.77	4.01	3.88	3.76; 3.76
	¹³ C	96.4	69.5	70.9	70.6	72.5	62.2
\rightarrow 3)- α -D-Fuc <i>p</i> NAc-(1 \rightarrow	${}^{1}\mathrm{H}$	5.02	4.39	4.10	4.09	4.35	1.24
	¹³ C	95.9	49.5	74.1	68.5	68.1	16.8
\rightarrow 3)- β -L-Rhap-(1 \rightarrow	${}^{1}\mathbf{H}$	4.79	4.21	3.65	3.46	3.46	1.36
	¹³ C	102.0	68.5	78.9	71.6	73.6	18.2
α -D-Gal p -(1 \rightarrow	${}^{1}\mathrm{H}$	5.17	3.58	3.73	3.45	3.85	3.76; 3.85
	¹³ C	100.1	73.9	74.2	70.8	73.8	61.8
\rightarrow 3,4)-L-Rha-ol	${}^{1}\mathrm{H}$	3.85, 3.89	4.07	4.09	3.88	4.08	1.28
С	¹³ C	63.8	72.4	78.4	83.4	67.8	20.1

Сигналы N-ацетильной группы находятся при ${}^{a}\delta_{H}$ 2.07 м.д., δ_{C} 23.4 (Me) и 175.8 (CO) м.д.; ${}^{6}\delta_{H}$ 2.07 м.д., δ_{C} 23.5 (Me) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
\rightarrow 2)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	4.99	4.04	3.90	3.47	3.76	1.29
	¹³ C	100.6	77.3	70.6	73.4	70.7	18.1
\rightarrow 2)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.12	4.07	3.87	3.45	3.70	1.27
	¹³ C	101.9	79.7	71.3	73.5	70.6	17.9
\rightarrow 2)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.23	4.06	3.88	3.50	3.69	1.32
	¹³ C	101.3	78.9	71.2	73.3	70.7	18.0
\rightarrow 2)- α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	5.14	3.96	3.96	3.98	3.93	62.3
	¹³ C	96.3	74.4	70.8	71.0	72.6	3.75; 3.78
\rightarrow 3)- α -D-Fuc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.97	4.36	4.06	3.99	4.35	1.24
	¹³ C	97.5	48.9	74.4	69.2	68.2	16.7

Таблица 5. Данные спектров ЯМР ОПС Е. cloacae O13 (C4115)

Сигналы N-ацетильной группы находятся при $\delta_{\rm H}$ 2.06 м.д., δ_{C} 23.5 (Me) и 175.5 (CO) м.д.

Остаток	Ядро	1 (1a, 1b)	2	3	4	5	6 (6a, 6b)
ОПС ^а							
α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.04	3.88	4.07	3.77	4.52	1.28
	¹³ C	98.3	71.3	66.8	73.7	68.7	17.0
\rightarrow 3,4)- α -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	5.14	4.24	4.03	3.97	3.80	3.86
	¹³ C	103.4	68.0	73.9	72.9	72.7	61.7
\rightarrow 3)- α -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	5.24	4.11	3.83	3.82	3.58	3.83
	¹³ C	102.1	71.1	79.5	73.6	74.8	63.7
→3)-β-D-GlcpNAc-(1→	$^{1}\mathrm{H}$	4.51	3.72	3.71	3.37	3.44	3.57; 3.96
	¹³ C	102.2	55.9	80.7	73.0	74.7	62.9
OC^{6}							
α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.11	4.08	3.89	3.65	3.78	3.85; 3.90
	¹³ C	103.5	71.2	71.5	68.0	74.4	61.7
\rightarrow 3)- α -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	5.28	4.19	3.87	3.83	3.61	3.73; 3.83
	¹³ C	102.1	71.0	79.3	66.7	74.4	61.5
\rightarrow 3)- α -D-Glc <i>p</i> NAc	$^{1}\mathrm{H}$	4.76	3.75	3.73	3.62	3.49	3.77; 3.90
	¹³ C	95.9	56.4	80.8	71.9	76.1	62.3
\rightarrow 3)- β -D-Glc <i>p</i> NAc	$^{1}\mathrm{H}$	5.16	4.00	3.91	3.62	3.89	3.77; 3.90
	¹³ C	92.3	53.7	78.2	71.9	72.9	62.3

Таблица 6. Данные спектров ЯМР ОПС *E. cloacae* Об (G3422) и олигосахарида (OC), полученного сольволизом CF₃CO₂H

