ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н. Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

10 hypersol

КУЗНЕЦОВ ЮРИЙ ВЛАДИМИРОВИЧ

НОВЫЕ СТЕРОИДНЫЕ АНТИЭСТРОГЕНЫ. 3,20-ДИГИДРОКСИ-19-НОРПРЕГНАТРИЕНЫ: СИНТЕЗ, МОЛЕКУЛЯРНОЕ МОДЕЛИРОВАНИЕ И БИОЛОГИЧЕСКАЯ ОЦЕНКА

02.00.03 - Органическая химия

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: Д.х.н., ведущий научный сотрудник ЛЕВИНА ИННА СОЛОМОНОВНА

Москва 2018

ВВЕДІ	ЕНИЕ	4
1.	СОВРЕМЕННЫЕ ПОДХОДЫ К МОДИФИКАЦИИ СТЕРОИДОВ РЯДА ЭСТРА	
	1,3,5(10)-ТРИЕНА (литературный обзор)	9
a.	Кольцо А	10
b.	Кольцо В	25
c.	Кольцо С	29
d.	Кольцо D	31
d.	1 Реакции, протекающие без формального разрыва кольца D	32
d.2	2 Реакции расщепления кольца D и его обратная сборка	54
Закл	тючение к обзору	59
2.	ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ	61
2.1	Синтез 3,20-дигидрокси-19-норпрегна-1,3,5(10)-триенов 13β-ряда	62
2.1	1.1 Оптимизированный синтез 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она	62
2.1	1.2 Синтез моно- и дигидроксипроизводных прегнатриенов 13β-ряда с	
	дополнительным шестичленным карбоциклом	74
2.1	1.3 Синтез дигидроксипроизводных прегнатриенов 13β-ряда с дополнительным	
	трехчленным карбоциклом и без дополнительного карбоцикла	77
2.2	Синтез 3,20-дигидрокси-13α-19-норпрегна-1,3,5(10)-триенов	83
2.2	2.1 Синтез ключевых исходных соединений	83
2.2	2.2 Особенности катализируемой кислотами Льюиса реакции Дильса-Альдера в ряд	цy
	13α-19-норпрегнатриенов и синтез 3,20-дигидрокси-16α,17α-циклогексано-13α-	
	19-норпрегнатриенов	85
2.2	2.3 Синтез 3,20-дигидрокси-13α-19-норпрегнатриенов с дополнительным	
	трехчленным карбоциклом и без дополнительного карбоцикла	88
2.3	Оценка биологической активности целевых соединений	95
2.3	3.1 Антипролиферативные свойства целевых соединений (цитотоксичность)	95
2.3	3.2 Влияние целевых соединений на транскрипционную активность эстрогенного	
	рецептора α	97
2.4	Молекулярное моделирование взаимодействия 3,20-дигидрокси-19-	
	норпрегнатриенов 13β- и 13α-рядов с ΕRα1	01
Закл	тючение1	09
3.	ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ 1	12
3.1	Экспериментальная часть к разделу 2.1 1	13
3.2	Экспериментальная часть к разделу 2.2 1	27

3.3	Экспериментальная часть к разделу 2.3	
3.4	Экспериментальная часть к разделу 2.4	
выво	ды	
СПИС	ОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	
СПИС	ОК ЛИТЕРАТУРЫ	

ВВЕДЕНИЕ

темы Разработка эффективных Актуальность исследования. лекарственных средств для лечения гормонозависимых форм рака является важным направлением медицинской химии. Одной из областей интенсивных исследований является поиск новых стероидных антагонистов стероидных гормонов, в частности, эстрогенов. Эстрогены, главным из которых является эстрадиол (I), играют существенную роль в развитии женской репродуктивной системы и, помимо этого, регулируют и другие важные стороны физиологии эффекты эстрогенов являются человека. Некоторые полезными (защита сердечнососудистой и центральной нервной систем, сохранение здоровья костей), в то время как пролиферативные эффекты эстрогенов в некоторых тканях органов-мишеней – таргетных тканях – могут быть патологическими (неконтролируемая пролиферация). Рак молочной железы (РМЖ) является одним из самым распространенных онкологических заболеваний и наиболее частой причиной смерти в онкологии среди женщин во всем мире [1]. Подавляющее большинство злокачественных опухолей молочной железы (65-75%) представлено гормонозависимыми новообразованиями, а пролиферация ER-положительных клеток рака в значительной степени зависит от эстрогенов [2].

Исходя из этого, основными стратегиями гормональной терапии являются блокирование биосинтеза эстрогенов ингибиторами ароматазы [3] или стероидной сульфатазы [4], и, поскольку эстрогены реализуют большинство своих функций посредством взаимодействия с рецепторами эстрогенов (ER), ингибирование собственно рецепторов селективными модуляторами рецепторов эстрогенов (SERMs) [5], либо разрушение рецепторов посредством селективных супрессоров (SERDs) [6,7]. Однако эффективность существующих лекарств ограничена возможной резистентностью, недостаточной тканевой селективностью и различными побочными действиями на нетаргетные ткани [8,9]. Поэтому поиск новых противоопухолевых соединений для антиэстрогенной терапии является

актуальной задачей, решение которой основывается на совместных достижениях химии, биологии и медицины.

Предметом настоящего исследования является новая серия стероидных антиэстрогенов, содержащих 3-гидроксиэстра-1,3,5(10)-триеновый скаффолд с природной 13β- и эпимерной 13α-конфигурациями, с 17-(1'-гидрокси)этильной боковой цепью (по сравнению с 17-гидроксильной группой природного гормона либо эстрадиола) И содержащих не содержащих дополнительный конденсированный в положениях 16,17 трех- или шестичленный карбоцикл. Эти соединения могут рассматриваться как производные 19-норпрегна-1,3,5(10)триенов, поскольку содержат прегнановую боковую цепь в положении 17. Логическими предпосылками для выбора предмета исследования явились проведенные ранее в нашей лаборатории исследования нового класса аналогов природного гормона прогестерона с дополнительным шестичленным кольцом, конденсированным с циклом D стероидной молекулы (прегна-D'-пентараны II), которые оказались высокоэффективными прогестинами in vitro и in vivo и проявили способность ингибировать рост раковых клеток [10,11]. Молекулярный докинг прегна-D'-пентаранов в лиганд-связывающий домен (LBD) рецептора прогестерона показал, что, несмотря на больший объем этих молекул по сравнению с прогестероном, они хорошо размещаются в LBD [11] (рис. 1). В то же время хорошо известно, что лиганд-связывающий домен рецептора эстрогенов (LBD ER) имеет значительно больший объем по сравнению с эндогенным лигандом и содержит несколько субкарманов, один из которых расположен в 16α,17α-области кольца D [12]. На основании проведенного нами молекулярного моделирования аналогичных прегна-D'-пентаранам стероидов с ароматическим кольцом А мы предположили, что они могут связываться с ER и, соответственно, проявлять эстрогенную либо антиэстрогенную активность (Рис. 1).

Целью настоящего исследования является создание новой серии биологически активных 19-норпрегнатриенов типа III природного и 13α-рядов, как содержащих, так и не содержащих дополнительный карбоцикл, для чего

Рис. 1 Структуры эстрадиола (I), пентациклического аналога прогестерона – прегна-D'-пентарана (II) и группы 3,20-дигидрокси-19-норпрегнатриенов с природной 13β-конфигурацией (III), а также расчетные положения стероидов II и III (n=4) в лиганд-связывающем кармане (LBP) рецепторов прогестерона и эстрогенов, соответственно. Положение лигандов и гидрофобные градиенты внутри LBP приведены по результатам расчетов в программе DOCK 6.5 [11,13].

требовалось разработать эффективные подходы к синтезу такой серии, получить целевые соединения, доказать их структуры, оценить возможности их связывания с рецептором эстрогенов методом молекулярного моделирования, изучить *in vitro* их биологические эффекты как потенциальных антиэстрогенов и выявить перспективные соединения-лидеры для последующего углубленного анализа их биологической активности.

Научная новизна и практическая значимость работы проведенных исследований заключается в том, что впервые:

 разработан эффективный синтез 3-метокси-19-норпрегна-1,3,5(10),16тетраен-20-она, как ключевого исходного соединения для последующих синтезов замещенных и незамещенных 3,20-дигидрокси-19норпрегнатриенов, и его неизвестного ранее 13α-аналога;

- разработаны методы синтеза и получены 3-метокси-16а,17α-циклогексанои -циклопропано-19-норпрегна-1,3,5(10)-триен-20-оны 13β- и 13α-рядов реакциями Дильса-Альдера и Кори-Чайковского, соответственно, и 3метокси-13β- и 13α-19-норпрегна-1,3,5(10)-триен-20-оны каталитическим гидрированием 16,17-двойной связи ключевых исходных стероидов;
- разработан новый способ одновременного восстановления 20-кетогруппы и деметилирования исходных 3-метокси-20-кетостероидов с помощью диизобутилалюминийгидрида (DIBAH) и синтезированы целевые 3,20дигидрокси-19-норпрегнатриены 13β- и 13α-рядов;
- методом молекулярного моделирования показано, что все целевые соединения связываются с ERα, но их комплексы с рецептором могут иметь различные конформации, определяющие их биологические эффекты;
- обнаружена высокая антипролиферативная (цитотоксическая) активность целевых соединений в отношении эстроген-зависимой линии клеток РМЖ;
- найдено, что большинство целевых соединений способны ингибировать рецептор эстрогенов;
- выявлены четыре соединения-лидера для последующего углубленного анализа их биологической активности.

Настоящая работа представляет собой комплексное исследование, направленное на разработку эффективного синтеза новой серии стероидных противоопухолевых агентов - 3,20-дигидрокси-19-норпрегна-1,3,5(10)-триенов эпимерных 13β- и 13α-рядов, как содержащих, так и не содержащих дополнительный карбоцикл в 16,17-положениях, и имеющее **практическое значение** для такой актуальной области медицины как гормональная терапия онкологических заболеваний.

Степень достоверности. Достоверность полученных результатов обеспечивается использованием комплекса современных физико-химических методов анализа, таких как одномерная и двумерная спектроскопия ЯМР, массспектрометрия высокого разрешения, рентгеноструктурный анализ. Экспериментальные и аналитические исследования выполнены на современном сертифицированном оборудовании. Биологические исследования проводились согласно общепринятым стандартным протоколам. Использованы современные системы сбора и обработки научно-технической информации: электронные базы данных Reaxys (Elsevier), SciFinder (CAS), Web of Science (Thomson Reuters), полные тексты статей и книг.

Основные результаты работы **опубликованы** в 3 оригинальных статьях в рецензируемых научных изданиях, входящих в перечень ВАК РФ, патенте РФ и 4 тезисах докладов российской и международных конференций.

Результаты работы были **представлены** на российских и международных конференциях: The 24th Conference on Isoprenoids (Białystok, Poland, 2018), VI Международная конференция «Химия, структура и функция биомолекул» (Минск, Белоруссия, 2018), The 23rd Conference on Isoprenoids (Minsk, Belarus, 2016), конференция «Медицинская и биоорганическая химия» кластера конференций по органической химии "Оргхим-2016" (Репино, Россия, 2016).

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, посвященного современным методам модификации эстрановых стероидов, обсуждения результатов, заключения, экспериментальной части, выводов, списка сокращений и условных обозначений и списка литературы. Материал диссертации изложен на 169 страницах машинописного текста, содержит 19 таблиц, 24 рисунка и 73 схемы, список цитируемой литературы насчитывает 292 наименования.

1. СОВРЕМЕННЫЕ ПОДХОДЫ К МОДИФИКАЦИИ СТЕРОИДОВ РЯДА ЭСТРА-1,3,5(10)-ТРИЕНА (литературный обзор)*

За последние два десятилетия вышло большое количество обзорных работ, посвященных биологическим свойствам эстрогенов и антиэстрогенов – как производных эстрадиола – 3,17β-дигидроксиэстра-1,3,5(10)-триена, так и нестероидных соединений [8,14-17]. В то же время обзоры, обобщающие методы синтеза подобных соединений, в литературе не представлены. Цель настоящего обзора – дать представление о современных методах модификации стероидов, в своей основе содержащих углеродный скелет эстрадиола – эстра-1,3,5(10)-триен, за последние 20 лет.

эстра-1,3,5(10)-триен

19-норпрегна-1,3,5(10)-триен

рецептора (SERD).

В данном обзоре и далее в представленной работе (в разделе «Результаты и их обсуждение») для описываемых стероидных соединений будут использоваться принятые в номенклатуре стероидов термины «эстран» и «прегнан». Термин же «эстроген» является названием класса стероидных половых гормонов, и в более широком, «биологическом», смысле под термином «эстрогены» или «антиэстрогены» подразумеваются как стероидные, нестероидные структуры, обладающие так И

характерными биологическими свойствами. В настоящем обзоре используются термины эстраны/замещенные эстраны/модифицированные эстраны, и лишь в заключении к обзору появятся термины эстрогены, антиэстрогены, селективные модуляторы эстрогенного рецептора (SERM) и селективные супрессоры (дегрейдеры) эстрогенного

В обзоре последовательно изложены методы введения заместителей в кольца A, B, C и D, а также получившие широкое распространение в последние

^{*} В этой главе используется независимая нумерация соединений, схем, таблиц и рисунков

годы методы расщепления кольца D и его обратной сборки. В обзоре опущены тривиальные реакции этерификации 3- и 17-гидроксильных групп, обращения конфигурации 17-гидроксигруппы, а также реакции 17-кетогруппы с реактивами Гриньяра или илидами фосфора, как и реакции 17α-этинилэстрадиола, характерные для химии ацетиленовых соединений и не затрагивающие основное стероидное ядро.

а. Кольцо А

В литературе за период 1998 – 2018 гг. описаны следующие методы модификации кольца А эстратриенов:

- галогенирование как правило, бромирование, с последующим замещением галогена, включающим промежуточное получение литийорганических производных, либо посредством реакций кросс-сочетания; иодирование в окислительных системах; селенирование, как промежуточная стадия введения галогена;
- нитрование с последующим восстановлением и реакциями полученной аминогруппы, в т.ч. с целью получения диазосоединений в синтезе фторидов;
- металлирование (литирование или вариант с использованием этилмагнийбромида), с последующим замещением металла на функциональную группу;
- 4) ацилирование, в т.ч. формилирование, и дальнейшие реакции по введенной ацильной группе конденсации, восстановление, окисление и т.п.;
- прочие методы введения заместителей в положения 2 и 4 эстратриенов, включающие алкилирование по Фриделю-Крафтсу, аминометилирование, пропаргилирование и арилирование в присутствии металлокомплексных катализаторов;
- 6) замещение 3-гидроксигруппы в производных эстрадиола.

а.1 Галогенирование

Галогенированные эстратриены – важные промежуточные соединения для биологически Наиболее получения многих активных производных. распространенным вариантом введения галогена в ароматическое кольцо А эстрановых стероидов является бромирование, осуществляемое как элементарным бромом, так И различными бромирующими агентами, как Nтакими бромсукцинимид, 1,3-дибром-5,5-диметилгидантоин. Чаще всего эти реакции отличаются относительно невысокой региоселективностью и приводят к смесям 2- и 4-бромпроизводных. Избыток бромирующего агента обычно приводит к 2,4дибромпроизводным. В качестве субстратов используются эстрадиол или эстрон, либо их 3-О-эфиры. Для удобства основные сведения о способах бромирования производных эстратриенов сведены в таблицу а.1.1.

Довольно емкое исследование галогенирования кольца А в 13-эпиэстроне и его эфирах бром- и йодсодержащими агентами представлено в работе [27] (таблица а.1.2).

Кроме указанных в [27] способов йодирования производных эстрадиола и эстрона имеются сведения об окислительном йодировании эстрадиола системой NaClO₂/NaI/HCl [28]. Примечательно, что при недостатке иодирующего агента получается смесь 2-иодэстрадиола и непрореагировавшего эстрадиола, тогда как увеличение количества иодирующего агента при сокращении времени реакции приводит к образованию смеси 2,4-дииодпроизводного и 4-моноиодпроизводного.

Авторы [29] предложили йодирование эстрадиола N-йодсукцинимидом, катализируемое трифлатом индия, при этом 2-моноиодэстрадиол получен с выходом 80%.

В патенте [30] описывается синтез 2-иодэстрадиола с выходом 77% с использованием системы иод-трифторацетат серебра в дихлорметане при -30°С. 4-Иодпроизводное с выходом 10% отделяется при хроматографической очистке продуктов реакции.

Таблица а.1.1 Бромирование ароматического кольца А в производных

эстратриенов.

RO Hal					
Субстрат	Условия бромирования	Продукт	Ссылка		
Эстрон	NBS, CCl ₄ , кипяч., 4 ч NBS, CH ₂ Cl ₂ , 25°C, 1 ч DDH, CH ₂ Cl ₂ , 25°C, 1 ч	4-Br (72%) 2-Br (57%) 2,4-Br (93%)	[18]		
Эстрон,	NBS, CHCl ₃ ,	Смесь 2- и 4-Br (45% и 48%)	[19]		
Эстрадиол	25°С, 5 мин	Смесь 2- и 4-Br (23% и 34%)	[20]		
Эстрадиол	Br ₂ , AcOH/TГФ, 0°C -> 25°С, 1.5 ч	2-Br (75%), 4-Br (10%)	[21]		
3-Бензиловый эфир эстрадиола	Br ₂ , CH ₂ Cl ₂ , 0°С, 0.5 ч	2-Br (84%)	[22]		
Эстрадиол (эстрон)	NBS, EtOH (EtOH+ацетон), 25°С	4-Br 55% (43%)	[23]		
Эстрадиол	2,4,4,6-тетрабром- циклогекса-2,5-диенон в смеси CHCl ₃ /ТГФ	2-Br (40%), 4-Br (10%)	[24]		
Эстрон	NBA, EtOH	4-Br (77%)	[25]		
3,17-Дибензиловый эфир эстрадиола	Вr ₂ , AcOH/TГФ, -10°C -> 25°С, 3.5 ч	2-Br (60%)	[26]		

Таблица а.1.2 Галогенирование ароматического кольца А в 13α-эстроне и

Субстрат	Условия галогенирования	Продукт (содержание в смеси)	
12 a Damagu	NBS, ТГФ, 25°С, 3 ч NBS, ДМСО, 25°С, 3 ч	4-Br (47%), 2,4-Br (47%) 2-Br (24%), 4-Br (35%), 2,4-Br (38%)	
13а-Эстрон	NIS, TFA, 25°С, 2 ч NIS (2 экв.), TFA, 25°С, 2 ч	2-I (43%), 4-I (45%) 2-I (10%), 4-I (38%), 2,4-I (47%)	
13α-Эстрон, метиловый эфир	NBS, CH ₂ Cl ₂ , 25°С, 2 ч NIS, TFA, 25°С, 2 ч	2-Br (23%), 4-Br (70%) 2-I (47%), 4-I (41%)	
13α-Эстрон, бензиловый эфир	NBS, ТГФ, 25°С, 3 ч DDH, CH2Cl2, 25°С, 2 ч	2-Br (91%) 2-Br (31%), 4-Br (61%)	

его эфирах [27].

Получение хлорпроизводных в обозреваемый период ограничивается патентом [30], где описывается синтез 2-хлор- и 2,4-дихлор-1,3,5(10)эстратриенов, содержащих фрагмент 17-спиролактона. Причем, для получения монохлорпроизводного используется методика с промежуточным введением фенилселенильной группы в положение 2 эстрадиола, а для введения двух атомов хлора – стандартный прямой метод, использующий в качестве хлорирующего агента N-хлорсукцинимид (схема а.1.1).

Схема а.1.1 Синтез хлорпроизводных эстратриенов [30]. Реагенты и условия:
а) PhSeCl, CHCl₃, 0°C 1 ч, хроматография, 61% (2-изомер) и 15% (4-изомер); b) NCS, CHCl₃, 0°C, 30 мин, 39%; c) NCS, CHCl₃, 25°C, 1.5 ч, 62%.

Фторированные производные эстрогенов представляют самостоятельный интерес как биологически активные соединения, но их получение, как правило,

сопряжено с низкими выходами, использованием жестких условий реакции или агрессивных реагентов. В работе [31] описывается получение 4-фторэстрона с использованием фторирующего агента – N-фторпиридинийтрифлата (NFPT) - по представленной ниже схеме а.1.2 с общим выходом 16%:

Схема а.1.2 Синтез фторпроизводных [31]. Реагенты и условия: а) *t*-BuOH, BF₃-Et₂O, 12 ч (96%); b) NFPT, трихлорэтилен, 135°C, 14 ч; c) AlCl₃, MeNO₂, CH₂Cl₂, 0°C, 5 ч (16%, в две стадии).

Авторы указывают, что предварительное введение трет-бутильной группы в положение 2 позволяет избежать образования смеси 2- и 4-фторпроизводных.

Однако, полученные ранее данные об использовании похожих фторирующих агентов - 1-фтор-4-хлорметил-1,4-диазанонабицикло[2.2.2]октана бис(тетрафторбората) (SelectfluorTM) или его 4-гидрокси-аналога (AccufluorTM), - свидетельствуют о преобладающем введении фтора в 10-е положение стероида с нарушением ароматичности кольца А [32,33]. При этом выходы 10-F-продуктов находятся в пределах 60 – 90%, а 2- и 4- замещенные фториды образуются с очень небольшими выходами.

Схема а.1.3 Реакция производных эстрадиола и реагента SelectFluor[™] [32,33]

Общим методом получения фторзамещенных фенолов остается реакция диазосоединений с фторидами (реакция Шимана) [30], однако это требует получения целого ряда предшественников, как показано на схеме a.1.4, и в итоге не дает высоких выходов целевого продукта.

PG = защитная группа

Схема а.1.4 Синтез 2-фторэстрона [30]. Реагенты и условия: a) Na₂S₂O₄, NaOH, ацетон, H₂O, кипячение, 2 ч, 49% b) BF₃-Et₂O, *t*-BuONO, CH₂Cl₂, - 15°C (10 мин), 0°C (1.5 ч), 14%.

Для получения 2-¹⁸F-эстрадиола авторы [34] использовали сложную схему, в которой ключевой реакцией является нуклеофильное замещение в специально активированном ароматическом цикле. При этом авторы исходили из 2нитроэстрона (схема **a.1.5**). Источником фторид-иона являлся тетрабутиламмонийфторид, проведение реакции в ДМСО при 150°C в течение 45 минут давало выходы 20-50%.

Схема а.1.5 Синтез 2-¹⁸F-эстрадиола [34]. Реагенты и условия: a) [¹⁸F]ТВАF, ДМСО, 150°С, 45 мин, 20-50%.

Сложность синтеза и низкие конечные выходы сподвигли авторов искать улучшенные способы введения фтора в молекулу эстрадиола. Так был реализован четырехстадийный метод получения 2-¹⁸F-эстрадиола [35], схема которого представлена ниже (схема а.1.6).

Таким образом, синтез 2 и 4-фторзамещенных эстрогенов остается весьма сложной задачей.

Схема а.1.6 Альтернативный синтез 2-¹⁸F-эстрадиола [35].

а.2 Нитрование

Нитрование гораздо менее распространенный способ модификации стероидного ядра производных эстрана по сравнению с галогенированием. Тем не менее, как было показано выше, этот способ используется для синтеза фторзамещенных эстратриенов, а так же получения ряда аминопроизводных и азидов.

В работах [36,37] описано получение 2-нитроэстра-1,3,5(10)-триенола-3 обработкой 17-дезоксиэстрона смесью азотной и уксусной кислот при комнатной температуре. После хроматографической очистки требуемое вещество было получено с выходом 60% и использовалось далее для получения 2-амино- и 2-азидопроизводных.

В работе [31] описано нитрование эстрона смесью азотной и уксусной кислот, 2-нитроэстрон и 4-нитроэстрон были выделены из реакционной смеси дробной кристаллизацией с выходами 20% и 23%, соответственно. В патенте [38] описывается аналогичный метод получения 2- и 4-нитроэстрадиолов с выходом 34% и 13%, соответственно.

а.3 Металлирование

Литирование является распространенным способом активации различных участков стероидного ядра, позволяющим вводить в стероид самые разнообразные заместители. Как правило, для литирования используются вторбутиллитий и производные эстрадиола с защищенными функциональными группами. Типичная методика включает в себя смешение раствора бутиллития в гексане с раствором стероида в ТГФ при температуре -78°C, выдерживание смеси при этой температуре в течение 1-2 часов, прибавление электрофильного агента и последующее повышение температуры до комнатной.

Втор-бутиллитий не исключительный реагент для литирования производных эстрадиола, описан синтез производного 2-формилэстрадиола с выходом 81% из *бис*-бензилового эфира эстрадиола, *н*-бутиллития и ДМФА [21].

LIDAKOR Также описано использование метолики (лития диизопропиламид, либо смесь н-бутиллития и диизопропиламина, и третбутоксид калия) для орто-литирования при получении бис-3,17тетрагидропиранильного эфира 2-гидроксиэстрадиола по стандартной методике с использованием триметоксибора и водной перекиси водорода с выходом 99% [45]. Однако, в свете широкого использования данной методики для активации положения 6 в стероидах с ароматическим кольцом А (см. раздел «Кольцо В») эти результаты вызывают сомнения.

Предложена интересная методика прямого введения метокси-группы в молекулу защищенного стероида с использованием метилового эфира перекиси кумола [46]:

Схема а.3.1 Прямое метоксилирование защищенного эстрадиола [46].

17

PG Stranger Strange	-78°C, Y	<u>کر</u> کر <u>۲</u>	C C C C C C C C C C C C C C C C C C C
Субстрат	Реагенты	Продукт	Выход, ссылка
O-Bn CH ₃	1) B(OMe) ₃ , 2) H ₂ O ₂ (aq.)	Ph OH	70%* [39]
_ 0~	1) B(OMe) ₃ , 2) NaBO ₃	HO	95% [39] 65% [40] 84% [41]
	I ₂		85% [39] 78% [42]
	1-циано- бензотриазол		33% [42]
	ДМФА		87% [43]
R = H. Me. Et	ДМФА	OHC	70-90% [37]
	ДМФА		86% [44]
	RSSR (R=Me, Et)	RS 2	91% (Me), 97% (Et) [44]
	EtI		84% [44]
	1) CF ₃ CH ₂ Br, 2) HCl (aq.)	Br, O HO	48% [44]
	1) CF ₃ CH ₂ I, 2) HCl (aq.)	HO	38% [44]
BnO	ДМФА	OHC BnO	81% [41]

* Одновременно с перегруппировкой Виттига

Примечательно, что в приведенных выше примерах не упоминается о продуктах модификации 4-го положения стероидного скелета.

Танабе с сотр. предложен «не-литиевый» протокол получения различных 17-замещенных производных 2-формилэстрадиола с использованием избытка этилмагнийбромида [38,47,48], подтвержденный индийскими исследователями [49]. Сообщается о выходах 2-формилпроизводных от 70% до 94%.

Схема а.3.2 Схема «не литиевого» протокола формилирования производных эстрадиола.

а.4 Ацилирование

Ацилирование, как прямое, так и в результате перегруппировки Фриса, остается простым и эффективным способом модификации положения 2 в эстрадиола. Описаны эффективные варианты классического производных ацилирования по Фриделю-Крафтсу как самого эстрадиола [39], так и его 3-Оприводящие к продуктам метилового эфира [50], с высоким выходом ацилирования (76%-85%). Авторы [39] также пытались проацилировать диметиловый эфир эстрадиола смешанным ангидридом пропионовой И трифторуксусной кислот, получаемым in situ, однако соответствующее 2ацильное производное было получено с выходом 36%.

Схема а.4.1 Ацилирование производных эстрадиола по Фриделю-Крафтсу [39,50]

Авторы [51] отмечают удобство использования хлорида циркония ZrCl₄ в качестве катализатора перегруппировки Фриса *бис*-3,17-ацетильных производных

эстрадиола. Выходы 2-ацетилэстрадиола после гидролиза промежуточных продуктов составили 70 – 84%.

Для получения 2-формилированных производных эстрадиола с хорошим выходом (60 -72%) используется формилирование по Вильсмейеру [52,53].

Кроме вышеописанных в литературе упоминается еще несколько способов формилирования. Так, в патенте [47] описывается целый ряд способов синтеза 2формилпроизводных эстрадиола, в частности, использование в качестве формилирующей системы смеси параформа, тетрахлорида олова и 2,6-лутидина дает формилпроизводные с умеренными выходами 39 и 45% (схема а.4.2)

Схема а.4.2 Формилирование производных эстрона параформальдегидом в присутствии хлорида олова (IV) и 2,6-лутидина [47]

Похожая схема реализована авторами [54,55], которые для формилирования эстрадиола используют смесь параформальдегида, безводного хлорида магния и триэтиламина при кипячении в ТГФ. Тем не менее стоит отметить, что если в [54] утверждается о выходе 81% 2-формилэстрадиола после хроматографической очистки, то в статье [55] сообщается о получении смеси 2- и 4- формилпроизводных, причем выход 2-формилэстрадиола составлял 60%.

Для получения 4-формилпроизводных методика, использующая хлорид магния и триэтиламин, применяется после предварительной защиты 2-го положения стероида трет-бутильной группой [25].

а.5 Прочие методы модификации положений 2 и 4 эстратриенов

Для алкилирования ароматического кольца А используются варианты реакции Фриделя-Крафтса, в частности, катализируемая BF₃-Et₂O реакция алкилирования эстрона *трет*-бутанолом [31,50]. Для введения более сложных

заместителей предложены варианты восстановительного алкилирования, катализируемого трифлатом меди (II) [56,57,58].

Схема а.5.1 Восстановительное алкилирование эстрадиола [56]

Механизм реакции предполагает образование тиониевой соли, являющейся электрофилом, взаимодействующим с ароматическим кольцом, с последующим отщеплением серусодержащего остатка, либо его замещением на другую нуклеофильную группу.

Мультикомпонентное восстановительное алкилирование аренов

Схема а.5.2 Механизм восстановительного алкилирования аренов [57].

Кроме эстрона N,N,N',N'этого, описано аминометилирование 59% 2 [50]. тетраметилдиаминометаном В положение с выходом И аминоалкилирование эстрадиола в присутствии длинноцепочечного амина и водного раствора формальдегида с выходом 13% [23] для получения стероидных коньюгатов.

Авторы [59] описали введение CF₃S-группы в фенольные соединения, в т.ч. эстрон и эстрадиол, и использовали полученные сульфиды как промежуточные соединения для дальнейших синтезов.

Интересным представляется способ палладий-катализируемого *орто*арилирования 3-карабамоилированных производных эстрона с выходами от 31% до 90% в зависимости от заместителя в арилиодиде [60,61].

Схема а.5.4 Палладий-катализируемое *орто*-арилирование диэтилкарбамоильного производного эстрона [60].

Описано также введение пропаргильной группы в ароматическое кольцо ряда производных эстрадиола с использованием пропаргилгексакарбонилдикобальта [62], при этом получены смеси 2- и 4-замещенных производных.

а.6 Модификация положения 3 в производных 3-гидроксиэстратриенов, связанное с замещением гидроксильной группы.

Сообщается о перегруппировке Виттига *бис*-3,17-бензиловых эфиров эстрадиола и эстра-1,3,5(10),9(11)-тетраена под действием фениллития, с умеренными выходами приводящей к α-гидроксибензильным производным [63].

Схема а.6.1 Перегруппировка Виттига бензилового эфира эстрадиола и эстратетраена [63].

Кроме того, отмечалась необычная реакция N,N'-карбонилдиимидазола (CDI) с фенолами, в т.ч. с эстроном и эстрадиолом, с высоким выходом приводящая к замещению гидроксильных групп на остаток имидазола [64].

Схема а.6.2 Замещение гидроксильных групп в эстрадиоле под действием N,N'-карбонилдиимидазола [64].

Развитие методов металлокомплексного катализа расширило возможности модификации положения 3 в эстранах, позволяя замещать фенольную гидроксильную группу на иные фрагменты и получать соединения с новыми интересными биологическими свойствами [30,65-68]. Обычным подходом является синтез 3-трифторметансульфоновых эфиров 3-гидроксиэстратриенов, которые затем вводятся в реакции кросс-сочетания с различными субстратами; этот процесс не является специфическим для стероидных соединений, и подробно здесь не рассматривается.

Следует упомянуть получение 3-фторидов реакцией 3трибутилстаннильных производных эстратриенов с реактивом SelectFluorTM с

выходом до 81% [79], а также из 3-аминопроизводных с выходом до 20% [65] и многостадийными процедурами из 3-трифлатов с использованием металлокомплексных катализаторов с выходами 59% [80] и 33% [81], соответственно.

эстратриенов.						
rt V	х <u>т</u> осно	f ₂ O, ование	x <u>"Pd" / "Ni", م</u> جل "L", RX 'ج		_X `R	
R	X	Выход, ссылка	R	X	Выход, ссылка	
-H	Н	65% [30]				
-COOH	Н	68% [30] 60% [69]		н	62% [76]	
	OMe, OEt, CC-CH ₃	до 30% [65]	до 30% [65]			
-COOCH ₂ Ph	Н	70% [30]	0 ا			
-COOMe	Н	98% [70] 32% [71]	OMe	Н	73% [76]	
-CH=CH ₂	OMe, OEt, CC-CH ₃ OMe	30%-60% [65,72,73] 33% [69]	-CH2COO-t-Bu	Н	93% [77]	
-CONH ₂	OMe, OEt CC-CH ₃	30% - 75% [65,72,73] 95% [74]	S B O ↓	Н	65% [67,68]	
-CONR'R"	OMe	60-80% [69]				
-NH ₂	OMe, OEt CC-CH ₃ OMe	30% -45% [65,72,73] 74% [69]	p ²	Н	97% [78]	
-N=C(Ph) ₂	4-Br	70% [75]	0			
-CN	OMe H 4-NO ₂	70% [69] 67%-84% [75]	-SnBu ₃	Н	70% [79]	
-CC-CH ₃	4-Cl	77% [75]				

Таблица а.6.1 Кросс-сочетание 3-трифторметансульфоновых эфиров

b. Кольцо В

Несмотря на высокий интерес, связанный с поиском высокоэффективных антиэстрогенов, аналогичных фулвестранту (Fulvestrant, FaslodexTM), число способов модификации В остается кольца эстратриеновых стероидов ограниченным. Отсутствуют новые, синтетически приемлемые методики модификации положений 8 и 9 стероидного ядра, не связанные с полным или частичным синтезом стероида. Более того, для получения 7-замещенных эстранов часто используется «шаг назад» - превращение производных эстрадиола в 3-кето- $\Delta^{4,6}$ -19-норстероиды С последующими сопряженным 1,6-присоединением реактива Гриньяра или иными реакциями, позволяющими ввести заместитель в «еновое» положение 7, с последующей ароматизацией кольца А [82-92] (таблица b.1).

Рис. b.1 Фулвестрант (7α-[9-[(4,4,5,5,5-пентафторпентил)сульфинил]нонил]эстра-1,3,5(10)-триен-3,17β-диол).

Схема b.1 Синтез 7-замещенных производных эстрогенов сопряженной реакцией Гриньяра.

Второй базовый метод модификации – введение кето- или гидроксильной группы в положение 6 с помощью различных окислительных методик либо с использованием методики LIDAKOR (схема b.2). Введение 6-кетогруппы делает возможными реакции не только по ней самой, но и по соседнему положению 7 в стероиде. Этот подход используется также для расширения кольца В как показано в работе [94].