Сигналы N-ацетильной группы находятся при ${}^{a}\delta_{H}$ 2.05 м.д., δ_{C} 23.4 (Me) и 175.4 (CO) м.д.; ${}^{6}\delta_{H}$ 2.06 м.д., δ_{C} 23.4 (Me) и 175.5 (CO) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
→2)-α-L-Rhap-(1→	$^{1}\mathrm{H}$	5.02	4.09	3.91	3.56	3.75	1.31
	¹³ C	100.2	76.3	70.6	73.1	70.7	18.0
\rightarrow 2)- α -L-Rhap-(1 \rightarrow	${}^{1}\mathrm{H}$	5.10	4.07	3.89	3.45	3.73	1.28
	¹³ C	101.9	79.5	71.2	73.4	70.5	17.9
\rightarrow 2)- α -L-Rhap-(1 \rightarrow	${}^{1}\mathrm{H}$	5.35	4.04	3.90	3.41	3.80	1.24
	¹³ C	100.5	79.4	71.3	73.5	70.1	17.8
\rightarrow 4)- α -D-Gal p -(1 \rightarrow	${}^{1}\mathrm{H}$	5.31	3.99	3.98	4.38	4.16	
D	¹³ C	102.1	69.5	71.6	77.5	72.7	175.5
\rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow	${}^{1}\mathrm{H}$	5.01	4.04	3.95	3.73	4.04	3.81, 3.84
	¹³ C	96.5	53.2	81.0	71.6	72.9	61.4

Таблица 7. Данные спектров ЯМР О-дезацетилированного ОПС Е. cloacae О7 (G2277)

Сигналы N-ацетильной группы находятся при $\delta_{\rm H}$ 2.01 м.д., δ_{C} 23.1 (Me) и 175.7 (CO) м.д.

Таблица 8а. Данные спектров ЯМР ОПС Е. cloacae O11 (G2559)

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
\rightarrow 2,4)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.35	4.05	4.29	3.98	4.22	3.83
Α	¹³ C	100.3	80.0	72.0	72.5	72.0	61.6
\rightarrow 2)- β -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	4.82	4.00	3.72	3.62	3.40	3.73; 3.92
В	¹³ C	98.5	76.3	75.3	68.3	78.3	62.3
\rightarrow 3)- α -D-Fuc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.81	4.24	4.07	3.98	4.14	1.23
С	¹³ C	102.6	50.2	78.0	72.5	68.1	16.7
\rightarrow 6)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.02	4.14	3.87	3.95	3.82	3.50; 4.06
D	¹³ C	104.0	71.3	71.7	67.7	72.9	66.2
\rightarrow 3)- α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.37	3.59	3.72	3.42	3.78	3.19; 3.88
E	¹³ C	100.9	73.6	74.3	70.9	73.8	62.1

Сигналы N-ацетильной группы находятся при $\delta_{\rm H}$ 2.04 м.д., $\delta_{\rm C}$ 23.4 (Me) и 175.3 (CO) м.д.

Таблица 86. Данные спектров ЯМР продуктов распада по Смиту ОПС *E. cloacae* O11 (G2559)

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
Гликозид 1							
α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.04	4.02	3.85	3.95	3.87	3.73; 3.78
Α	¹³ C	100.6	71.2	71.8	67.9	74.3	63.4
\rightarrow 2)-D-Man*	$^{1}\mathrm{H}$	5.14	3.89	3.78	3.79	4.24	3.63; 3.73
В	¹³ C	103.9	77.2	60.5	67.1	78.0	63.2
Гликозид 2							
α -L-Fuc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.84	4.16	3.93	3.83	4.04	1.25
С	¹³ C	99.1	50.8	69.8	72.3	68.0	16.6
\rightarrow 1)-Gro	$^{1}\mathrm{H}$	3.53; 3.71	3.92	3.63; 3.73			
D	¹³ C	69.9	71.9	63.2			

D-Man* – деградированный остаток маннозы В.

Остаток	Ядро	1	2	3	4	5	6 (6a,6b)
OПC ^a							
α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.35	3.56	3.75	3.43	4.00	3.75; 3.86
	¹³ C	99.8	73.0	74.2	70.8	73.4	61.7
α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.07	4.03	3.66	3.40	3.99	1.33
	¹³ C	102.4	71.2	71.6	73.5	69.9	17.9
\rightarrow 3)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	4.82	4.07	3.81	3.52	3.79	1.31
	¹³ C	101.6	68.4	77.7	71.4	69.9	17.8
\rightarrow 3,6)- α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.47	3.63	3.82	3.75	3.82	3.83; 3.84
	¹³ C	99.8	71.6	81.5	70.5	71.6	66.9
\rightarrow 2,4)- β -D-GlcpA-(1 \rightarrow	$^{1}\mathrm{H}$	4.68	3.50	3.90	3.83	3.77	-
	¹³ C	101.1	79.8	78.4	77.6	77.8	176.1
\rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.95	4.1	4.14	3.68	4.22	3.85; 3.85
	¹³ C	96.2	54.5	77.0	69.4	71.5	61.8
OC ^b							
\rightarrow 3)- α -L-Rha $p(1\rightarrow$	$^{1}\mathrm{H}$	4.87	4.12	3.85	3.51	3.81	1.33
	¹³ C	101.7	68.1	76.8	71.5	70.0	18.0
\rightarrow 6)- α -D-Glcp-(1 \rightarrow	$^{1}\mathrm{H}$	5.48	3.52	3.69	3.48	3.80	3.80; 3.86
	¹³ C	99.8	73.1	74.1	70.2	72.3	67.2
→4)-β-D-GlcpA-(1→	$^{1}\mathrm{H}$	4.52	3.38	3.76	3.80	3.79	с
	¹³ C	104.1	74.1	77.9	77.9	77.9	
\rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow	$^{1}\mathrm{H}$	5.02	4.13	3.98	3.63	4.00	3.82; 3.83
	¹³ C	95.8	53.8	81.2	69.4	73.0	61.5