Таблица b.1	Получение	7-замещенных	производных	эстратриенов и	is 3-
			1	1 1	

Исходное	Реагенты, условия	Продукт, выход	Ароматизация	Ссылка
	Ср ₂ ZrMeCl, композиция металлокомплексных катализаторов	7-Метил -Δ ⁴ -3-кето- 17-ацетат, 61% α- эпимера, α/β=5.1/1	-	[82]
	 ω-Замещенный нон- 1-ен, композиция металлокомплексных катализаторов на основе цирконацена 	 7- (ω-Замещенный нонил)-Δ⁴-3-кето-17-ацетат, 60% α- эпимера, α/β=4.6/1 	LiBr, CuBr ₂ , ацетонитрил; 77%	[83]
	ω-Замещенный нонилмагнийбромид, CuCl	7-(ω-Замещенный нонил)-Δ ⁴ -3-кето-17- ацетат, 60-80% α- эпимера, α/β=от 7/1 до 12/1	LiBr, CuBr ₂ , ацетонитрил; выходы до количественного	[84-86]
∆ ^{4,6} -3-кето- 17-ацетат	ω-Замещенный нонилмагнийбромид, CuCl	7-(ω-Замещенный нонил)-Δ ⁴ -3-кето-17- ацетат, 90-95% на смесь эпимеров по ВЭЖХ, α/β=2.5/1	LiBr, CuBr ₂ , Ac ₂ O, ацетонитрил; 80%-85% на смесь эпимеров по ВЭЖХ	[87]
	AlMe3, CuBr	7-Метил-Δ ⁴ -3-кето- 17-ацетат, 79% на смесь эпимеров, α/β=83/17	-	[88]
	HCCMgBr, CuCl	7α-Этинил-Δ ⁴ -3-кето- 17-ацетат, 60%	-	[89]
	Et ₂ AlCN	7α-Циано- Δ ⁴ -3-кето- 17-ацетат (74%-77%)	LiBr, CuBr ₂ , ацетонитрил (60%)	[89,90]
	Винилмагнийхлорид, CuBr-SMe ₂ , LiBr, PhSLi	7-Винил-∆ ⁴ -3-кето- 17-ацетат, 90% на смесь эпимеров	CuBr ₂ , HC(OEt) ₃ ; 90%	[90]
	ω-Нонен-1- илмагнийбромид, CuBr	7-(ω-Нонен-1-ил)- Δ ⁴ - 3-кето-17-ацетат, 75% на смесь, α/β=15/1	LiBr, CuBr ₂ , ацетонитрил; 65- 80%	[91,92]
∆ ^{4,6} -3-кето- 17-аце- токсиэтил-	MeLi, LiBr, CuI	7α-Метил-Δ ⁴ -3-кето- 17-этилацетат, 67%	CuCl ₂ , AcOH; 85%	[93]

кето- $\Delta^{4,6}$ -19-норстероидов

Схема b.2 Синтез 6-оксо-/6-гидроксипроизводных эстра-1,3,5(10)-триенов.

Прямое окисление 6-го положения проходит, как правило, с весьма умеренными выходами (таблица b.2).

Исходное	Условия и выход	Выход	Ссылка	
	CrO ₃ , AcOH, H ₂ O, 25°C, 28 ч	Приведен выход на сырец	[95]	
2.17 Treesen	CrO ₃ , AcOH, H ₂ O, 25°C, 24 ч	18%	[96]	
э,17-диацетил- эстрадиол	РСС, целит, PhH, кипячение, 6 ч	65%	[97]	
	CrO ₃ , 3,5-диметилпиразол, CH ₂ Cl ₂ , - 20°C, 5 ч	44%	[98]	
MeO	CrO ₃ , 90% AcOH (aq.),	58%	[74]	
MeO AcO	(CH ₂ Cl ₂), 15°С, 1 ч	78%		
EIO AcO	CrO ₃ , 90% AcOH (aq.)/CH ₂ Cl ₂ , 10-12°С, 1 ч	78%	[94]	
3-Ацетилэстрон	CrOs AcOH Hao	20%		
3-Ацетил-16- ацетоксиметилидено- эстрон	10-15°С, 40 ч	10%	[99]	
Aco	<i>t</i> -BuOOH (aq.), Cr(CO) ₆ , MeCN, кипячение 24 ч	23%		
Aco	CrO ₃ , 3,5- диметилпиразол, CH ₂ Cl ₂ , - 10°C, 2 ч	22%	[100-102]	

Таблица b.2 Окисление в положении 6 эстрановых стероидов

Отдельно следует упомянуть работы [103,104], в которых для окисления 3,17-дипропионилэстрадиола использовалась система оксид хрома (VI) - 3,5диметилпиразол в хлористом метилене. Авторы кроме 6-оксопроизводного 9α-гидрокси-6-оксо-3,17-дипропионилэстрадиол, сумели выделить причем 0°C проведение реакции при приводит утверждается, что к его предпочтительному образованию по сравнению с продуктом моно-окисления (45%) И 10%), a реакция при -50°C дает В основном 6-оксо-3,17интересными дипропионилэстрадиол. Также являются превращения 9αгидроксильной группы: под действием оксида фосфора происходит отщепление воды с образованием 9(11)-двойной связи, в то время как под действием тионилхлорида происходит ароматизация кольца В (схема b.3).

Схема b.3 Отщепление 9α-гидроксильной группы в 6-кето-9αгидроксистероиде [104]. Условия и реагенты: а) P₂O₅, бензол или Ac₂O, 25°C, 2 ч, 63%; b) SOCl₂, пиридин, 25°C, 10 мин, 34%.

Методика активации положения 6 в стероидах с ароматическим кольцом А под действием супероснования LIDAKOR (диизопропиламид лития либо смесь нбутиллития и диизопропиламина и трет-бутилат калия в ТГФ при -78°С) благодаря универсальности и высоким выходам широко используется для получения промежуточных эпимерных смесей 6-гидроксистероидов [105-111]. Последние зачастую не выделяются, а сразу окисляются в 6-оксопроизводные [112-114], которые и являются ключевыми исходными соединениями для дальнейших синтезов. Иногда может использоваться прямая реакция литиевого производного с углеродным электрофилом, как в случае [110], где при взаимодействии литиевого производного и диметилформамида получается рацемический 6-карбальдегид с выходом 50%.

с. Кольцо С

Основными путями синтеза эстранов с модифицированным кольцом С остаются разработанные более 35 лет назад методики синтеза 11β-замещенных стероидных 4,10-диен-3-онов с последующей ароматизацией [115] и методики окисления производных эстрона 2,3-дихлор-5,6-дицианохиноном (DDQ) [116].

Первый метод представлен на схеме с.1.

Схема с.1 Типичная схема синтеза 11β-замещенных эстра-1,3,5(10)-триенов по процессу [115]. Условия: а) эпоксидирование: H₂O₂-50%, CF₃COCF₃-3H₂O, пиридин, CH₂Cl₂; b) сопряженное присоединение реактива Гриньяра: CuCl, RMgBr, TГΦ; c) кислотная дегидратация и удаление защитных групп: 6н. HCl- CH₂Cl₂; d) ароматизация: Ac₂O, AcBr, CH₂Cl₂.

Конкретные примеры синтезов [117-120], как правило, различаются лишь некоторыми особенностями исходных субстратов и структурами целевых соединений, диктующими изменения в последовательности реакций, защитой кето- и/или гидроксигрупп, в меньшей степени – методами эпоксидирования. Так, авторы [121,122] вместо тригидрата гексафторацетона используют гексахлорацетон, они же используют силильную защиту 17-кетона вместо обычной кетализации. Авторами патентов [123,124] кроме 17-кетонов были также синтезированы 17-фторпроизводные 11β-замещенных эстра-1,3,5(10)-триенов.

В патентах [125,126] сопряженное присоединение с последующей ароматизацией используется для синтеза более сложных соединений, содержащих 19норпрегнановый фрагмент общей формулы

Второй вариант модификации включает в себя, как начальную стадию, бензильное 9(11)-дегидрирование с помощью DDQ в уже имеющемся эстра-1,3,5(10)-триеновом ядре, проходящее с выходами от 40 до 94% [63,75,90,127-129]. Полученная при этом двойная 9(11)-связь далее может модифицироваться обычными для двойных связей методами. Например, чаще всего используется введение 11-гидроксильной группы с помощью боранов и пероксида водорода с последующим окислением до 11-кетогруппы [75,90,128,130].

Схема с.2 Возможные пути превращения эстра-1,3,5(10),9(11)-тетраеновых стероидов с использованием боранов и пероксида водорода.

Наличие 11-кетогруппы, кроме всего прочего, позволяет проводить эпимеризацию 9α-водорода в положение 9β [116,130].

Совместное использование дибромдицианобензохинона (DDQ), триметилсилилцианида (TMSCN) и ионной жидкости (LiClO₄ в дихлорметане) использовалось для введения цианогруппы в стероид при синтезе кортистатина – антиангиогенного препарата [131].

Схема с.3 Введение цианогрупп под действием DDQ и TMSCN [131].

Существуют также и другие способы окислительной модификации в кольце С. Так, сообщалось об использовании Оксона[™] (сульфат-гидросульфат-персульфат калия) для гидроксилирования 9α-положения с выходом 80% [132]. С той же целью использовался диметилдиоксиран (DMDO или DMD) в ацетоне [130,133].

Схема с.4 Пероксидное 9α-гидроксилирование стероидов с ароматическим кольцом А [130,132,133].

d. Кольцо D

Наличие кето- или гидроксигруппы в 17 положении стероидного скелета делает модификацию стероида по кольцу D самым распространенным способом получения новых биологически активных стероидных соединений. Ограниченный объем данного обзора не позволяет рассматривать все возможные модификации этого фрагмента стероидной молекулы, поэтому из обзора **исключены** реакции этерификации 17-гидроксистероидов, реакции обращения конфигурации 17центра и реакции нуклеофильного присоединения/-отщепления по 17кетогруппе и ее восстановления. По этой же причине исключены реакции этинилирования и реакции соответствующих этинильных производных и этинилэстрадиола, обусловленные наличием ацетиленового фрагмента. Тем не менее, в ряде случаев некоторые из этих реакций, являющиеся ключевыми для последующей модификации стероидного скелета или чье использование казалось неочевидным, как, например, перегруппировка Мейера-Шустера [134], включены в обзор.

Реакции в стероидном кольце D разделены на две основные группы: собственно, реакции в имеющемся стероидном ядре, протекающие без формального разрыва кольца D, и реакции перестройки стероидного ядра, протекающие с разрывом кольца D, получившие широкое распространение в последние годы. В число последних входят реакции получения D-секостероидов и соединений, в которых разрыв кольца используется как промежуточная стадия для последующего построения нового цикла.

d.1 Реакции, протекающие без формального разрыва кольца D

d.1.1 Замещение в положении 16

d.1.1.1 Прямое α-алкилирование 17-кетонов

Введение алкильного заместителя в 16 положение стероида часто является важной стадией синтеза ингибиторов 17β-гидроксистероиддегидрогеназы (17β-HSD) [135,136] или стероидных коньюгатов, напр. [106,137,138]. Однако, подход, основанный на непосредственном алкилировании 16-го положения эстрона алкилгалогенидами в присутствии оснований, как правило, дает смеси α,βэпимеров. Поскольку кроме этого зачастую образуются продукты двойного замещения и в целом реакция не отличается высокими выходами, в особенности неактивированных электрофилов, использование ограничено для ee взаимодействием производных эстрона с пропаргилаллил-, И

бензилгалогенидами [106,139-143], либо с эфирами α-галогенкарбоновых кислот [144] (бромидами и иодидами). Тщательное соблюдение условий реакции позволяет в некоторых случаях получить 16α-продукты с выходами от умеренных до хороших и приемлемой диастереомерной чистотой. Однако, для сохранения αконфигурации в целевых соединениях важно проводить все стадии синтеза так, чтобы исключить или минимизировать эпимеризацию за счет енолизации промежуточного 16α-замещенного кетона. В частности авторы [143] указывают, 3-третбутилдиметилсилоксиэстрона 4-бромкротонатом что реакция с В присутствие 0.95 экв. диизопропиламида лития (LDA) позволяет получить чистый 16α-продукт без примеси β-эпимера с выходом 70%, в то время как двукратный избыток LDA приводит к смеси α и β эпимеров в соотношении 5 : 1. Более того, имеется пример обращения 16α-аллилэстрона в 16β-аллильное производное под действием LDA [142]. Поэтому алкилированный кетон, как правило, быстро, при пониженных температурах, восстанавливают в 17β-спирт. Это восстановление происходит стереоселективно вне зависимости от конфигурации 16-го центра [см. ссылки выше].

Схема d.1.1.1.1 Синтез 16а-аллильных производных стероидов [142,143].

Описана более универсальная и применимая для менее активных алифатических алкилирующих агентов схема, включающая алкилирование в присутствии сильных оснований промежуточного гидразона 17-кетостероида с его последующим разложением [37,139,145] (схема d.1.1.1.2).

Большое число примеров такого варианта алкилирования с использованием *н*-бутиллития в качестве основания приведено в патентах [145,146] в качестве промежуточной стадии получения пентациклических стероидов, содержащих 16α,17α-сопряженный карбоцикл (схема d.1.1.1.3).

Схема d.1.1.1.2 Синтез 16α-замещенных стероидов с насыщенной и аллильной боковой цепью.

Схема d.1.1.1.3 Синтез аналогов эстрадиола, содержащих 16α,17α-сопряженный карбоцикл [146].

В патенте [75] описано двойное последовательное алкилирование 4цианоэстра-1,3,5(10)-триен-17-она метилиодидом и 4-цианобензилбромидом в присутствии, соответственно, гексаметилдисилазидов лития и калия (LiHMDS, KHMDS). Характерно, что более объемный заместитель располагается в положении 16α (схема d.1.1.1.4).

Схема d.1.1.1.4 Двойное последовательное алкилирование 4-цианоэстра-1,3,5(10)-триен-17-она [75].

Для получения 16β-замещенных эстранов используется предварительное алкоксикарбонилирование исходных 17-кетонов (реакция Кляйзена), что при последующем кислотном расщеплении 1,3-дикетоэфиров позволяет получить смеси с преобладанием 16β-эпимера. В качестве алкоксикарбонилирующего агента используется, как правило, диметилкарбонат [137,138,147,148] при кипячении в ТГФ в присутствии гидрида калия в качестве основания, либо цианометилкарбоксилат [37,139] в ТГФ в присутствии диизопропиламида лития (LDA) или гидрида калия. Алкилирование проводится алкилиодидами или активированными алкилбромидами под действием оснований – гидрида калия [139], LDA [37] или карбоната цезия [138] как в органических растворителях, так и в условия межфазного катализа [137, 147, 148]. Декарбоксилирование во всех описанных случаях осуществляется кипячением в системе хлорид лития – диметилформамид – вода (схема d.1.1.1.5).

Схема d.1.1.1.5 16-Алкоксикарбонилирование для получения 16β-замещенных стероидов.

d.1.1.2 Конденсации карбонильных соединений: синтез 16-«илиденовых» производных и 16-алкоксикарбонильных соединений и некоторые их свойства

В синтезе 16-карбопроизводных стероидов широко применяется альдольнокротоновая конденсация (в варианте Кляйзена-Шмидта) и конденсация Кляйзена, в которой 17-кетостероид является метиленовой компонентой.

В литературе за рассматриваемый период описано получение 3-О-ацетил-16-метилиденоэстрона выходом 51% ИЗ 3-О-ацетилэстрона с И параформальдегида кипячением В изоамиловом спирте В присутствии гидрохлорида диметиламина и синтез 16-изобутилиденоэстрона с выходом 79% из эстрона и изомасляного альдегида под действием диизопропиламида лития в ТГФ [98]. Альтернативой классическому варианту альдольной конденсации для

получения 16-метиленпроизводных является двухстадийный процесс, включающий взаимодействие эфира эстрона с тетраметилдиаминометаном в присутствии ацетилхлорида с последующим расщеплением промежуточного 16диметиламинопроизводного кипячением в уксусном ангидриде, с общим выходом 70% [149].

Синтез 16-бензилиденовых производных эстранового ряда реакцией альдольно-кротоновой конденсации протекают довольно гладко, типичные выходы составляют 65% - 93% при кипячении смеси эстрона и соответствующего бензальдегида в этаноле с гидроксидом калия или натрия в течение нескольких [98,135,150,151]. Аналогично часов был получен 16-(пиридин-3ил)метиленоэстрон с выходом 90% [98]. Кроме того, предложены методы синтеза таких соединений, в том числе и эпимерного ряда с 13α-конфигурацией, исходя из 16-метилено-17-кетостероидов [152] или из их трифлатов (трифлаты гидрокситаутомерных форм 16-формилэстрона) [153] с использованием палладиевых металлокомплексных катализаторов. Восстановление И каталитическое гидрирование бензилиденов дает, соответственно, соединения с 17β- и 16βконфигурациями [98,135,150,151]. Использование 16-бензилиденовых стероидов позволяет получать биологически активные 16β-бензилстероиды последовательным восстановлением 17-кетогруппы гидрированием И бензилиденовой двойной связи [98,135]. Такой путь позволяет избежать эпимеризации промежуточных кетонов и необходимости хроматографического разделения 16α- и 16β-эпимеров. Также бензилидены используются для синтеза сложных полигетероциклических структур стероидным фрагментом co [136,150,154-156]. В качестве интересного примера химических превращений бензилиденов можно привести синтез производных эстрадиола с сопряженным 17β-166,176-оксазиноновым ингибиторов циклом неэстрогенных гидроксистероиддегидрогеназы [136] (схема d.1.1.2.1).

Для получения кетонового или сложноэфирного фрагмента в 16-боковой цепи использовалась конденсация Кляйзена, примеры реакции сведены в таблицу d.1.1.2.

Схема d.1.1.2.1 Синтез 16β,17β-оксазиноновых производных эстрадиола [136].

Таблица d.1.1.2 Конденсация Кляйзена для модификации положения 16

производных эстрона.