Таблица 9. Данные спектров ЯМР ОПС *Е. cloacae* O12 (C3969) и продукта его распада по Смиту (OC)

Сигналы N-ацетильной группы находятся при: ${}^{a}\delta_{H}$ 2.03 м.д., δ_{C} 23.3 (Me) и 174.9 (CO) м.д.; b 2.03 м.д., δ_{C} 23.3 (Me) и 174.9 (CO) м.д.

^сСигнал не найден.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
ОПСа							
α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	5.07	4.02	3.64	3.38	3.95	1.28
	¹³ C	102.6	71.6	71.9	73.6	70.3	17.7
\rightarrow 3)- α -L-Rhap-(1 \rightarrow	$^{1}\mathrm{H}$	4.82	4.08	3.82	3.51	3.77	1.30
	¹³ C	101.6	68.2	77.5	71.9	70.0	17.9
\rightarrow 6)- α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.44	3.53	3.66	3.47	3.72	3.76; 3.83
	¹³ C	100.1	70.8	74.2	70.4	72.5	66.7
→2,4)- β -D-GlcpA-(1→	$^{1}\mathrm{H}$	4.71	3.52	3.89	3.87	3.91	
	¹³ C	101.3	79.7	78.1	77.9	76.7	175.6
\rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.97	4.06	4.13	3.59	3.99	3.80
	¹³ C	95.7	54.4	77.7	69.7	73.1	61.8
OC^{6}							
α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.46	3.52	3.67	3.36	3.69	3.77
	¹³ C	99.6	73.0	74.2	70.7	73.1	61.6
→4)-β-D-GlcpA-(1→	$^{1}\mathrm{H}$	4.52	3.38	3.75	3.81	3.78	-
	¹³ C	104.1	74.3	77.2	77.5	77.5	176.7
\rightarrow 3)- α -D-Glc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	5.00	4.13	3.97	3.63	3.99	3.82
	¹³ C	95.8	53.8	81.2	69.4	72.9	64.2
\rightarrow 3)- α -L-Rha-ol	$^{1}\mathrm{H}$	5.12	4.04	3.83	3.52	3.89	1.29
	¹³ C	95.1	68.8	76.7	71.5	73.3	18.2

Таблица 10. Данные спектров ЯМР ОПС *E. cloacae* O16 (G2649) и олигосахарида (OC), полученного сольволизом CF₃CO₂H с последующим восстановлением NaBH₄

Сигналы N-ацетильной группы находятся при ^аб_H 2.05 м.д., б_C 24.5 (Ме) и 174.6 (СО) м.д.; ⁶б_H 2.02 м.д., б_C 23.3 (Ме) и 175.1 (СО) м.д.

Таблица 11. Данные спектров ЯМР олигосахарида (OC), полученного при мягком кислотном гидролизе ЛПС, и О-дезацилированного ЛПС *E. cloacae* O19 (G6285)