R	Реагент	\mathbf{R}^1	R ²	Условия	Выход	Ссылки	
	HCOOEt	Н		MeONa, MeOH	98%		
	CF ₃ COOEt	CF ₃		<i>t</i> -BuOK, толуол, 25°С, 2 ч	100%		
TBDMS	Pyr-3- COOEt	3-пиридил		<i>t</i> -BuOK, толуол, кипячение, 1.5 ч	77%	 [158] 	
BDMS	(COOEt) ₂	CO ₂ Et	Η	EtONa, толуол, 25°С, 2 ч	83%		
Bn	CH ₃ COOEt	CH ₃		<i>t</i> -BuOK, толуол+ДМСО, кипячение, 1 ч	63%		
	HCOOEt	Н		<i>t</i> -BuOK, толуол, 25°С, 2.5 ч	86%		
		Н	Et	 NaH, ТГФ, 25°С, 3 ч EtI, К₂СО₃, ацетон, 25°С, 48 ч 	43%	[144]	
		Н	Н	MeONa, бензол, 50°С, 4 ч	95%	[157]	
	CO(OMe) ₂	ОН		NaH, ТГФ, кипячение, 8 ч	81%	[98]	
			Me	КН, ТГФ, кипячение, 3 ч	90%	[137,148]	
THP			КН, ТГФ, кипячение, 2.5 ч		90%	[147]	
Bn	NCCOOMe			LDA, ТГФ, -78°С до 25°С, 18 ч	60%	[139]	

Получаемые конденсацией Кляйзена 16-замещенные производные эстрона, содержащие 1,3-дикетоновый фрагмент, использовались как промежуточные соединения в синтезе 16β-алкилстероидов (см. выше), для ординарного построения сопряженных со стероидным ядром гетероциклов, а также других синтезов (см. ссылки в таблице d.1.1.2).

Следует упомянуть, что при восстановлении 3-О-бензилового эфира 16гидроксиметиленэстрона (16-формилэстрона) боргидридом калия в этаноле кроме ожидаемых 16α,β-эпимеров наблюдается также образование некоторого количества эпимерного 17α-спирта [157,159] (схема d.1.1.2.2)

Схема d.1.1.2.2 Пример неожиданной эпимеризации при восстановлении 16гидроксиметиленэстрона.

Еще одной примечательной особенностью 16-гидроксиметиленэстрона (16формилэстрона) является реакция его силиловых эфиров с 1,3бис(триметилсилокси)бута-1,3-диенами, представляющими собой эквиваленты 1,3-дикарбонильных дианионов, позволяющая с высокой региоселективностью получать стероиды с дополнительным ароматическим кольцом D' [160].

d.1.1.3 Прочее

Кроме вышеперечисленных общих подходов к модификации положения 16 эстрановых стероидов в литературе описано несколько отдельных реакций модификации 16-го положения.

бензиловый эфир эстрона под действием изоамилнитрита и Так, третбутоксида калия в третбутаноле с выходом 89% превращается в 17-кето-16оксим [161, 162, 163], причем последний под действием треххлористого титана может давать 16-кето-17β-гидроксистероид с выходом 68% [163]; 17-тозилат метилового эфира эстрона под действием света в присутствии 5 мол.% 9флуоренона при комнатной температуре с выходом 67% изомеризуется в эфир 16-(4-толуолсульфонил)эстрона [164]. B метиловый патенте [165] приводится интересный пример аллильного окисления 17-метиленового производного эстрона системой SeO₂-третбутилгидропероксид с выходом 52% приводящего к 16α-спирту, аналогичная реакция описана в [130].

Современные неинвазивные методы исследований в онкологии требуют разработки радиоактивно меченых соединений, максимально имитирующих природные биологически активные вещества. Одними из таких соединений являются ¹⁸F-замещенные эстрогены. Имеется несколько достаточно непростых подходов к их синтезу, показательных с точки зрения общей химии стероидов [24,166,167], которые резюмированы на схеме d.1.1.3.

d.1.2 Замещение в положении 15, синтез Δ^{14} - и Δ^{15} -стероидов

Введение заместителя в положение 15 осуществляется реакцией Михаэля сопряженного Δ^{15} -17-кетона с нуклеофилами [90,168-170]. Первоначальные продукты замещения (кинетические) могут иметь 15 β -конфигурацию, но часто претерпевают эпимеризацию в более стабильные 15 α -эпимеры [90, 169]. Также сообщалось об изомеризации Δ^{15} -17 α -аллил-17 β -гидроксистероидов в Δ^{15} -15 α -аллил-17-кетостероиды под действием сильных оснований [90] (схема d.1.2.1).

Схема d.1.1.3 Подходы к синтезу 16-¹⁸F-замещенных стероидов (по материалам [24,166,167]).

Схема d.1.2.1 Синтез 15-замещенных стероидов с использованием реакции Михаэля и изомеризации Δ¹⁵-17α-аллил-17β-гидроксиэстрадиола [90,168,170].

Кроме реактивов Гриньяра для получения 15-метилпроизводных описано использование триметилалюминия [88].

Совсем недавно предложено использовать неповторимые современные методы металлокомплексокатализируемых сопряженных реакций α,β-окисления насыщенных циклических кетонов сложной каталитической системой на основе комплексов цинка и палладия с последующим сопряженным 1,4-присоединением алкил-, винил- и арил(гетерарил)-купратов [171]. При этом в эстроновом ряду оказывается доступно получение не только 15β-замещенных стероидов (основной «открывающий» процесс нуклеофильного присоединения по Михаэлю), но и введение заместителя в 16α-положение («закрывающая» электрофильная стадия присоединения по Михаэлю).

Для получения исходного сопряженного кетона в зависимости от дополнительных функциональных групп в исходном кетоне используются схемы бромирования-дегидробромирования 17-кеталей производных эстрона [172, 173] либо новая схема - окисление ацетатом палладия (II) 17-силилового эфира енола эстрона [88] (схема d.1.2.2).

Схема d.1.2.2 Обобщенная схема синтеза Δ¹⁵- и Δ¹⁴-стероидов. Реагенты и условия: а) этиленгликоль, Ру·НСl, PhMe [172] или этиленгликоль, НС(OEt)₃, TsOH, CH₂Cl₂ [173]; b) PhNMe₃Br₃, TГФ; c) *t*-BuOK, PhH [172] либо *t*-BuOK, ксилол [173]; d) TsOH, ацетон/вода, 25°С; e) LDA, Me₃SiCl, TГФ; f) Pd(OAc)₂, ацетонитрил, дихлорметан [88]; g) TsOH, бензол, кипячение [172,173]; h) изопропенилацетат, Ac₂O, TsOH; i) NaBH₄, этанол, вода, ТГФ [173].

d.1.3.1 Катализируемые перегруппировки Рупе и Мейера-Шустера этинилэстрадиола

Перегруппировки Рупе и Мейера-Шустера представляют собой изомеризацию пропаргиловых спиртов в соответствующие α,β-ненасыщенные карбонильные соединения – альдегиды и кетоны в зависимости от структуры исходного соединения, и являются кислотно-катализируемыми аналогами реакции Фаворского. В последние годы были разработаны каталитические системы, которые показали свою потенциальную применимость для модификации стероидов, содержащих пропаргильный фрагмент [134,174-176] (схема d.1.3.1).

d.1.3.2 Реакции 16-ен-17-оловых эфиров, Д¹⁶-17-иодидов

Для модификации 17 положения стероидного ядра в последнее время все больше используются методы металлокомплексного катализа. Наиболее распространенными субстратами для каталитического кросс-сочетания являются Δ^{16} -17-иодиды и трифлаты. Некоторые параметры таких реакций сведены в таблицу d.1.3.2.

Таблица d.1.3.2 Реакции Δ^{16} -17-иодидов и трифлатов – производных

	ЭС	трона			
		, zz	$\frac{Pd}{Pd} \xrightarrow{sd} \underbrace{Y}_{sd}$		
X	Y	Реагенты	Катализатор и условия	Выход	Ссылки
- I	₩-N NH-N N	СО (1 атм.), 4-амино-1,2,4- триазол	Кат. система 1*, ДМФА, 70°С, 24 ч	67%	[177]
	-CO-NH(OMe)	СО (1 атм.), NH ₂ OMe	Кат. система 1, ДМФА, 60°С, 4-6 ч	93%	[178]
	-CO-N(Me)OH	СО (1 атм.),	Кат. система 1, ДМФА, 60°С, 4-6 ч	78%	[178]
	-COO-NHMe	NH(Me)OH	Кат. система 1, толуол, 60°С, 4-6 ч	33%	[178]
	-CONH ₂	СО (6 атм.), NH ₂ COOH·NH ₃	Кат. система 1, 1,4-диоксан, 8 ч	80%	[179]
	-CONHCH ₂ - crown	СО (1 атм.), 2-(аминометил)- 15-краун-5 ^(а) или 2-(аминометил)- 18-краун-6 ^(b)	Кат. система 1, ДМФА, 50°С, 6 ч	82% ^(a) 93% ^(b)	[180]
		СО (1 атм.), α-амино-β-лактам ^(а) или ^(b)	Кат. система 1, 1,4-диоксан, 100°С, 8 ч	${\begin{array}{*{20}c} 71\% \ ^{(a)} \\ 68\% \ ^{(b)} \end{array}}$	[181]
	-COPh	CO (1 атм.), NaBPh4	Кат. система 1, толуол, 90°С, 6-8 ч	88%	[182]
	-CHO	CO (1 атм.), Bu ₃ SnH	Pd(OAc) ₂ , PPh ₃ ^(a) или dppd ^(b) толуол, 50°С, 8 ч	$\begin{array}{c} 59\% \ ^{(a)} \\ 75\% \ ^{(b)} \end{array}$	[183]
	-CHCH ₂	Bu ₃ SnCHCH ₂	Pd(PPh ₃) ₄ , толуол, 100°С	-	[184]
			Рd(PPh ₃)4, LiCl, ТГФ, кипячение, 2 ч	79%	[185]
	-Н	НСООН	Pd(dppf)Cl ₂ , NEt ₃ , ДМФА, 25°С, 12 ч	85%	[74]
-0S02CF3 (0Tf)	-Ar	ArB(OH) ₂ (Ar: Ph, 3-пиридил, 4-пиридил, 4-изохинолил, 5-изохинолил)	Рd(PPh ₃) ₄ , Cs ₂ CO ₃ , ТГФ/вода, 60°С	73-84%	[54]
	-CC-R (14 примеров)	HCC-R	Рd(PPh ₃) ₄ , AgOAc, (<i>i</i> -Pr) ₂ NEt, ДМФА, 80°С, 15-30 мин	93-96%	[186]

^{*} Кат. система 1: Pd(OAc)₂, PPh₃, NEt₃

Интересно, что в примере [184] реализована "*One pot*" реакция кросссочетания, где полученное винильное производное не выделяется, а сразу утилизируется в 2+4 циклоприсоединении с диэтилазодикарбоксилатом. При этом циклоприсоединение не стереоселективно.

Показательный пример селективности реакции кросс-сочетания бистрифлата эстрона в зависимости от металла-сокатализатора приводится в статье [186]. Йодистая медь приводит к обоюдному замещению трифлата на алкинильный остаток, тогда как ацетат серебра позволяет заместить винильный трифлат, оставляя арильный трифлат без изменений (схема d.1.3.2.1). Там же приводится пример оптимизации синтеза самих Δ^{16} -17-трифторметансульфонатов из метилового эфира эстрона.

Большое число примеров арилирования Δ^{16} -17-трифлатов приводится в патенте [187].

Для синтеза ∆¹⁶-17-иодидов на примере 13-эпиэстрона использовалась схема, включающая промежуточный синтез 17-гидразона, который затем вводился в реакцию с йодом в присутствии тетраметилгуанидина с выходом 82% [188].

В реакции Сузуки-Мияуры для арилирования Δ¹⁶-17-ацетатов использовались никелевые катализаторы [189].

Схема d.1.3.2.2 Синтез ∆¹⁶⁻17-ацетата эстрона и его использование в никелькатализируемой реакции Сузуки-Мияуры [189].

d.1.3.3 17-Спиростероиды

Большинство описанных за указанный период времени реакций синтеза 17спиро-гетеропроизводных эстранов так или иначе базируется на разработке 17гидрокси-17-аминометильного фрагмента в молекуле стероида (схема d.1.3.3.1). Такой фрагмент может быть получен восстановлением 17-циангидрина [190], нуклеофильного раскрытия 17-спирооксиранового фрагмента аминами [191] или азидом с последующим восстановлением [192].

В патенте [30] описано несколько примеров синтеза 17-спиролактонов, базирующихся на нуклеофильном присоединении терминальных ацетиленов по 17-кетогруппе стероида с их последующей модификацией и замыканием на 17-гидроксил.

Наглядным примером синтеза эпимерных 17-спирогетероциклов является работа [193] (схема d.1.3.3.2).

Схема d.1.3.3.2 Синтез эпимерных 17-спирофурапиридинов [193].

d.1.3.4 Прочее

Из прочих модификаций положения 17 эстрановых стероидов следует упомянуть перегруппировку Виттига 17-метил-17-бензилового эфира с выходом 70% при попытке гидроксилирования положения 2 с использованием втор-2бутиллития И получение 17-дифторпроизводных эстрадиола И [бис-(2метоксиэстрадиола реакциями последних с метоксиэтил)амино]сульфотрифторидом (BEAST) с выходами 30% и 19%, соответственно [39].

Схема d.1.3.4 Гидроксилирование 3-метоксиметил-17α-метил-17β-бензилоксиэстра-1,3,5(10)-триена сопровождаемое перегруппировкой Виттига бензилового эфира под действием *втор*-бутиллития [39].

В статье [194] описан эффективный синтез 2-замещенных Z- и E-17циано(алкил)метиленовых и дицианометиленовых эстратриенов и соответствующих 17β-циано(алкил)метил- и 17β-дицианометилэстратриенов, в т.ч. с использованием диэтилцианометилфосфоната (реакция Хорнера-Уодсворта-Эммонса). Их сернистые и нитро-аналоги рассматриваются в работе [195]. Синтезы и применение 17-алкилиденостероидов широко представлены в работах [47,196,197].

d.1.4 Реакции, затрагивающие одновременно несколько положений в кольце D

d.1.4.1 Реакция Вильсмейера-Хаака

Реакция Вильсмейера-Хаака эстрона или его метилового эфира проходит с хорошими выходами (60% – 80%) и используется для получения 16,17замещенных стероидов [71,198] либо стероидов, содержащих сопряженный 16,17гетероцикл, как «классическими» методами [199,200], так и с использованием палладиевых катализаторов [201-203]. При этом используются как 17-бром, так и 17-хлорзамещенные стероиды.

Δ¹⁶-17-Бром-16-карбальдегид при кипячении с ацетатом аммония, уксусной кислотой и уксусным ангидридом с выходом до 83% дает 17-кето-16-метилиденацетамид [204].

48

Схема d.1.4.1.2 Синтез 17-кето-16-метилиденацетамида [204].

d.1.4.2 Реакции циклоприсоединения

Авторы [205,206] описывают необычные продукты присоединения акрилатов к силиловым эфирам енолятов 17-кетостероидов в присутствии диэтилалюминийхлорида. Вместо ожидаемого алкилирования положения 16 происходит формирование изомерных циклобутанов, чья структура сильно зависит от условий реакции (схема d.1.4.2.1).

Получаемые циклобутановые производные могут изомеризоваться в 17спироциклопропаны (схема d.1.4.2.2).

Схема d.1.4.2.2 Изомеризация 16,17-циклобутанов [205,206].

Сообщалось об использовании межмолекулярной реакции Посона-Ханда для построения 16,17-сопряженного дополнительного цикла на основе молекулы метилового эфира эстрона [207,208] (схема d.1.4.2.3).

Схема d.1.4.2.3 Синтез пентациклических стероидов из метилового эфира эстрона и арилацетиленов по реакции Посона-Ханда [207,208].

d.1.4.3 18-Нор- и 18-модифицированные стероиды

Известно несколько примеров миграции 18-метильной группы в положение 17. Так, обработка 17β-трифлата защищенного 2-метоксиэстрадиола этилмагнийбромидом с выходом 79% приводит к 17-метилгона-1,3,5(10),13(17)тетраену [190]. Это же соединение является основным продуктом пиролиза 17спирооксирана [209] (схема d.1.4.3.1). В то же время обработка 16,17-оксетанов фтороборной кислотой в ацетонитриле дает совершенно разные результаты для разных эпимеров [210] (схема d.1.4.3.2).

Схема d.1.4.3.1 Получение 17-метилгона-1,3,5(10),13(17)-тетраена [190,209].

Схема d.1.4.3.2 Обработка эпимерных 16,17-оксетанов фтороборной кислотой в ацетонитриле [210].

Последовательная обработка 17β-гидроксиметил-3-метоксиэстра-1,3,5(10)триена системой йод/тетраацетат свинца, ацетатом натрия в уксусной кислоте и оксидом хрома (VI) в водном пиридине позволила получить лактон – производное эстратриен-13-карбоновой кислоты с общим выходом 73% [210], что служит неплохим способом активации 18-метильной группы стероида.

Схема d.1.4.3.3 Получение 18,20-лактона 17β-гидроксиметил-3-метоксиэстра-1,3,5(10)-триен-13-карбоновой кислоты.

Описано введение бора в 18-положение 17-(2-пиридилкарбоксамидо)-эстра-1,3,5(10)-триена с использованием палладиевого катализатора (схема d.1.4.3.4) [211].

Схема d.1.4.3.4 Борилирование в положение 18.

 d.1.5 Реакции модификации стероидного скелета, протекающие без формального разрыва кольца D

d.1.5.1 Синтез *D*-гомостероидов и *D*-гомо-гетеростероидов

Классической реакцией Тиффено-Демьянова 17β-гидрокси-17αметиламино-производного 2-метоксиэстрадиола с нитритом натрия в кислой среде были получены изомерные 17а- и 17-кетоны с расширенным кольцом D (Dгомостероиды) в соотношении приблизительно 11 : 1 [190]. Примечательно их поведение при последующем восстановлении третбутоксиалюмогидридом лития: из 17а-кетона образуется смесь 17аβ-гидрокси- и 17аα-гидроксипроизводных в соотношении 3 : 1, а при восстановлении 17-кетона был выделен только 17βспирт.

Схема d.1.5.1.1 Гомологизация кольца D реакцией Тиффено-Демьянова и стереохимические особенности восстановления полученных кетонов [190].

В работе [212] для гомологизации кольца D эстрона применяли экзотическую литиевую соль триметилсилилдиазометана и получили строго 17аэстрон с выходом 86%.