Остаток	Ядро	1	2	3 (3ax, 3eq)	4	5	6 (6a, 6b)	7	8	9
OC ^a										
β -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	4.45	3.53	3.62	3.91	3.66	3.74; 3.77			
	¹³ C	105.9	71.8	73.6	69.7	76.1	62.2			
\rightarrow 3)- β -D-Gal <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.68	4.01	3.89	4.14	3.67	3.74; 3.77			
	¹³ C	103.7	52.7	80.8	69.2	75.7	62.2			
\rightarrow 4)- α -D-Gal <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.00	3.64	3.78	4.14	3.75	3.70; 3.82			
-	¹³ C	96.0	69.4	70.6	77.8	71.6	61.4			
\rightarrow 4)- β -Legp5Ac7Ac	$^{1}\mathrm{H}$			1.75; 2.37	3.99	3.83	4.28	3.87	3.86	1.15
	¹³ C	174.8	97.6	37.4	73.1	73.1	70.5	54.6	67.3	20.4
О-Дезацилированный ЛПС	5									
\rightarrow 3)- β -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	4.49	3.57	4.06	3.96	3.60	3.73; 3.78			
	¹³ C	105.7	70.2	77.0	68.5	76.1	62.3			
\rightarrow 3)- β -D-Gal <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.71	4.03	3.91	4.12	3.69	3.73; 3.78			
	¹³ C	103.5	52.8	80.6	69.3	75.8	62.3			
\rightarrow 4)- α -D-Gal <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.04	3.68	3.79	4.14	3.74	3.68; 3.79			
	¹³ C	96.3	69.5	70.7	77.8	71.7	61.5			
\rightarrow 4)- α -Legp5Ac7Ac-(1 \rightarrow	$^{1}\mathrm{H}$			1.66; 2.95	3.92	3.84	3.65	3.88	3.93	1.16
	¹³ C			38.4	72.7	51.1	55.2	55.2	68.3	19.5

Сигналы N-ацетильной группы находятся при ^аб_н 1.98 и 1.99 м.д.; б_с 22.9-23.6 (Ме) и 174.9-176.1 (СО) м.д.; ⁶б_н 1.95 и 1.99 м.д.; б_с 23.2-23.7 (Ме) и 174.5-174.9 (СО) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
ОПС							
\rightarrow 3)- α -D-Glc <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	5.06	4.01	3.74	3.59	4.14	3.81; 3.84
Α	¹³ C	98.5	54.2	80.9	69.3	73.1	61.3
\rightarrow 3)- β -D-Qui <i>p</i> 4N-(1 \rightarrow	$^{1}\mathrm{H}$	4.42	3.42	3.72	3.81	3.55	1.16
В	¹³ C	103.6	73.4	78.8	57.4	72/0	18.1
\rightarrow 2,3)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.04	4.18	4.02	3.94	3.75	3.77; 3.89
С	¹³ C	100.5	79.5	76.6	66.9	74.4	62.3
→4)-α-L-Rhap-(1→	$^{1}\mathrm{H}$	4.85	3.75	3.81	3.51	4.04	1.24
D	¹³ C	102.3	72.2	70.3	82.9	69.0	18.0
α -D-Gal p -(1 \rightarrow	${}^{1}\mathrm{H}$	5.27	3.83	3.88	3.95	4.18	3.71; 3.76
Ε	¹³ C	101.8	70.0	70.7	70.8	72.6	62.6
R3Hb	$^{1}\mathrm{H}$		2.34	4.11	1.20		
	¹³ C	174.9	46.2	66.2	23.5		
OC1							
α-D-GlcpNAc-(1→	$^{1}\mathrm{H}$	5.10	3.88	3.74	3.54	4.15	3.80; 3.84
Α	¹³ C	98.4	54.8	72.2	70.7	72.8	61.2
\rightarrow 3)- β -D-Quip4N-(1 \rightarrow	$^{1}\mathrm{H}$	4.48	3.46	3.73	3.79	3.56	1.21
В	¹³ C	103.1	73.4	78.7	57.7	72.2	17.9
\rightarrow 2)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.18	4.16	3.93	3.72	3.84	3.82; 3.86
С	¹³ C	99.3	79.3	70.9	68.2	74.1	61.7
\rightarrow 3)-1dEry-ol	$^{1}\mathrm{H}$	1.22	4.05	3.72	3.73; 3.73		
	¹³ C	18.3	67.7	83.6	61.9		
<i>R</i> 3Hb	$^{1}\mathrm{H}$		2.36	4.14	1.23		
	¹³ C	174.9	46.2	66.2	23.5		
OC2							
α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	5.29	3.83	3.89	3.96	4.20	3.71; 3.77
Ε	¹³ C	101.7	70.0	70.7	70.8	72.7	62.7

Таблица 12. Данные спектров ЯМР ОПС *E. coli* ОЗ9 и продуктов его распада по Смиту (OC1) и сольволиза CF₃CO₂H (OC2)

α-D-GlcpNAc-(1→	$^{1}\mathrm{H}$	5.09	3.88	3.74	3.55	4.15	3.83; 3.86
Α	¹³ C	98.5	54.9	72.3	70.7	72.9	61.2
\rightarrow 3)- β -D-Quip4N-(1 \rightarrow	$^{1}\mathrm{H}$	4.44	3.42	3.72	3.82	3.56	1.17
В	¹³ C	103.7	73.5	78.7	57.4	72.1	18.2
\rightarrow 2,3)- α -D-Manp-(1 \rightarrow	$^{1}\mathrm{H}$	5.07	4.21	4.05	3.96	3.98	3.81; 3.85
С	¹³ C	100.7	79.7	76.4	67.4	74.3	61.2
\rightarrow 4)- α -L-Rhap	$^{1}\mathrm{H}$	5.11	3.93	3.88	3.54	3.94	1.29
Dα	¹³ C	95.0	72.4	70.1	83.2	68.5	18.4
\rightarrow 4)- β -L-Rhap	${}^{1}\mathrm{H}$	4.86	3.93	3.72	3.47	3.47	1.30
Dβ	¹³ C	94.8	72.8	73.8	82.7	72.1	18.3
<i>R</i> 3Hb	${}^{1}\mathrm{H}$		2.36	4.15	1.22		
	¹³ C	175.0	46.2	66.2	23.5		

Сигналы N-ацетильной группы находятся при δ_H 2.06-2.07 м.д., δ_C 23.5 (Me) и 175.5 (CO) м.д.

Таблица 13. Данные спектров ЯМР О-дезацетилированного ОПС *E. coli* O43, модифицированного полисахарида (МПС), полученного распадом ОПС по Смиту, и олигосахарида (ОС), полученного сольволизом CF₃CO₂H

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)				
О-Дезацетилированный ОПС ^а											
α -L-Fuc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.04	3.82	4.09	3.87	4.78	1.27				
Α	¹³ C	96.0	69.4	70.8	73.3	67.9	16.4				
\rightarrow 2,4)- β -D-Man p -(1 \rightarrow	${}^{1}\mathrm{H}$	5.05	4.28	3.83	4.02	3.47	3.74; 3.92				
В	¹³ C	98.3	68.3	75.7	71.9	77.0	61.5				
\rightarrow 3)- α -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	5.12	4.23	4.14	3.80	3.81	3.78; 3.89				
С	¹³ C	103.2	68.5	78.7	66.5	74.4	62.3				
\rightarrow 3)- α -L-Fuc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.00	3.83	4.06	3.97	4.13	1.16				
D	¹³ C	102.6	68.7	78.2	70.8	68.5	16.3				
\rightarrow 3)- β -D-GalpNAc-(1 \rightarrow	${}^{1}\mathrm{H}$	4.49	4.04	3.77	3.96	3.62	3.74				
Ε	¹³ C	102.0	52.8	79.6	69.9	76.0	63.6				

MΠC ^o							
\rightarrow 4)- β -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	4.85	4.13	3.80	3.77	3.46	3.75;3.85
В	¹³ C	98.2	72.0	73.0	78.3	76.0	61.7
\rightarrow 3)- α -D-Manp-(1 \rightarrow	${}^{1}\mathrm{H}$	4.55	4.23	4.14	3.79	3.78	3.78
С	¹³ C	102.8	68.4	78.4	66.4	74.3	62.1
\rightarrow 3)- α -L-Fuc <i>p</i> -(1 \rightarrow	${}^{1}\mathrm{H}$	5.01	3.82	4.02	3.96	4.13	1.17
D	¹³ C	102.4	68.6	78.3	72.8	68.4	16.4
\rightarrow 3)- β -D-GalpNAc-(1 \rightarrow	${}^{1}\mathrm{H}$	5.12	4.06	3.83	3.98	3.77	3.78;3.88
Ε	¹³ C	103.2	52.8	79.4	68.9	76.4	62.2
OC							
$\frac{\text{OC}}{\beta\text{-D-Man}p\text{-}(1\rightarrow$	¹ H	4.86	4.07	3.68	3.61	3.42	3.78; 3.94
$\frac{\text{OC}}{\beta\text{-D-Man}p\text{-}(1\rightarrow \mathbf{B})}$	¹ H ¹³ C	4.86 98.4	4.07 72.0	3.68 74.1	3.61 68.0	3.42 77.5	3.78; 3.94 62.2
OC β -D-Man p -(1 \rightarrow B \rightarrow 3)- α -D-Man p -(1 \rightarrow	¹ H ¹³ C ¹ H	4.86 98.4 5.15	4.07 72.0 4.27	3.68 74.1 4.17	3.61 68.0 3.82	3.42 77.5 3.83	3.78; 3.94 62.2 3.80; 3.91
OC β -D-Man p -(1 \rightarrow B \rightarrow 3)- α -D-Man p -(1 \rightarrow C	¹ H ¹³ C ¹ H ¹³ C	4.86 98.4 5.15 103.3	4.07 72.0 4.27 68.5	3.68 74.1 4.17 78.5	3.61 68.0 3.82 66.4	3.42 77.5 3.83 74.3	3.78; 3.94 62.2 3.80; 3.91 62.1
OC β -D-Man p -(1 \rightarrow B \rightarrow 3)- α -D-Man p -(1 \rightarrow C \rightarrow 3)- α -L-Fuc p	¹ H ¹³ C ¹ H ¹³ C ¹ H	4.86 98.4 5.15 103.3 4.21	4.07 72.0 4.27 68.5 3.88	3.68 74.1 4.17 78.5 3.94	3.61 68.0 3.82 66.4 3.94	3.42 77.5 3.83 74.3 4.22	3.78; 3.94 62.2 3.80; 3.91 62.1 1.19
OC β -D-Man p -(1 \rightarrow B \rightarrow 3)- α -D-Man p -(1 \rightarrow C \rightarrow 3)- α -L-Fuc p D α	¹ H ¹³ C ¹ H ¹³ C ¹ H ¹³ C	4.86 98.4 5.15 103.3 4.21 93.4	4.07 72.0 4.27 68.5 3.88 68.5	3.68 74.1 4.17 78.5 3.94 78.5	3.61 68.0 3.82 66.4 3.94 72.8	3.42 77.5 3.83 74.3 4.22 67.5	3.78; 3.94 62.2 3.80; 3.91 62.1 1.19 16.5
OC β -D-Man p -(1 \rightarrow B \rightarrow 3)- α -D-Man p -(1 \rightarrow C \rightarrow 3)- α -L-Fuc p D α \rightarrow 3)- β -L-Fuc p	¹ H ¹³ C ¹ H ¹³ C ¹ H ¹³ C ¹ H	4.86 98.4 5.15 103.3 4.21 93.4 4.61	4.07 72.0 4.27 68.5 3.88 68.5 3.57	3.68 74.1 4.17 78.5 3.94 78.5 3.74	3.61 68.0 3.82 66.4 3.94 72.8 3.91	3.42 77.5 3.83 74.3 4.22 67.5 3.82	3.78; 3.94 62.2 3.80; 3.91 62.1 1.19 16.5 1.23