Каталитическая система на основе ацетата палладия и хлористого золота позволила провести гомологизацию местранола с одновременным введением тиоэфирного фрагмента [213] (схема d.1.5.1.2).

Схема d.1.5.1.2 Гомологизация местранола с введением тиоэфирного фрагмента [213].

Для модификации цикла D используются также методы расширения цикла с внедрением гетероатома. Наиболее показательные примеры представляет собой перегруппировка Бекмана 17-оксимов эстрона. Так, перегруппировка оксима самого эстрона под действием тионилхлорида в диоксане дает 17-кето-17а-азастероид с выходом 56% [214]. Реакция же оксима метилового эфира эстрона с

тозилхлоридом в пиридине приводит к такому же продукту с выходом 90% [215]. При этом наблюдаются серьезные различия в поведении стероидов с природной 13β-конфигурацией и 13α-стероидов. В случае последних образуется гораздо больше продуктов расщепления цикла D [215] (схема d.1.5.1.3).

Схема d.1.5.1.3 Особенности перегруппировки Бекмана 17-оксимов 13β- и 13αстероидов [215].

Еще один пример [216] включает синтез 16-оксима из эстрона под действием *трет*-бутилата калия и изоамилнитрита, кипячение полученного соединения в смеси уксусной кислоты и ангидрида дает имид – продукт перегруппировки Бекмана – с выходом 65% (схема d.1.5.1.4).

Схема d.1.5.1.4 Перегруппировка Бекмана 16-оксима-17-кетостероида [216].

Кроме этого описано эффективное окисление метилового эфира эстрона по типу реакции Байера-Виллигера системой PhSeOH-H₂O₂ в ТГФ [217] (схема d.1.5.1.5).

Схема d.1.5.1.5 Окисление метилового эфира эстрона бензолпероксоселенистой кислотой [217].

d.1.5.2 13-Эпистероиды

Описан метод получения метилового эфира 13α-эстрона (или 13эпиэстрона) изомеризацией его 13β-эпимера кипячением в уксусной кислоте с *орто*-фенилендиамином [218]. В настоящее время он является ключевым для синтеза 13α-стероидов.

Функциональная идентичность структурных фрагментов природного и 13эпи-рядов эстрановых стероидов обусловливает сходство химических свойств, а стало быть, и реакций этих соединений. Однако, изменение пространственной структуры по сравнению с природным 13β-рядом оказывает влияние на стабильность интермедиатов и, в еще большей степени, на стереохимический контроль реакции, что В приводит как минимум новой итоге К стереоселективности, а с практической стороны – получению сложных и трудно разделяемых смесей диастереомеров.

В настоящем разделе дается краткий обзор отличий химического поведения 13-эпистероидов от их аналогов с природной конфигурацией.

Выше отмечалась разница в продуктах перегруппировки Бекмана 17оксимов 13β- и 13α-стероидов [215]. Эпоксидирование 3-бензилокси- или 3метокси-13α-эстра-1,3,5(10),16-тетраена дает смесь β- и α-эпоксидов в соотношении от 3 : 1 до 1 : 1 [219,220], относительно большой набор диастереомерных продуктов демонстрирует также его гидроборирование [219]. Несколько выше диастереоселективность оказывается в реакции с тетраоксидом осмия, но в этом случае атака очень объемного электрофила идет с необычной - αстороны [221].

Авторы [188] отмечают также меньшую реакционную способность 13 α производных и необходимость существенного повышения давления СО для повышения выхода в реакциях каталитического карбонилирования Δ^{16} -17иодидов по сравнению с таковыми природного ряда (см. раздел *d.1.3.2*). В то же время, синтез исходных еновых йодидов из обоих эпимерных эстронов через гидразон и его окисление йодом в присутствии тетраметилгуанидина протекает одинаково хорошо. Конденсация Кляйзена метилового эфира 13-эпиэстрона и этилформиата в присутствии метилата натрия проходит также гладко, как и для природного эпимера, но дальнейшее восстановление полученного 13 α -16-гидроксиметиленового производного боргидридом калия в метаноле приводит к диастереомерной смеси двух исключительно *транс*-диолов в соотношении 6 : 1 [222] (схема d.1.5.2.1). Это отличается от стереохимии восстановления аналогичного соединения 13 β -ряда, где основными продуктами являются *цис*-(16 β ,17 β) и *транс*- (16 α ,17 β) диолы в соотношении приблизительно 1 : 1 (см. схему d.1.1.2.2).

Схема d.1.5.2.1 Восстановление 13α-16-гидроксиметиленэстрона [222].

Яркий пример сложности химии 13-эпистероидов приведен в работе [223]: методы, обычно вполне успешно применяемые для получения 16бензилзамещенных стероидов из 16-бензилиденовых производных в природном ряду, приводят к трудно разделяемым смесям эпимеров (рис. d.1.5.2).

d.2 Реакции расщепления кольца D и его обратная сборка

d.2.1 Методы расщепления кольца D

Методы расщепления кольца D, приведенные за рассматриваемый период, условно можно разделить на «конвенциональные», основанные на достижениях классической органической химии середины прошлого века, и «перспективные», основанные на современных методах и достижениях в области катализа, микроволнового синтеза и прочего новшества.

Рис. d.1.5.2 Синтезэпимерных13α-16-(3-карбоксамидобензил)-3,17-
дигидроксиэстра-1,3,5(10)-триенов, [223, илл.].

К первым относятся расщепление йодом в щелочном спиртовом растворе (по механизму аналогичному для т.н. «йодоформной пробы») [216,224], окисление 1,2-диолов метапериодатом [224], расщепление 17-гидрокси-16оксимов в различных условиях [161,162,216] и расщепление 17-оксимов [110,225,226]. Первые три подхода отличаются сохранением конфигурации 13 и 14 центров, тогда как в результате последнего образуется 13(18)-еновый фрагмент. Принципиальные моменты этих синтезов подытожены на схеме d.2.1.1.

Схема d.2.1.1 «Конвенциональные» методы расщепления стероидного кольца D.

Бензиловый эфир 13α-эстрона формилируются в положение 16 с последующим восстановлением, полученная смесь эпимеров по положениям 16 и 17 при дальнейшей многостадийной обработке образует один и тот же продукт – 16,17-секо-3-бензилокси-13α-эстра-1,3,5(10),16-тетраен-17-аль [227].

Схема d.2.1.2Сохранение13-конфигурацииприрасщеплении16-гидроксиметильных производных 13α-эстрадиола [227].

Среди «неконвенциональных» способов расщепления кольца D интерес представляют реакции расщепления фенилового эфира оксима эстрона под действием микроволнового излучения в присутствии «ловушек радикалов» - тетраметилпиперидинилоксила (ТЕМРО) (а), аллилсульфона (b), пиридинсульфонилазида (c) и четыреххлористого углерода (d) [228]. Эти способы позволяют одновременно с расщеплением кольца вводить реактивные функции в

D-секостероид, что может являться основой для формирования нового цикла (см. раздел d.2.2).

Схема d.2.1.3 Фрагментация фенилового эфира 17-оксима эстрона под действием микроволнового излучения и ловушек радикалов [228].

Описано введение галогена (F, Cl) в 13α-положение секостероида при расщеплении кольца D под действием света в присутствии органического фотосенсибилизатора – акридиниевого Фукузуми [229]. Исходным субстратом для этого служит достаточно сложный эфир 17-оксима эстрона (схема d.2.1.4).

Схема d.2.1.4 Фотохимическое расщепление кольца D в присутствии галогенирующих агентов и фотосенсибилизатора [229]

d.2.2 «Обратная сборка»

Построение модифицированного кольца D на базе D-секостероидов является интенсивно исследуемой областью в синтезе стероидных соединений. Например, группа венгерских ученых более 20 лет изучала и продолжает изучать

реакции двух эпимерных 16,17-секо-13α- и 13β-эстра-1,3,5(10),16-тетраен-17карбальдегидов (синтез описан выше, схема d.2.1.2]) с различными азотными нуклеофилами – производными гидроксиламина, гидразина и анилинами, чему посвящено множество взаимно пересекающихся, чрезвычайно сложно построенных работ [163,230-238]. Некоторые результаты этих изысканий резюмированы на схеме d.2.2.1.

Конфигурация 13-центра в исходном альдегиде определяет предпочтительную конфигурацию заместителей, возникающих в положении 17а и, в меньшей степени, в положении 16. Так, в примере [227] 13α-конфигурация «наводит» α-конфигурации в положениях 17а и 16. Промежуточный 16-иодметил в реакции исходного соединения с 13β-конфигурацией [239] представляет собой смесь с диастереомерным соотношением (dr) 2:1 в пользу β-эпимера.

Из сравнительно простых и эффективных, по мнениям авторов, примеров использования секостероидов можно привести синтез 16,17-сопряженного триазолостероида [241] и N-алкилированных D-гомо-17-азастероидов [216], а также синтез циклического D-гомо-Δ¹⁶-17а-оксастероида из N-оксильного производного 13,17-секостероида [228] (схема d.2.2.2).

Схема d.2.2.1 Примеры реакций 16,17-секоэстратетраен-17-аля, приводящие к замыканию цикла

Схема d.2.2.2 Примеры реакций циклизации D-секостероидов.

Создание более сложных молекулярных структур, содержащих измененное кольцо D, включают в себя использование коньюгированных биомолекул [242], синтез макроциклических фрагментов [224] или применение каталитических систем [243] (схема d.2.2.3).

Схема d.2.2.3 Усложненные молекулярные системы, исходя из D-секостероидов.

Заключение к обзору

Эстрановые (эстрогенные) стероиды являются важными биологически активными агентами. Их способность связываться с эстрогенными рецепторами является важным основанием для создания лекарственных препаратов для терапии эстроген-зависимых заболеваний. Еще более 2-х десятилетий назад было показано, что эстрогены и селективные модуляторы ER проявляют свое действие, связываясь с ER. После связывания рецептора с лигандом происходит димеризация образовавшегося лиганд-рецепторного комплекса, транслокация димера в ядро и его связывание с эстроген-чувствительным элементом ДНК (ERE). Далее, в зависимости от конформации лиганд-связывающего домена рецептора, происходит его взаимодействие с молекулой коактиватора (либо корепрессора) и дальнейшее формирование активного либо неактивного транскрипционного комплекса, проявляющееся в последующих эффектах *in vivo* [244].

Представленный обзор показывает разнообразные модификации стероидного ядра, многие из которых в конечном итоге привели к получению важных противоопухолевых стероидных препаратов - стероидных ингибиторов эстрогенного рецептора и его селективных супрессоров (дегрейдеров) (SERDs) [245-248].

Рис. 2 Стероидные препараты и соединения, проходящие клинические исследования, - ингибиторы эстрогенного рецептора.

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Разработанная ранее стратегия синтеза пентациклических производных прогестерона опирается на возможность модификации сопряженной с 17ацетильной группой 16,17-двойной связи В молекуле 3-ацетокси-16дегидропрегненолона (АДП). Как и для прочих α,β-ненасыщенных кетонов, такое сопряжение позволяет проводить множество реакций по электрон-дефицитной активированной Δ^{16} -связи стероида и получать прегнаны с самыми разными заместителями в кольце D [249]. Однако, как видно из представленного литературного обзора, этот путь модификации, позволяющий получить широкий ряд соединений варьированием заместителей в положениях 16 и 17 стероидного ядра, для стероидов с ароматическим кольцом А не использовался.

В настоящей работе осуществлен синтез 3,20-дигидрокси-19норпрегнатриенов с 13β- и 13α-конфигурациями стероидного ядра, как содержащих, так и не содержащих дополнительный 16,17-сопряженный шести- и трехчленный карбоцикл. Ключевыми соединениями для их синтеза являются 3метокси-19-норпрегна-1,3,5(10),16-тетраен-20-он и его эпимерный 13α-аналог.

Рис. 3 Ретросинтетическая схема получения 3,20-дигидрокси-19норпрегнатриенов из 3-метокси-19-норпрегнатетраенона

Соединения 13α-ряда представляет дополнительный интерес благодаря их структурным особенностям, влияющим на реакционную способность и определяющим биологическую активность.

2.1 Синтез 3,20-дигидрокси-19-норпрегна-1,3,5(10)-триенов 13β-ряда

2.1.1 Оптимизированный синтез 3-метокси-19-норпрегна-1,3,5(10),16тетраен-20-она

2.1.1.1 Синтез 3-метоксиэстра-1,3,5(10),16-тетраен-17-карбонитрила **4**

для синтеза 3,20-дигидрокси-19-Ключевым исходным соединением норпрегна-1,3,5(10)-триенов 13β-ряда 3-метокси-19-норпрегнаявляется 1,3,5(10),16-тетраен-20-он 5. В литературе описан ряд способов получения этого соединения: реакция метилмагнийгалогенидов с Δ^{16} -17-карбонитрилом [250-252], гидратация 3-метокси-17-этинил-эстра-1,3,5(10),16-тетраена с использованием солей ртути [253] или муравьиной кислоты [251], превращение 3-метилового эфира 17-этинилэстрадиола под действием трифторуксусной кислоты В присутствии металлокомплексного катализатора [254].

Кроме того, в литературе описаны синтезы соединения **5** реакцией метиллития с малодоступными амидами 3-метоксиэстра-1,3,5(10),16-тетраен-17овой кислоты в присутствии хлорида церия (III) [255], реакцией палладийкатализируемого кросс-сочетания [256] и реакцией метилового эфира эстрона с производными (изоцианометил)фосфонатов или тозилатов [257,258].

В настоящей работе исследована «классическая» реакция метилмагнийгалогенидов с 3-метоксиэстра-1,3,5(10),16-тетраен-17-карбонитрилом 4, включая два пути получения циангидрина 3 из метилового эфира эстрона 1, с его последующей дегидратацией, для создания эффективного препаративного пути синтеза 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она (схема 1).

Ранее для получения циангидрина **3** широко использовалась система КСN или NaCN-AcOH-этанол [250,252,259-263].

Схема 1. Получение 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она 5 из метилового эфира эстрона 1.

Одним из явных недостатков этого способа, кроме неудобств, связанных с использованием цианида калия, является то, что реакция протекает В гетерогенной среде, с возможно не полностью растворившимся исходным метиловым эфиром эстрона. Это затрудняет контроль И требует продолжительного (до нескольких суток) перемешивания реакционной смеси. В проблему определенной степени растворимости решает добавление В реакционную смесь тетрагидрофурана, тем не менее, выход и характеристики продукта (температура плавления) очень сильно варьируют от опыта к опыту. Попытки использовать ацетонциангидрин в качестве донора цианид-иона по аналогии с синтезом нитрилов андростанового ряда [264] также особого успеха не имели из-за плохой растворимости метилового эфира эстрона в водном метаноле.

Напротив, реакция метилового эфира эстрона 1 с триметилсилилцианидом и иодидом цинка в качестве катализатора приводит с высоким выходом к ожидаемому продукту 2 присоединения триметилсилилцианида (TMS-CN) по 17кетогруппе [209]. Последующий кислый гидролиз также с хорошим выходом дает ожидаемый циангидрин 3 [265]. Преобладающим продуктом присоединения TMS-CN 17 по кетогруппе положении является 17α-циано-17β-В триметилсилоксипроизводное, что вполне ожидаемо, учитывая наименьшие стерические затруднения при атаке с противоположной стороны к 18-метильной группе[209,266].

Реакция дегидратации стероидного циангидрина **3** кипячением в смеси POCl₃-пиридин является известным методом модификации стероидных соединений, в том числе эстранового ряда [209,250-252,260,265,267]. Тем не менее, следует отметить определенную противоречивость сведений относительно условий данной реакции и выходов, указанных в этих источниках (см. табл. 1).

Таблица 1. Синтез сопряженных нитрилов эстранового ряда дегидратацией циангидринов в системе POCl₃-пиридин (литературные данные)

	Условия					
Синтезируемый	(в т.ч. отношение количества исхо	Социнер				
нитрил	(ммоль) к объемам POCl ₃ и пириди	CUBIJIKA				
	реакции и выход					
Ацетат 3- гидроксиэстра- 1,3,5(10),16-тетраен-17- карбонитрила	1:0.33:1, в запаянной пробирке при 150°С, вода/экстракция этилацетатом, кристаллизация	-	55%	[260]		
3-метоксиэстра- 1,3,5(10),16-тетраен-17- карбонитрил	1:0.73:3, кипячение, вода/осаждение, хроматография на Al ₂ O ₃	15 мин	-	[258]		
Метансульфонат 3- гидроксиэстра- 1,3,5(10),16-тетраен-17- карбонитрила	1:0.38:1.89, кипячение, вода/экстракция хлороформом, кристаллизация	20 ч	74%	[269]		
Метансульфонат 3- гидроксиэстра- 1,3,5(10),16-тетраен-17- карбонитрила	1:0.37:1.6, кипячение, вода/экстракция этилацетатом, осаждение метанолом из CH ₂ Cl ₂	9.5 ч	74%	[265]		
3-метоксиэстра- 1,3,5(10),16-тетраен-17- карбонитрил	1:0.4:2.3, кипячение, вода/осаждение из воды	15 мин	74% на неочищ. продукт	[251]		
3-гидроксиэстра- 1,3,5(10),16-тетраен-17- карбонитрил (включая гидролиз 3-ацетокси)	1:0.67:3.4, кипячение, вода/экстракция эфиром, далее гидролиз, очистка препаративной TCX	2ч	38%	[267]		
3-бензилоксиэстра- 1,3,5(10),16-тетраен-17- карбонитрил	1:1.35:3.8, кипячение, вода/осаждение из воды, хроматография на Al ₂ O ₃	15 мин	22%	[252]		

Кроме того, система POCl₃-пиридин использовалась для получения сопряженного нитрила **4** из соответствующих силилциангидринов с выходами 68-74% [209,268], при этом эквимолярная добавка тетраэтиламмоний фторида позволила сократить время реакции от 7 ч до 1.5 ч [209].