Сигналы N-ацетильной группы находятся при ${}^{a}\delta_{H}$ 2.02 м.д., δ_{C} 23.4 (Me) и 175.6 (CO) м.д.; ${}^{6}\delta_{H}$ 2.07 м.д., δ_{C} 23.4 (Me) и 176.1 (CO) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
→4)-β-D-GlcA-(1→	$^{1}\mathrm{H}$	4.60	3.39	3.72	3.96	4.11	
	¹³ C	104.2	73.5	74.9	77.8	74.9	171.7
\rightarrow 6)- β -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	4.37	3.54	3.92	3.91	3.86	3.93; 4.00
	¹³ C	104.7	71.8	73.5	69.8	75.0	70.8
\rightarrow 6)- β -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	4.51	3.28	3.45	3.45	3.54	3.79; 4.19
	¹³ C	105.4	74.0	76.7	70.6	75.3	69.9
\rightarrow 3)- β -D-GalNAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.49	3.99	3.85	4.17	3.68	3.75; 3.80
	¹³ C	100.9	52.4	81.5	69.0	75.8	62.3
L-Thr	$^{1}\mathrm{H}$		4.45	4.41	1.24		
	¹³ C	175.5	60.1	68.5	20.3		

Таблица 14. Данные спектров ЯМР О-дезацетилированного ОПС E. coli O46

Сигналы N-ацетильной группы находятся при $\delta_{\rm H}\,2.00$ м.д., $\delta_{C}\,23.6$ (Me) и 176.0 (CO) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
OПC ^a							
\rightarrow 3,6)- α -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	5.17	4.26	3.90	4.05	3.89	3.55; 4.10
	¹³ C	102.8	67.2	75.8	65.4	72.8	65.9
\rightarrow 2,3)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.19	4.25	4.05	3.96	3.72	3.77; 3.84
	¹³ C	101.7	78.5	79.1	67.6	74.6	61.8
\rightarrow 2)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.29	4.11	4.02	3.76	3.99	3.77; 3.83
	¹³ C	100.9	79.1	71.4	67.8	73.9	62.0
\rightarrow 2)- β -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	4.76	3.94	3.71	3.62	3.40	3.74; 3.92
	¹³ C	101.1	77.5	75.0	68.0	78.0	62.1
\rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow ^a	$^{1}\mathrm{H}$	4.88	4.08	3.92	3.55	3.74	3.83; 3.87
	¹³ C	98.1	54.1	81.2	69.5	73.1	61.8
α -L-Rha <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	4.08	3.99	3.85	3.47	3.92	1.27
	¹³ C	97.3	71.6	71.4	73.2	69.9	17.8
α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.26	3.58	3.68	3.43	3.71	3.83; 3.87
	¹³ C	101.7	72.8	74.2	70.8	74.2	62.0
MΠC ⁶							
\rightarrow 6)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.14	4.06	3.85	3.96	3.85	3.55; 4.09
	¹³ C	103.1	71.4	72.1	67.3	73.0	66.2
\rightarrow 2,3)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.21	4.26	4.07	3.96	3.72	3.77; 3.83
	¹³ C	102.0	78.4	79.2	67.9	74.7	61.9
\rightarrow 2)- α -D-Manp-(1 \rightarrow	$^{1}\mathrm{H}$	5.29	4.10	4.02	3.76	4.00	3.76; 3.83
	¹³ C	101.9	79.4	71.5	67.8	74.0	62.1
\rightarrow 2)- β -D-Man p -(1 \rightarrow	$^{1}\mathrm{H}$	4.76	3.94	3.71	3.61	3.40	3.73; 3.93
	¹³ C	101.4	77.7	75.1	68.1	78.2	62.3
\rightarrow 3)- α -D-GlcpNAc-(1 \rightarrow^{b}	$^{1}\mathrm{H}$	4.87	4.07	3.94	3.56	3.75	3.77; 3.86
	¹³ C	98.3	54.4	81.4	69.6	73.3	61.9
α -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.24	3.58	3.68	3.42	3.72	3.84; 3.88
	¹³ C	101.9	73.0	74.3	71.0	74.1	62.1

Таблица 15. Данные спектров ЯМР ОПС *E. coli* Об8 и модифицированного полисахарида (МПС), полученного сольволиза CF₃CO₂H

Сигналы N-ацетильной группы находятся при ${}^{a}\delta_{H}$ 2.04 м.д., δ_{C} 23.2 (Me) и 175.1 (CO) м.д.; ${}^{6}\delta_{H}$ 2.05 м.д., δ_{C} 23.4 (Me) и 175.4 (CO) м.д.

Остаток	Ядро	1	2	3	4	5	6 (6a, 6b)
OПC ^a							
\rightarrow 2,6)- β -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	4.62	3.43	3.67	3.45	3.50	3.84, 4.04
	¹³ C	102.8	79.0	77.9	70.7	75.5	69.3
\rightarrow 3)- β -D-Gal <i>p</i> NAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.48	3.91	3.89	4.08	3.74	3.80
	¹³ C	103.2	52.4	77.9	69.1	76.1	62.0
→4)-β-D-GlcpA-(1→	$^{1}\mathrm{H}$	4.59	3.26	3.63	3.72	3.73	
	¹³ C	103.9	73.6	74.8	81.4	76.4	172.9
\rightarrow 3,4)- β -D-GlcpNAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.57	3.97	4.03	3.71	3.56	3.87, 3.99
	¹³ C	102.3	56.6	78.4	74.2	76.7	61.1
α -L-Fuc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.25	3.78	3.67	3.74	4.20	1.20
	¹³ C	100.2	69.3	70.7	72.9 ⁶	67.8	16.3
α -L-Fuc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	4.98	3.77	3.75	3.74	4.71	1.17
	¹³ C	99.4	69.3	70.3	73.1 ⁶	67.5	16.5
OC1 ^B							
β-D-GlcpA-(1→	$^{1}\mathrm{H}$	4.51	3.34	3.50	3.51	3.74	
	¹³ C	104.0	74.0	76.6	72.9	77.0	
\rightarrow 3)- α -D-GlcpNAc	$^{1}\mathrm{H}$	5.16	4.05	3.90	3.57	3.88	3.82
	¹³ C	92.3	54.1	81.8	70.0	72.6	61.8
β-D-GlcpA-(1→	$^{1}\mathrm{H}$	4.47	3.34	3.50	3.51	3.74	
	¹³ C	104.1	74.0	76.6	72.9	77.0	
\rightarrow 3)- β -D-GlcpNAc	$^{1}\mathrm{H}$	4.72	3.82	3.72	3.54	3.48	3.78, 3.89
	¹³ C	96.0	56.8	84.2	69.9	76.8	62.0
OC2 ^B							
β-D-Glc <i>p</i> -(1→	$^{1}\mathrm{H}$	4.55	3.29	3.45	3.40	3.41	3.73, 3.88
	¹³ C	105.4	74.1 ^г	76.8	70.7	76.9	61.7

Таблица 16. Данные спектров ЯМР ОПС *E. coli* О80 и олигосахаридов, полученных сольволизом CF₃CO₂H (ОС1 и ОС2) и распадом по Смиту (ОС3)