Наши попытки воспроизвести методику [209] для получения сопряженного нитрила **4** из силилированного циангидрина **2** с использованием безводных фторида цезия или фторида калия показали, что реакция требует гораздо большего времени, чем указано в оригинальной статье. Так, при кипячении в течение 7 ч в присутствии фторида цезия выход нитрила составил 26%, а кипячение в течение 16 часов с фторидом калия приводит к получению нитрила с выходом 48%. Замена труднодоступного безводного тетраэтиламмоний фторида на обычный гидрат тетрабутиламмоний фторида вообще не позволила получить требуемое соединение. Попытка же получить сопряженный нитрил из соответствующего триметилсилилциангидрина без добавления фторид-иона по методике [268] дала выход лишь 14%.

Поэтому для синтеза сопряженного нитрила 4 было решено использовать циангидрин, полученный гидролизом продукта присоединения триметилсилилцианида к метиловому эфира эстрона. Мы предположили, что процесс дегидратации циангидрина протекает в два этапа: на первом этапе циангидрин в присутствии пиридина реагирует с оксохлоридом фосфора с образованием смеси моно- и дихлорфосфатов, а на втором этапе при кипячении в основной среде происходит отщепление (предпочтительно по механизму Е2) хлорфосфорной кислоты в виде пиридиниевой соли [см. 251] (схема 2). Поскольку пиридин и POCl₃ берутся в большом избытке, то единственным фактором, влияющим на выход реакции, является продолжительность кипячения на этапе элиминирования. Так, кипячение в течение 6, 12 и 20 часов привело к получению сопряженного нитрила 4 с выходами 53%, 82% и 68%, соответственно (схема 2).

Схема 2. Механизм дегидратации циангидрина 3.

Следует отметить, что присутствие в реакционной смеси неразложившихся хлорфосфатов сильно затрудняет дальнейшую обработку смеси. Реагируя с водой, они частично гидролизуются, превращаясь при этом в малорастворимые стероидные эфиры фосфорной кислоты, дисперсия которых сильно затрудняет разделение слоев при экстрактивной обработке.

Таким образом, установлено, что полнота разложения промежуточных стероидных хлорфосфатов при кипячении реакционной смеси в течение продолжительного времени является определяющим параметром для получения сопряженного нитрила **4** с высоким выходом.

2.1.1.2 Синтез 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она 5

Представленных в литературе сведений по реакции метилмагнийбромида или иодида с сопряженным нитрилом **4** [250,251] оказалось недостаточно, чтобы сделать выводы об оптимальных условиях получения целевого 3-метокси-19норпрегна-1,3,5(10),16-тетраен-20-она **5**. Более того, прямое воспроизведение этих методик не позволило получить желаемый продукт с приемлемым выходом, поэтому было проведено расширенное исследование по поиску оптимальных условий данной реакции. Поскольку двухстадийный механизм этого процесса включает собственно взаимодействие реактива Гриньяра с сопряженным нитрилом **4** и последующий гидролиз образовавшегося при этом имина (схема 3), задачей исследования было найти оптимальные условия для обеих стадий, сочетающие высокий итоговый выход и приемлемое время процесса. В качестве исходных магнийорганических соединений использовались метилмагнийбромид и -иодид, в экспериментах варьировались соотношение реагентов, температура

66

реакционной смеси, состав растворителя и условия (время, температура, перемешивание) гидролиза промежуточного имина. Прохождение первой стадии реакции контролировалось по исчезновению исходного нитрила **4** по TCX, результат стадии гидролиза имина и реакции в целом оценивался по конечному выходу целевого продукта **5**. Обработку реакционных смесей проводили двумя способами: 1) при проведении реакции в эфире применялась методика, аналогичная описанным [260,268], т.е. после гидролиза имина уксусной кислотой эфир отгоняли из реакционной смеси, смесь выливали в воду, отфильтровывали осадок, высушивали его и перекристаллизовывали из смеси толуол-гексан; 2) при проведении реакционную смесь гидролизовали водной уксусной – и, затем, водной соляной кислотой, с последующей экстрактивной обработкой и перекристаллизацией из смеси толуол-гексан.

Мы не выявили существенной разницы между метилмагнийбромидом и иодидом при проведении реакции в кипящем эфире. Также было установлено, что обычно указываемый в литературе 4-х и более кратный избыток реактива Гриньяра не повышает выход конечного продукта. Низкая растворимость исходного нитрила **4** в диэтиловом эфире не позволила оценить влияние высоких концентраций реагентов на выход целевого продукта. И, наконец, существенная продолжительность реакции – 48 ч – и процедура выделения также не были оптимальными по времени и выходу (см. таблицу 2).

Проведение реакции в смеси толуол-эфир позволило варьировать температуру и концентрацию исходного нитрила в более широких диапазонах. Оказалось, что повышение температуры значительно ускоряет первую стадию реакции по расходу исходного нитрила, максимальная величина выхода конечного кетона 5 приходится на 60-70°С и падает при дальнейшем повышении температуры, вероятно, за счет ускорения побочных реакций. Также следует отметить, что в этих условиях воспроизводимость выхода продукта сильно зависит от соблюдения условий гидролиза магниевой соли промежуточно что превышение температуры образующегося имина. Было обнаружено, вследствие недостаточного охлаждения реакционной смеси, либо локальный перегрев в процессе прибавления уксусной кислоты вследствие недостаточно эффективного перемешивания загустевающей реакционной смеси приводят к падению выхода целевого продукта и увеличению числа побочных соединений, среди которых обнаружен продукт димеризации 6.

При использовании чистого толуола или смеси толуол-тетрагидрофуран в качестве основного растворителя реакция практически не идет.

В итоге были найдены оптимальные условия проведения реакции сопряженного нитрила **4** с метилмагнийиодидом: соотношение нитрила и метилмагнийиодида приблизительно 1 : 2.2, кипячение в растворителе – смеси толуола и диэтилового эфира в приблизительном соотношении 1.6 : 1, с т. кип. 60-65°C, в соотношении приблизительно 7.5 мл на 1 ммоль исходного нитрила.

Для разложения промежуточного имина была выбрана схема с добавлением уксусной кислоты для разложения магниевой соли при охлаждении и интенсивном перемешивании реакционной смеси и последующим кипячением с добавкой воды. Однако этого оказалось недостаточно: выделяемые на этом этапе смеси зачастую представляли собой негомогенные полутвердые масла, содержащие неорганические компоненты, и поэтому схема гидролиза была дополнена кипячением в присутствии разбавленной соляной кислоты. Это упростило последующую экстрактивную обработку и облегчило кристаллизацию целевого продукта.

68

Условия реакции с метилмагнийгалогенидом [*]	Условия гидролиза кетимина**	Выход целевого продукта	Примечание
MeMgBr, эфир, 1:6.0:6.5, кипячение 48 ч	Методика А	30%	
MeMgI, эфир, 1:2.3:10, кипячение 48 ч	Методика А	32%	
MeMgI, эфир+толуол, 1:2.2:8, 4 ч при 65-70°С	Методика В	63%	
MeMgI, эфир+толуол, 1:2.2:8.5, 5 ч при 60°С	Методика В	46%	Нарушение режима перемешивания, «димер» (6) 4%
MeMgI, эфир+толуол, 1:1.75:5.5, 4 ч при 65-68°С	Методика В	56%	
MeMgI, эфир+толуол, 1:1.8:6.5, 5 ч при 57°С	Методика С	54%	Нарушение режима перемешивания, «димер» (6) 5%
MeMgI, эфир+толуол, 1:1.5:4, 4 ч при 65-68°С	Методика С	38%	Нарушение режима перемешивания, «димер» (6) 7%
MeMgI, эфир+толуол, 1:2.2:7.6, 5 ч при 60-65°С	Методика В, 4 опыта	68%-75%	
MeMgI, эфир+толуол, 1:1.7:7, 5 ч при 60-65°С	Методика С	60%	Преднамеренное нарушение режима перемешивания, «димер» (6) 5%

Таблица 2. Оптимизация условий синтеза 3-метокси-19-норпрегна-

1,3,5(10),16-тетраен-20-она

Примечания к таблице:

* Включают в себя: реагент, растворитель, соотношение реагентов и объема растворителя (моль : моль : л), температура, продолжительность.

** Методика А (для реакции в эфире): добавление уксусной кислоты при охлаждении, отгонка эфира до температуры реакционной смеси 80°С и кипячение при этой температуре в течение 1 часа, осаждение стероида водой, фильтрование и высушивание осадка с последующей перекристаллизацией из смеси толуол-гексан (3 : 1). Методика В (для реакции в смеси толуол-эфир): добавление уксусной кислоты при охлаждении, кипячение в течение 1 часа с добавкой водного раствора уксусной кислоты с последующим добавлением разбавленной соляной кислоты и кипячением еще в течение 1 часа, экстрактивная обработка (хлороформ), отгонка растворителей, перекристаллизация из смеси толуол-гексан (3 : 1). Методика С: повторяет методику В, однако перекристаллизация из смеси толуол-гексан была заменена колоночной хроматографией.

Для оценки предложенной методики был проведен специальный опыт, в котором, при соблюдении режима внешнего охлаждения при разложении магниевой соли имина добавлением уксусной кислоты, было отключено перемешивание. Это привело к росту внутренней температуры реакционной смеси до 35°С, после чего перемешивание было возобновлено, и процесс был согласно методике. Результатами такого отклонения продолжен явилось снижение продукта, И образование выхода целевого примеси, идентифицированной как продукт димеризации промежуточного имина с последующей циклизацией и ароматизацией («димер») (см. ниже).

Таким образом, был разработан оптимизированный по времени и выходам эффективный препаративный синтез 3-метокси-19-норпрегна-1,3,5(10),16тетраен-20-она **5** взаимодействием метилмагнийиодида с 3-метоксиэстра-1,3,5(10),16-тетраен-17-карбонитрилом **4**, позволяющий быстро и воспроизводимо получать целевое соединение.

2.1.1.3 Продукт димеризации 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20имина («димер») **6**

Как было показано выше, отклонение от оптимальных условий реакции нитрила 4 с метилмагнийиодидом приводило к снижению выхода целевого соединения 5 при полной конверсии исходного нитрила. Методом колоночной хроматографии из сложных смесей полярных продуктов этой реакции удалось выделить необычный продукт последовательных димеризации, циклизации и ароматизации промежуточного имина – «димер» 6.

Структура этого вещества была определена методами ЯМР и подтверждена рентгеноструктурным анализом.

Спектр ЯМР ¹Н димера содержал синглеты трех С-метильных групп с хим. сдвигами 1.07, 1.18 и 2.28 м.д., двух О-метильных групп (3.82 м.д., шесть протонов), сигналы семи протонов при *sp*-углеродах в области 6.4 – 7.3 м.д.; остальные сигналы находились в области «метиленового возвышения» при 1.4 - 3.1 м.д. Спектр ЯМР ¹³С содержал 42 сигнала, из которых 13 принадлежали

четвертичным атомам углерода, 10 – метиновым, 14 – метиленовым и 5 – метильным группам (данные APT-спектра). Отнесение сигналов в спектрах ¹Н и ¹³С было выполнено с использованием двумерных методик ¹H/¹H COSY, TOCSY, ROESY и ${}^{1}H/{}^{13}C$ HSQC и HMBC (таблица 3). Двумерный ${}^{1}H/{}^{15}N$ HMBC спектр дал единственную корреляцию для протона с хим. сдвигом 6.97 м.д. с азотом при -83 м.д., подтверждая данные масс-спектрометрии о наличии одного атома азота в $^{1}H/^{13}C$ HMBC 4) молекуле. Анализ спектра (рис. показал наличие дополнительного кольца Е в одной из мономерных частей димера. Строение

Таблица 3. Отнесение сигналов в спектрах ЯМР 13 С и 1 Н «димера» 6.

$\begin{array}{c} 1 \\ 2 \\ A \\ B \\ B \\ \end{array} \begin{array}{c} 12 \\ 12 \\ 12 \\ 13 \\ 14 \\ 15 \\ 12 \\ 16 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$						
	MeO ³ ⁵	6 7	1	3 014-		
	δ _C	δ _H		δ _C	δ _H	
1	125.9	7.25	1'	126.0	7.25	
2	111.3	6.76	2'	111.5	6.77	
3	157.3	-	3'	157.5	-	
4	113.7	6.69	4'	113.7	6.70	
5	137.9	-	5'	138.0	-	
6	29.73	3.00; 2.96	6'	29.68	2.96; 2.91	
7	27.7	2.05; 1.55	7'	27.7	1.99; 1.51	
8	37.2	1.73	8'	37.3	1.73	
9	43.9	2.40	9'	44.1	2.33	
10	133.0	-	10'	132.4	-	
11	26.5	2.49; 1.75	11'	26.6	2.42; 1.71	
12	36.2	2.49;1.95	12'	35.4	2.52;1.69	
13	45.6	-	13'	47.1	-	
14	54.5	1.91	14'	56.6	1.83	
15	34.3	2.94; 2.73	15'	31.2	2.36; 2.17	
16	163.7	-	16'	129.9	6.43	
17	141.0	-	17'	154.4	-	
18	16.9	1.07	18'	16.1	1.18	
19	143.0	-	19'	152.8	-	
20	120.6	6.97				
21	18.7	2.38				
OMe	55.1	3.82	OMe'	55.1	3.82	

Рис. 4 Части ¹Н/¹³С НМВС спектра димера. Вверху и слева – соответствующие части протонного и углеродного спектра. Арабские цифры до косой черты относятся к номерам протонов, а после нее – к номерам атомов углерода димера (нумерация атомов – на формуле и в таблице).
дополнительного кольца и его сочленение с кольцом D доказываются наличием ¹H/¹³C корреляционных пиков H-18/C-17, H-15/C-16,17, H-21/C-20, H-20/C-19', а также корреляционного пика H-20/N в спектре ¹H/¹⁵N HMBC. Сочленение двух мономерных единиц через связь C-19'-C-17' очевидно из наличия корреляционного пика H-20/C-17' и дополнительно подтверждается присутствием корреляционного пика H-20/H-16' в спектре ROESY.

Возможный механизм образования такого продукта включает присоединение по Михаэлю нуклеофильного фрагмента имина к активированной двойной связи получающегося кетона или протонированного имина с последующей катализируемой кислотой конденсацией альдольного типа (Схема 4). Полученный дигидропиридиновый фрагмент претерпевает ароматизацию, хотя природа окислителя в этом процессе не ясна.

Схема 4. Предположительный механизм образования «димера» **6** в реакции сопряженного нитрила **5** с метилмагнийиодидом.

Рис. 5 Общий вид молекулы «димера» в кристалле в представлении тепловых эллипсоидов (p=50%).

Таким образом, разработан эффективный препаративный способ синтеза 3метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она (**2**) - ключевого соединения для серии биологически активных стероидов эстранового и прегнанового рядов. Предложены условия синтеза целевого соединения с высоким выходом при отсутствии побочных продуктов. В ходе исследования реакции метилмагнийиодида с Δ¹⁶-17-карбонитрилом **5** выделен и охарактеризован необычный димерный продукт **6** - конденсированный 16,17-пиридиностероид, замещенный в гетерокольце второй молекулой стероида.

2.1.2 Синтез моно- и дигидроксипроизводных прегнатриенов 13β-ряда с дополнительным шестичленным карбоциклом

Катализируемая кислотой Льюиса (AlCl₃) реакция Дильса-Альдера [269] сопряженного кетона 5 и бутадиена позволила с высоким выходом получить 16α,17αпентациклический стероид 7, содержащий дополнительный Полученное циклогексеновый фрагмент. соединение гидрировали при атмосферном давлении в присутствии 10% палладия на активированном угле Гидрированный аддукт 8 деметилировали 48%-ной (схема 5). смесью бромистоводородной кислоты и иодида натрия в ледяной уксусной кислоте, что с высоким выходом привело к 3-гидроксистероиду 9. Добавка эквимолярного количества иодида натрия как источника активного нуклеофила в стандартную систему для расщепления метилфениловых эфиров позволило значительно сократить время реакции (приблизительно с 6 до 3 часов).

Восстановлением 20-кетогруппы стероида 9 алюмогидридом лития в ТГФ были получена смесь 3,20-диолов, из которой был выделен только один энантиомер **10a** с 20(*R*)-конфигурацией в боковой цепи. В то же время кипячение 3-метокси-20-кетостероида 8 толуольном растворе В диизобутилалюминийгидрида (DIBAH) привело К одновременному восстановлению 20-кетогруппы и расщеплению метилфенилового эфира и позволило получить диастереоизомерную смесь 3,20-диолов с повышенным содержанием 20(S)-изомера 10b. Индивидуальные изомеры 10a и 10b были

выделены из смеси с помощью обращеннофазовой высокоэффективной жидкостной хроматографии (ОФ-ВЭЖХ).

Схема 5. Синтез пентациклических стероидов, содержащих дополнительное 16α,17α-циклогексановый фрагмент и функциональные группы в положениях 3 и 20. Реагенты и условия: (а) бутадиен, AlCl₃, CH₂Cl₂, 25°C, 68%; (b) H₂, 10% Pd/C, диоксан, 93%; (c) HBr (48%), AcOH, NaI, кипячение, 3.5 ч, 77%; (d) LiAlH₄, TГФ, 25°C, 48%; (e) DIBAH, толуол, кипячение, 6 ч.

Абсолютная конфигурация C20 была нового хирального центра установлена методами спектроскопии ЯМР. С этой целью были сделаны отнесения сигналов в спектрах ЯМР ¹Н и ¹³С (таблицы 4a и 4b) и проведены эксперименты по регистрации эффекта Оверхаузера (NOE). Спектры 2D NOESY соединений 10а и 10b были недостаточно информативны из-за перекрывания сигналов метильной группы CH₃-21 с сигналами протонов H22 и H25. Поэтому были проведены эксперименты ge-1D NOESY для определения различий в спектрах ЯМР этих двух изомеров. Облучение протона гидроксильной группы при C20 в экспериментах ge-1D NOESY давало резонансные отклики на протоны H20, CH₃-21, H12 ($\delta_{\rm H}$ 1.81) для соединения **10а** (*R*-изомер), тогда как возбуждение протона гидроксильной группы в соединении 10b (S-изомер) давало отклики на протонах H20, CH₃-21, H16 ($\delta_{\rm H}$ 2.24), H22 ($\delta_{\rm H}$ 1.73) и H25 ($\delta_{\rm H}$ 1.89) (рис. 6). Кроме того, соединение 10а позднее было исследовано методом рентгеноструктурного анализа (PCA), подтвердившим приписанную 20(*R*)-конфигурацию (рис. 7).