\rightarrow 3)- α -D-Gal <i>p</i> NAc	$^{1}\mathrm{H}$	5.21	4.29	4.02	4.24	4.13	3.73
	¹³ C	92.4	50.2	78.5	69.9	71.5	62.4
β-D-Glc <i>p</i> -(1→	$^{1}\mathrm{H}$	4.49	3.29	3.45	3.40	3.41	3.73, 3.88
	¹³ C	105.5	74.2 ^г	76.8	70.7	76.9	61.7
\rightarrow 3)- β -D-Gal <i>p</i> NAc	$^{1}\mathrm{H}$	4.96	3.99	3.84	4.17	3.70	3.78
	¹³ C	96.4	53.7	81.6	69.2	76.1	62.2
OC3 ^{<i>^д</i>}							
β-D-Gal <i>p</i> NAc-(1→	$^{1}\mathrm{H}$	4.47	3.89	3.70	3.93	3.70	3.77, 3.81
	¹³ C	102.3	53.6	72.3	69.8	76.5	62.3
→4)-β-D-GlcpA-(1→	$^{1}\mathrm{H}$	4.48	3.38	3.60	3.77	3.73	
	¹³ C	104.3	73.7	74.9	80.8	77.6	
\rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow	$^{1}\mathrm{H}$	4.53	3.86	3.75	3.52	3.48	3.76, 3.92
	¹³ C	102.6	55.7	83.4	69.0	76.6	61.9
→1)-Gro	$^{1}\mathrm{H}$	3.62, 3	3.85	3.54,	3		
	¹³ C	72.1	71.7	63.6			

Сигналы N-ацетильной группы находятся при ^а $\delta_{\rm H}$ 2.02 и 2.08 м.д. (Me), $\delta_{\rm C}$ 23.5, 23.6 (Me), 174.8 и 175.3 (CO) м.д.; ^в $\delta_{\rm H}$ 2.02 и 2.03 м.д. (Me), $\delta_{\rm C}$ 23.2-23.5 (Me) и 175.9 (CO) м.д.; ^д $\delta_{\rm H}$ 2.02 и 2.04 м.д. (Me), $\delta_{\rm C}$ 23.4, 23.7 (Me) и 175.9 (CO) м.д.

б,гЗначения взаимозаменяемы.

Остаток	Ядро	1 (1a, 1b)	2	3 (3a, 3b)	4	5	6 (6a, 6b)
ОПС ^а							
β -D-Glc <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	4.46	3.27	3.27	3.38	3.42	3.79; 3.90
	¹³ C	104.7	75.3	77.8	71.8	78.0	62.8
β -D-Glc <i>p</i> A-(1 \rightarrow	$^{1}\mathrm{H}$	4.94	3.30	3.55	3.53	3.76	
	¹³ C	103.9	75.6	77.7	73.9	77.6	176.6
\rightarrow 3,4)- α -D-Gal <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	4.97	4.04	4.07	4.47	4.15	3.86; 4.06
	¹³ C	100.4	69.7	81.3	78.3	72.1	71.8
\rightarrow 6)- α -D-Man <i>p</i> -(1 \rightarrow	${}^{1}\mathrm{H}$	5.06	4.08	3.87	3.95	3.83	3.54; 4.17
	¹³ C	104.3	72.2	73.5	68.1	72.7	67.4
\rightarrow 2)- α -D-Man <i>p</i> -(1 \rightarrow	$^{1}\mathrm{H}$	5.13	4.01	3.84	3.72	3.55	3.75; 3.84
	¹³ C	96.7	80.7	72.5	68.4	75.6	63.0
\rightarrow 3)- β -D-Gal <i>p</i> NAc-(1 \rightarrow	${}^{1}\mathrm{H}$	4.72	4.04	3.83	4.13	3.64	3.79; 3.79
	¹³ C	105.3	53.2	77.6	65.7	76.8	63.2
ΟC ⁶							
β-D-Gal <i>p</i> NAc-(1→	$^{1}\mathrm{H}$	4.63	3.94	3.75	3.94	3.68	3.77; 3.80
	¹³ C	104.3	53.8	72.0	68.9	76.1	62.1
\rightarrow 3)- α -D-Gal p -(1 \rightarrow	$^{1}\mathrm{H}$	4.92	3.89	3.96	4.22	3.95	3.78; 3.78
	¹³ C	99.7	68.6	80.3	70.4	71.7	62.2
\rightarrow 1)-Gro	${}^{1}\mathrm{H}$	3.58; 3.77	3.95	3.65; 3.69			
D	¹³ C	69.7	71.6	63.6			

Таблица 17. Данные спектров ЯМР ОПС *E. coli* О169 и продукта его распада по Смиту (OC)

Сигналы N-ацетильной группы находятся при ${}^{a}\delta_{H}$ 2.02 м.д., δ_{C} 24.6 (Me) и 176.6 (CO) м.д.; ${}^{6}\delta_{H}$ 2.04 м.д., δ_{C} 23.4 (Me) и 176,6 (CO) м.д.