Рис. 6 Определение конфигурации 20-центра в соединениях **10а** и **10b** методом ge-1D NOESY. Показаны наиболее значимые взаимодействия и фрагменты молекулы.

Рис. 7 Общий вид молекулы **10а** в кристалле в представлении тепловых эллипсоидов (p=50%).

3-Метокси-20-гидроксистероид **11** был получен в виде смеси 20(R) и 20(S) изомеров восстановлением 20-кетостероида **8** алюмогидридом лития или DIBAH при комнатной температуре. Сравнительное исследование восстановления 20-кетогруппы этими реагентами показало различные соотношения продуктов реакции. Так, соотношение 20(R) и 20(S) изомеров составило 4.3 : 1 для алюмогидрида лития и 2.3 : 1 для DIBAH (по спектрам ЯМР ¹Н).

2.1.3 Синтез дигидроксипроизводных прегнатриенов 13β-ряда с дополнительным трехчленным карбоциклом и без дополнительного карбоцикла

Для того чтобы оценить влияние размера дополнительного кольца D' стероида на биологические свойства были синтезированы 3,20дигидроксистероиды, содержащие дополнительное циклопропановое кольцо D', аннелированое с основным стероидным ядром по положениям 16α,17α (схема 6) и стероиды **16** и **17**, не содержащие дополнительного карбоцикла D' (схема 7).

 Схема 6. Синтез 3,20-дигидрокси-16α,17α-циклопропано-19-норпрегна-1,3,5(10)-триенов 13. Реагенты и условия: (а) Me₃SOI, NaH, ДМСО/ТГФ, 25°С, 24 ч, 59%; (b) DIBAH, толуол, кипячение, 6 ч, 32%.

Соединение 12 было синтезировано реакцией Джонсона-Кори-Чайковского сопряженного кетона 5 с триметилсульфоксонийиодидом. Соответствующий 3,20дигидроксистероид 13 был синтезирован в одну стадию из соединения 12 кипячением последнего с толуольным раствором DIBAH. В этих условиях циклопропановый фрагмент, который сохраниться может не при сильными кислотами, деметилировании остается незатронутым [270,271]. Стероид 13 был выделен в виде смеси 20(R) и 20(S) изомеров. Тем не менее, использование методик двумерного ЯМР ¹H/¹H COSY, TOCSY, NOESY и ¹H/¹³C HSQC, HMBC позволило провести отнесение сигналов для обоих изомеров. были Конфигурации асимметрических центров установлены тщательным анализом спектров NOESY в предположении, что расстояния между группой CH₃-21 и протоном H16 должны различаться для 20(R) и 20(S) изомеров. Протон H16β находится ближе к CH₃-21 группе в *R*-изомере, тогда как в *S*-изомере эти группы отдалены друг от друга (рис. 8). Спектр NOESY смеси этих двух изомеров демонстрирует интенсивный кросс-пик CH₃-21 ($\delta_{\rm H}$ 0.84)/H16 β ($\delta_{\rm H}$ 0.96), но такой кросс-пик не наблюдается для сигналов CH₃-21 ($\delta_{\rm H}$ 1.09)/H16 β ($\delta_{\rm H}$ 1.23). Это свидетельствует о том, что первая пара сигналов метильной группы и протона H16 β относится к *R*-изомеру, тогда как вторая – к *S*-изомеру.

Рис. 8 Определение конфигурации 20-центра в 20(*R*) и 20(*S*) изомерах соединения **13** методом NOESY. Показаны наиболее значимые взаимодействия и фрагменты молекулы.

Гидрированием сопряженного кетона 5 был получен насыщенный кетон 14. Деметилирование HBr/NaI/AcOH последнего смесью И последующее ЭТОМ 3-гидрокси-20-кетостероида восстановление получившегося при 15 алюмогидридом лития привело к 3,20-дигидроксистероиду 16, который после колоночной хроматографии и перекристаллизации был выделен виде В единственного 20(R)-изомера (схема 7).

Спектр NOESY соединения **16** показывает интенсивный кросс-пик CH₃-21 группы ($\delta_{\rm H}$ 1.01) с протоном H16 β ($\delta_{\rm H}$ 1.63), пик слабой интенсивности с протоном H16 α ($\delta_{\rm H}$ 1.14) и кросс-пик средней интенсивности с протоном H17 ($\delta_{\rm H}$ 1.30), в тоже время гидроксильный протон при C20 ($\delta_{\rm H}$ 4.09) дает единственный кросс-пик с протоном H17. Сделанные с использованием ЯМР выводы о структуре боковой цепи соединения **16** подтверждены данными PCA (рис. 9).

Схема 7. Синтез 3,20-дигидрокси-19-норпрегна-1,3,5(10)-три- и 1,3,5(10),16тетраенов. Реагенты и условия: (а) H₂, 10% Pd/C, диоксан, 91%; (b) HBr (48%), AcOH, NaI, кипячение, 3.5 ч, 53%; (c) LiAlH₄, ТГФ, 25°C, 40%; (d) DIBAH, толуол, кипячение, 6 ч, 47%.

Рис. 9 Общий вид молекулы 16 в кристалле в представлении тепловых эллипсоидов (p=50%).

Сравнительное исследование восстановления 16,17-незамещенного 3метоксикетона 14 алюмогидридом лития и DIBAH показало, что в данном случае (*ср.* соединение 11), стереоселективность восстановления 20-кетогруппы несколько выше, а различие в соотношениях 20(R)/(S) изомеров, полученных при восстановлении кетогруппы этими восстановителями, - меньше (4.6 : 1 и 3.9 : 1 для LiAlH₄ и DIBAH, соответственно). Таким образом, изначально невысокое содержание и сложная процедура выделения продукта могут объяснять то, что 20(S)-изомер соединения 16 не был выделен в индивидуальном состоянии.

3,20-Дигидроксистероид **17**, содержащий двойную связь в положении 16, был синтезирован одновременным восстановлением-деметилированием

сопряженного кетона **5** под действием DIBAH. Поскольку была получена почти эквимолярная смесь 20(*R*) и 20(*S*)-изомеров **17**, то отнесение конфигурации C20 проводилось сравнением интенсивностей кросс-пиков в спектре NOESY, соответствующих взаимодействиям протонов боковой цепи и ближайших протонов жесткого стероидного ядра. Интенсивности значимых кросс-пиков H20/CH₃-18, OH-20/H16 и CH₃-21/H16 были сравнимы для обоих изомеров, тогда как интенсивности кросс-пиков CH₃-21/CH₃-18 для изомерных соединений четко различались. Более интенсивный пик ($\delta_{\rm H}$ 1.22/ $\delta_{\rm H}$ 0.81) должен соответствовать *R*-конфигурации, поскольку расстояние между протонами 18- и 21-метильных групп при этой конфигурации меньше, чем для *S*-конфигурации (рис. 10).

В отличие от приведенных ранее примеров, образование почти эквимолярной смеси 20(R) и 20(S) изомеров связано, скорее всего, с тем, что восстанавливаемая 20-кетогруппа связана с плоским фрагментом стероидного ядра в районе С17 и вынесена относительно далеко от стереоцентра С13, что в общем итоге приводит к нивелированию асимметрической индукции.

Отнесения сигналов в спектрах ЯМР 1 Н и 13 С соединений 4, 5, 7, 10а, 10b, 13, 16 и 17 сведены в итоговые таблицы 4а и 4b, соответственно.

Рис. 10 Определение конфигурации 20-центра в 20(R) и 20(S) изомерах соединения 17 методом NOESY. Показаны наиболее значимые взаимодействия и фрагменты молекулы.

Таблица 4а. Отнесения сигналов в спектрах ЯМР ¹Н соединений 4, 5 и 7 (CDCl₃, 600 МГц) и соединений 10а, 10b, 13,

Соединение	4	5	7	10a	10b	1	.3	16	1	7
Номер атома				R	S	R	S	R	R	S
1	7.21	7.22	7.20	6.	99	6.	99	7.03	7.	02
2	6.74	6.73	6.72	6.	48	6.	48	6.51	6.	50
3	-	-	-		-		-	-		-
4	6.66	6.65	6.64	6.	42	6.	42	6.42	6.4	44
5	-	-	-		-		-	-		-
6	2.92	2.91	2.87	2.	69	2.	70	2.70	2.	72
7	1.92, 1.49	1.93, 1.47	1.88, 1.37	1.77; 1.27	1.76;1.25	1.72	;1.23	1.75; 1.25	1.82;	1.33
8	1.63	1.63	1.44	1.	26	1.	36	1.25	1.4	45
9	2.33	2.28	2.20	2.01	2.03	2.	03	2.05	2.	14
10	-	-	-		-		-	-		-
11	2.44, 1.65	2.34, 1.61	2.37, 1.55	2.10; 1.29	2.14; 1.27	2.20;	; 1.30	2.15; 1.28	2.27;	1.43
12	2.08, 1.69	2.53, 1.55	1.88	1.81; 1.52	1.50	2.00; 1.36	1.77; 1.36	2.12; 1.27	1.93; 1.60	1.88; 1.50
13	-	-	-		-		-	-		-
14	1.71	1.67	1.78	1.61	1.71	1.01	1.03	1.16	1.52	1.47
15	2.47, 2.23	2.43, 2.15	1.74, 1.42	1.81; 1.60	1.56; 1.30	1.53; 1.33	1.53; 1.28	1.60; 1.12	2.08;	1.86
16	6.68	6.75	3.16	2.02	2.24	0.96	1.23	1.63; 1.14	5.50	5.52
17	-	-	-		-		-	1.30		-
18	0.97	0.93	0.76	0.86	0.75	0.91	0.87	0.70	0.81	0.84
19										
20		-	-	3.81	3.85	4.15	4.07	3.51	4.25	4.20
21		2.30	2.15	1.15	1.10	0.84	1.09	1.01	1.22	1.20
22			2.42, 2.26	1.28	1.73; 1.25	0.68; 0.40	0.54; 0.44			
23			5.80	1.45; 1.14	1.71; 1.45					
24			5.85	1.47	1.42; 1.31					
25			2.44, 1.82	1.59; 1.31	1.89; 1.42					
3-OH				8.	93	8.	94	8.92	3.	95
20-OH				4.10	4.12	4.02	4.08	4.10	4.44	4.49
3-OMe	3.80	3.79	3.79							

16 и **17**(ДМСО-*d*₆, 600 МГц).

Соединение	4	5	7	10a	10b	1	3	16	1	7
Номер атома				R	S	R	S	R	R	S
1	126.0	126.1	126.1	12	5.8	12	5.6	125.9	12	5.6
2	111.5	111.3	111.5	11	2.6	11	2.6	112.6	11	2.6
3	157.6	157.4	157.5	15	4.8	15	4.9	154.8	15	4.9
4	113.9	113.8	113.8	11	4.9	11	4.9	114.8	11	4.9
5	137.5	137.7	137.9	13	7.1	13	7.0	137.0	13	7.1
6	29.5	29.6	29.9	29	9.2	29	0.0	29.2	29	9.0
7	27.6	27.7	27.8	27.7	27.6	27.6	27.5	27.5	27	7.4
8	37.1	36.9	38.7	38.9	38.7	37.1	37.0	38.5	37	7.0
9	44.1	44.2	43.5	43.2	43.1	43.8	43.7	43.4	43	3.8
10	132.0	132.7	132.4	130.7	130.6	130.7	130.5	130.6	13	0.6
11	26.1	26.4	26.3	26.1	25.8	26	5.1	26.3	26	5.1
12	34.0	34.7	32.8	32.5	31.7	35.3	35.1	39.4	34	1.7
13	48.4	46.4	46.3	49.2	47.3	42.1	41.0	42.3	45	5.9
14	55.2	55.5	50.0	48.2	48.6	46.1	46.7	54.5	56.6	56.2
15	32.6	31.9	33.8	32.9	32.3	26.0	25.7	25.3	30).1
16	147.3	144.3	34.3	35.4	40.1	19.5	18.1	23.8	121.2	121.7
17	127.5	155.5	66.6	49.1	49.2	41.0	39.9	57.9	159.5	160.1
18	16.3	15.9	16.9	14.4	14.1	16.9	17.1	12.0	16.4	16.5
19										
20	115.9	196.8	211.1	71.1	74.1	65.4	62.5	68.3	63.6	63.4
21		27.1	28.5	22.2	20.2	20.6	23.2	21.7	23.7	23.6
22			27.1	23.8	24.6	6.4	4.6			
23			126.0	20.2	23.3					
24			129.4	29.5	20.6					
25			29.8	33.1	29.8					

82

Таблица 4b. Отнесения сигналов в спектрах ЯМР ¹³С соединений 4, 5 и 7 (CDCl₃, 150 МГц) и

соединений **10а**, **10b**, **13**, **16** и **17**(ДМСО-*d*₆, 150 МГц).

55.2

3-OMe

55.2

55.2

2.2 Синтез 3,20-дигидрокси-13α-19-норпрегна-1,3,5(10)-триенов

2.2.1 Синтез ключевых исходных соединений

Целевые соединения были синтезированы согласно общей методологии, описанной лля 3,20-дигидрокси-19-норпрегнатриенов с природной 13Bконфигурацией стероидного ядра и изложенной в разделе 2.1. В соответствии с результатами предварительных биологических исследований, показавшими, что наивысшую активность проявляют 3,20-дигидроксисоединения, эта методология была упрощена – из нее был исключен синтез моногидроксипроизводных, и к всех целевых соединений применена методика одновременного синтезу восстановления-деметилирования 3-метокси-20-кетостероидов с использованием диизобутилалюминийгидрида (DIBAH). В качестве исходного соединения для синтеза 3,20-дигидрокси-13α-19-норпрегнатриенов был использован 3-метиловый эфир 13α-эстрона 18, полученный из метилового эфира эстрона 1 по методике [218]. Его реакция с триметилсилилцианидом (TMSCN) в присутствии безводного иодида цинка дала соответствующий силилциангидрин 19 в виде эпимерной смеси 17α- и 17β-карбонитрилов в соотношении приблизительно 3.5 : 1 (тогда как для эстрона с природной 13β-конфигурацией это соотношение составляло приблизительно 8 : 1 по спектрам ЯМР ¹Н). Литературные данные о присоединении различных нуклеофилов к 17-кетогруппе соединения 18 [218,221] давали основания предполагать, что в этом случае основным продуктом является 17α-карбонитрил, ЧТО было подтверждено результатами РСА (рис. 11). Кислотным гидролизом эпимерной смеси силилированных циангидринов 19 были получены циангидрины 20 (также в виде смеси эпимеров), дегидратация которых с использованием POCl₃ в пиридине дала сопряженный нитрил 21. Реакция последнего с метилмагнийиодидом дала ключевой промежуточный продукт сопряженный кетон 22 (схема 8).

Схема 8. Синтез ключевого кетона 22. Реагенты и условия: (a) TMSCN, ZnI₂, CH₂Cl₂, кипячение, 95%; (b) HCl (aq.), EtOH, кипячение, 89%; (c) POCl₃, пиридин, кипячение, 7 ч, 83%; (d) MeMgI, Et₂O, толуол, 65°C, 6 ч, AcOH, H₂O, 5°C, HCl (aq.), кипячение, 2 ч, 77% (две стадии).

Рис. 11 Общий вид молекулы 3-метокси-17β-триметилсилокси-13α-эстра-1,3,5(10)-триен-17α-карбонитрила (преобладающий эпимер в смеси силилциангидринов 19) в кристалле в представлении тепловых эллипсоидов (p=50%).

Следует отметить, что дегидратация смеси циангидринов 20 в ряду 13αстероидов протекает значительно быстрее, чем для стероидов с природной 13βконфигурацией (соединение 3). Так, полная конверсия циангидрина в 13α-ряду происходит менее чем за 7 часов кипячения в дегидратирующей смеси, тогда как в 13β-ряду – за 12 часов. Возможной причиной является облегчение процесса бимолекулярного элиминирования E2 (см. схему 2) за счет преобладающей конформации цикла D в мажорном 13α-стероидном 17α-карбонитриле, которая

84

способствует транс-ориентации уходящей 17β-фосфонатной группы по отношению к протону в положении 16α (рис. 12).

- Рис. 12 Конформации кольца D, обуславливающие расположение уходящих групп при дегидратации 17-циангидринов в случаях 13α- и 13β-конфигурации стероидного ядра (проекция вдоль оси C16-C17).
 - 2.2.2 Особенности катализируемой кислотами Льюиса реакции Дильса-Альдера в ряду 13α-19-норпрегнатриенов и синтез 3,20-дигидрокси-16α,17α-циклогексано-13α-19-норпрегнатриенов

Соединения 23-25, содержащие дополнительный шестичленный цикл D', были получены реакцией Дильса-Альдера бутадиена с ключевым сопряженным кетоном 22 в качестве диенофила. Попытки провести циклоприсоединение, катализируемое кислотами Льюиса (AlCl₃, BF₃·Et₂O, TiCl₄, AlBr₃), в обычных условиях [269] были неудачными и приводили к образованию циклоаддукта 23 с очень низкими выходами. Однако одновременное использование кислоты Льюиса и высокого давления [272] позволило получить целевой циклоаддукт с выходом до 70% (схема 9). Реакцию диенофила 22 с бутадиеном проводили в дихлорметане в присутствии безводного AlCl₃ под давлением 600 МПа. Пентациклический был выделен колоночной хроматографией стероид 23 с последующей перекристаллизацией из смеси метанол-дихлорметан. Структура этого соединения была подтверждена методом РСА (рис. 13).

 Схема 9. Синтез стероидов 13α-ряда, содержащих дополнительный 16α,17αциклогексановый фрагмент и функциональные гидроксильные группы в положениях 3 и 20. Реагенты и условия: (а) бутадиен, AlCl₃, CH₂Cl₂, 25°C, 600 МПа, 68%; (b) H₂, 10% Pd/C, диоксан, 83%; (c) DIBAH, толуол, кипячение, 6 ч.

Рис. 13 Общий вид молекулы аддукта **23** в кристалле в представлении тепловых эллипсоидов (p=50%).

Низкая реакционная способность кетона 22 как диенофила по сравнению с его аналогом с природной 13β-конфигурацией, вероятно, объясняется меньшей степенью сопряжения в Δ^{16} -20-кето-фрагменте диенофила при его связывании с кислотой Льюиса за счет специфических структурных особенностей молекулы 13α-стероида. Низкая степень сопряжения нивелирует действие катализатора, который обычно должен снижать электронную плотность 16,17-двойной связи и/или поляризацию, необходимо реакции увеличивать ee что для циклоприсоединения. Действительно, положение сигналов протона Н16 в спектрах ЯМР специально приготовленных смесей 13α-кетона 22 или его 13βаналога 5 с хлоридом алюминия в CDCl₃ показывает меньшую степень дезэкранирования этого протона в случае 13α-диенофила по сравнению с 13βдиенофилом (см. таблицу 5). Примечательно, что для соответствующих эпимерных нитрилов – соединений **21** и **4**, не вступающих в катализируемую кислотами Льюиса реакцию Дильса-Альдера при атмосферном давлении, - такой разницы не наблюдается, а абсолютная величина изменения сравнима с таковой для малоактивного кетона **22**.

Аддукт **23** гидрировали при атмосферном давлении в присутствии 10% палладия на угле в качестве катализатора. Восстановление-деметилирование полученного при этом соединения **24** кипячением в толуольном растворе DIBAH привело к получению диастереоизомерной смеси 3,20-диолов **25а,b** (схема 9).

Таблица 5. Изменения химических сдвигов протона H16 сопряженных нитрилов и кетонов 13α- и 13β-рядов при образовании комплексов с AlCl₃.

Соединение	δ _{H16}	Δ δ _{H16}
13α-кетон 22	6.64	1.08
13 α -кетон 22 + AlCl ₃	7.72	1.00
13β-кетон 5	6.76	1.24
13 β -кетон 5 + AlCl ₃	8.10	1.34
13α-нитрил 21	6.56	1.02
13α-нитрил 21 + AlCl ₃	7.58	1.02
13β-нитрил 4	6.67	1.00
13β-нитрил 4 + AlCl ₃	7.67	1.00

Условия опыта: 30 мг испытуемого образца с добавкой/без добавки 10 мг безв. AlCl₃ в 1 мл CDCl₃ перемешивали в течение 30 минут, после чего надосадочные растворы отделялись и анализировались.

Индивидуальные изомеры **25а** и **25b** были выделены из смеси колоночной хроматографией на силикагеле. Абсолютная конфигурация нового хирального центра C20 была установлена методами спектроскопии ЯМР. С этой целью были сделаны отнесения сигналов в спектрах ЯМР ¹Н и ¹³С (таблицы 6а и 6b), после чего были проведены эксперименты по регистрации ядерного эффекта Оверхаузера. Спектры 2D NOESY соединения **25a** показывают взаимодействия

СН₃-21 ($\delta_{\rm H}$ 1.15)/H16 ($\delta_{\rm H}$ 2.19) и H20 ($\delta_{\rm H}$ 4.05)/H16 ($\delta_{\rm H}$ 2.19) при отсутствии взаимодействия CH₃-21 ($\delta_{\rm H}$ 1.15)/CH₃-18 ($\delta_{\rm H}$ 1.09), что характеризует 20(*R*)изомер, тогда как кросс-пики OH-20 ($\delta_{\rm H}$ 4.02)/H16 ($\delta_{\rm H}$ 2.60) и CH₃-18 ($\delta_{\rm H}$ 1.05)/CH₃-21 ($\delta_{\rm H}$ 1.22) наблюдаются в спектре соединения **25b** (20(*S*)-изомер) (рис. 14). Оба изомера характеризуются наличием в спектре NOESY кросс-пиков CH₃-18/H11 α , свидетельствующих о «ванна-подобной» конформации кольца C.

Рис. 14 Определение конфигурации 20-центра в соединениях 25а и 25b методом NOESY. Показаны наиболее значимые взаимодействия и фрагменты молекулы, взаимодействия CH₃-18/H11α, характеризующие конформацию кольца C, опущены.

2.2.3 Синтез 3,20-дигидрокси-13α-19-норпрегнатриенов с дополнительным трехчленным карбоциклом и без дополнительного карбоцикла

Аналогично серии прегнатриенов с природной конфигурацией стероидного ядра был выполнен синтез 3,20-дигидроксистероидов **26** и **27**, содержащих дополнительное циклопропановое кольцо D' в положении 16α,17α (схема 10), и стероидов **29a** и **29b**, не содержащие дополнительного карбоцикла D' (схема 11).

Соединение 26 было получено по реакции Джонсона-Кори-Чайковского сопряженного кетона 22 и триметилсульфоксонийиодида. Конфигурация дополнительного цикла была установлена анализом данных ЯМР соответствующего 3,20-дигидроксистероида 27. Последний был получен в одну стадию из соединения 26 кипячением с толуольным раствором DIBAH и выделен

в виде смеси 20(*R*) и 20(*S*) изомеров. Тем не менее, использование методик 2D ¹H/¹H COSY, TOCSY, NOESY и ¹H/¹³C HSQC, HMBC (см. таблицы 6а и 6b) позволило провести отнесение сигналов и установить структуры *R*- и *S*-изомеров **27**. Для обоих изомеров была подтверждена α -конфигурация дополнительного цикла по наличию кросс-пиков H22 α ($\delta_{\rm H}$ 0.04)/CH₃-18 ($\delta_{\rm H}$ 1.13) в спектре NOESY.

Конфигурация C20 была определена методом NOESY исходя из предположения, что расстояние между CH₃-21 и H16 должно различаться в 20(*R*) и 20(*S*) изомерах: протон H16 ближе всего к группе CH₃-21 в *R* изомере, тогда как в *S* изомере они достаточно отдалены друг от друга (рис. 15). Спектр NOESY смеси этих изомеров показывает интенсивный кросс-пик CH₃-21 ($\delta_{\rm H}$ 0.85)/H16 ($\delta_{\rm H}$ 1.08), но кросс-пик между соответствующими сигналами CH₃-21 ($\delta_{\rm H}$ 1.05) и H16 ($\delta_{\rm H}$ 1.37) отсутствует. Кроме того, взаимодействие H22 β ($\delta_{\rm H}$ 0.54)/CH₃-21 ($\delta_{\rm H}$ 0.85) более выражено в *R*-изомере по сравнению с *S*-изомером ($\delta_{\rm H}$ 0.51)/($\delta_{\rm H}$ 1.05). Эти данные свидетельствуют, что первая пара сигналов относится к *R*-изомеру, тогда как последняя – к *S*-изомеру.

Для обоих изомеров наблюдается кросс-пик CH₃-18/H11α, свидетельствующий о «ванна-подобной» конформации цикла С.

Схема 10. Синтез 3,20-дигидрокси-16α,17α-циклопропано-13α-19-норпрегна-1,3,5(10)-триена 27 (смесь *R*,*S*-изомеров). Реагенты и условия: (а) Ме₃SOI, NaH, ДМСО/ТГФ, 25°С, 24 ч, 50%; (b) DIBAH, толуол, кипячение, 6 ч, хроматография, 24%.

Рис. 15 Определение конфигурации дополнительного циклопропанового фрагмента и центра C20 в 20(R)- и 20(S)-изомерах соединения 27 NOESY. Взаимодействие Н22а/СН₃-18 методом при отсутствии H14/H16 взаимодействия свидетельствует об α-конфигурации дополнительного цикла. Наличие или отсутствие кросс-пика CH₃-21/H16 свидетельствует о *R*- или *S*-конфигурации 20-центра, соответственно. Показаны наиболее значимые взаимодействия и фрагменты молекулы, взаимодействия СН₃-18/Н11α, характеризующие конформацию кольца С, опущены.

Гидрирование сопряженного кетона **22** дало смесь эпимерных насыщенных кетонов **28a** и **28b** в соотношении приблизительно 2 : 1. Преобладающий кетон **28a** был выделен кристаллизацией. Рентгеноструктурное исследование показало, что C17 центр этого кетона имел неожиданную α-конфигурацию (рис. 16).

Рис. 16 Общий вид молекулы **28а** в кристалле в представлении тепловых эллипсоидов (p=50%).

Восстановление-деметилирование смеси соединений **28a** и **28b** диизобутилалюмогидридом (DIBAH) привело к смеси 3,20-дигидроксистероидов. Преобладающие в этой смеси соединения **29a** (с 20(*S*),17α-конфигурацией) и **29b**

90

(с 20(*R*),17β-конфигурацией) были выделены колоночной хроматографией с последующей перекристаллизацией. Присутствие двух других возможных диастереомеров зафиксировано в спектрах ЯМР смеси, но сами они выделены не были.

Соединение **29а** также было получено из кетона **28а** последовательными деметилированием бромистоводородной кислотой и восстановлением 20кетогруппы LiAlH₄ как было описано в разделе 2.1.2.2 для соединений с 13βконфигурацией стероидного ядра.

28a: 17-alpha 28b: 17-beta

29a: 20(*S*),17-alpha 2*9*b: 20(*R*),17-beta

Схема 11. Синтез соединений 29а и 29b. Реагенты и условия: (а) H₂, 10% Pd/C, ТГФ или диоксан; (b) DIBAH, толуол, кипячение, 6 ч.

В спектре NOESY соединения **29а** присутствует интенсивный кросс-пик протонов CH₃-18 ($\delta_{\rm H}$ 0.92) с H20 ($\delta_{\rm H}$ 3.50), свидетельствующий о 17аконфигурации, при этом отсутствуют кросс-пики H20 ($\delta_{\rm H}$ 3.50)/H12 ($\delta_{\rm H}$ 2.45 либо 1.33) и CH₃-18 ($\delta_{\rm H}$ 0.92)/H17 ($\delta_{\rm H}$ 1.82), ожидаемые для 17β-конфигурации. Кроме того, кросс-пики H17 ($\delta_{\rm H}$ 1.82)/H8 ($\delta_{\rm H}$ 0.98) и H17 ($\delta_{\rm H}$ 1.82)/H11β ($\delta_{\rm H}$ 1.33) показывают, что кольцо C в соединении **29а** принимает конформацию «кресло». Протон OH-20 ($\delta_{\rm H}$ 4.08) дает кросс-пики с протонами H12 ($\delta_{\rm H}$ 2.45 и 1.33), а протоны метильной группы CH₃-21 ($\delta_{\rm H}$ 1.65 и 1.17), но при этом не взаимодействуют с протонами H12 ($\delta_{\rm H}$ 2.45 и 1.33). Эти данные свидетельствуют о 20(*S*)-конфигурации **29а**.

Спектр NOESY соединения **29b** демонстрирует кросс-пики OH-20 ($\delta_{\rm H}$ 4.17)/CH₃-18 ($\delta_{\rm H}$ 1.21), H20 ($\delta_{\rm H}$ 3.55)/CH₃-18 ($\delta_{\rm H}$ 1.21), H20 ($\delta_{\rm H}$ 3.55)/H12 α ($\delta_{\rm H}$ 1.51). При этом отсутствуют взаимодействия протонов CH₃-21 ($\delta_{\rm H}$ 1.03) с протонами CH₃-18 ($\delta_{\rm H}$ 1.21) и любым из протонов CH₂-12, но присутствует кросс-пик CH₃-21 $(\delta_{\rm H} 1.03)/{\rm H16}$ ($\delta_{\rm H} 1.48$). С учетом кросс-пика H17 ($\delta_{\rm H} 1.45$)/CH₃-18 ($\delta_{\rm H} 1.21$), свидетельствующего о 17β-конфигурации, был сделан вывод о том, что боковая цепь соединения **29b** имеет 20(*R*),17β-конфигурацию. Кросс-пики H8 ($\delta_{\rm H} 1.13$)/H12β ($\delta_{\rm H} 1.63$) и CH₃-18 ($\delta_{\rm H} 1.21$)/H11α ($\delta_{\rm H} 2.32$) представляют доказательства, что кольцо C в соединении **29b** принимает конформацию «ванна», что было подтверждено PCA этого соединения (рис. 17).

Таким образом, исследование конформаций методами ЯМР (в растворах) и PCA кристаллах) показало, конформация (в ЧТО кольца С BO всех вышеупомянутых 13α-стероидах определяется заместителем/заместителями в 17положении [221]. В соединениях 25а, 25b, 27 и 29b с 17β-боковой цепью и/или принимает дополнительным кольцом D' кольцо С «ванна-подобную» конформацию, тогда как в соединении 29а с 17α-боковой цепью кольцо С находится в классической конформации «кресло».

Рис. 17 Определение структуры соединений **29а** и **29b** методом 2D NOESY. Показаны наиболее значимые взаимодействия и фрагменты молекулы.

Рис. 18 Общий вид молекулы **29b** в кристалле в представлении тепловых эллипсоидов (p=50%).

Таблица 6а. Отнесения сигналов в спектрах ЯМР ¹Н соединения **23** (CDCl₃, 600 МГц) и соединений **25а**, **250b**, **27**, **29а** и **29b** (ДМСО-*d*₆, 600 МГц).

Соединение	23	25a	25b	2	27	29a	29b
Номер атома	_	R	S	R	S	α/S	β/R
1	7.08	6.92		6.93		7.07	6.96
2	6.72	6.52		6.	51	6.51	6.51
3	-	-	-	-		-	
4	6.58	6.	37	6.36		6.42	6.37
5	-	-	-		-	-	
6	2.77	2.62	2.60	2.	60	2.68	2.60
7	2.02,	1.90;	1.12	1.82	, 1.16	1.89,	1.90;
	1.25					1.11	1.10
8	1.35	1.21	1.19	1.	17	0.98	1.13
9	2.56	2.	38	2.	48	2.09	2.34
10	-	-	-		-	-	-
11	2.40,	2.31;	2.31;	2.33	, 1.39	2.09,	2.32;
	1.58	1.40	1.37			1.33	1.39
12	1.75,	1.68;	1.86;	1.83,	1.57	2.45,	1.63;
	0.93	1.63	1.62	1.50		1.33	1.51
13	-	-	-		-	-	-
14	1.44	1.2	22	1.03	1.07	1.14	1.22
15	1.82,	2.19;	2.15;	2.11	, 1.50	1.75,	1.46;
	1.62	1.23	1.23			1.44	1.21
16	2.88	2.19	2.60	1.08	1.37	1.65,	1.72;
. –						1.17	1.48
17	-	-	-		-	1.82	1.45
18	1.28	1.09	1.05	1.22	1.13	0.92	1.21
19		4.05	4.00		• • •	a a a	
20	-	4.05	4.09	3.93	3.96	3.50	3.55
21	2.13	1.15	1.22	0.85	1.05	1.00	1.03
22	2.52,	1.71;	1.39;	0.54,	0.51,		
22	2.20	1.18	1.24	0.04	0.14		
23	5.64	1.63;	1.43;				
	- - 0	1.43	1.37				
24	5.63	1.60;	1.57;				
2.5	• • •	1.33	1.34				
25	2.33,	1.47;	1.48;				
2.011	1.91	1.33	1.35	0.02	0.00	0.02	0.05
3-OH	-	8.87	8.89	8.92	8.92	8.93	8.95
20-OH	-	4.19	4.02	4.04	4.02	4.08	4.17
3-OMe	3.78						

 Таблица 6b.
 Отнесения сигналов в спектрах ЯМР ¹³С соединения 23

 (CDCl₃, 150 МГц) и соединений 25а, 25b, 27, 29а и 29b

 (ДМСО-d₆, 150 МГц).

Соединение	23	25a	25b	2	7	29a	29b
Номер атома	-	R	S	R	S	a/S	β/R
1	127.9	127.5 127.6		12	127.7		127.52
2	112.3	11	3.3	113.3		112.7	113.3
3	157.2	15	4.4	154.5		154.8	154.5
4	113.0	114.3	114.2	11-	4.3	114.6	114.3
5	137.5	136.6	136.7	13	6.5	137.4	136.9
6	30.3	29	9.7	29	9.6	29.8	29.7
7	29.9	29	9.7	29	9.4	28.1	29.4
8	41.3	42.3	42.4	43	3.5	40.6	40.1
9	35.2	34	.4	33	3.9	42.1	36.1
10	134.4	132.7 132.8		132.3		130.8	132.6
11	26.4	26.9		27.3	27.1	26.0	26.7
12	27.5	26	5.3	26.5	26.7	35.1	25.3
13	47.1	49.1	48.0	43.8		43.3	42.3
14	50.1	49	9.9	49.4	50.1	54.1	53.5
15	35.9	35.5	32.6	35.9	35.6	25.7	28.0
16	34.9	38.0	34.8	22.9	21.8	24.8	28.8
17	61.8	49.9	50.2	42.7	43.8	46.8	59.5
18	22.5	23.1	22.7	26.3	25.8	24.3	31.4
19							
20	211.8	68.8	65.6	65.3	62.8	68.5	67.1
21	28.5	20.4	19.0	20.7	22.9	24.4	24.6
22	26.5	25.5	25.9	10.5	9.9		
23	123.2	21.8	21.5				
24	126.9	23.9	22.8				
25	26.0	18.7	18.6				
3-OMe	55.2						

2.3 Оценка биологической активности целевых соединений

Биологические испытания были проведены в лаборатории онкопротеомики отдела экспериментальной биологии опухолей НИИ канцерогенеза ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России (рук. к.б.н. А. М. важнейшие Щербаков). Изучены две биологические характеристики синтезированных стероидов: первая - и самая общая - антипролиферативная (цитотоксичность), активность оценивающая потенциал соединения как противоопухолевого средства, И вторая характеристика влияние на транскрипционную активность эстрогенного рецептора α (ERα), являющееся показателем гормонального/антигормонального действия.

2.3.1 Антипролиферативные свойства целевых соединений (цитотоксичность)

Соединения 8 – 11, 13, 15 – 17 ряда 13 β -стероидов и соединения 25a,b, 27, 29a,b ряда 13α-стероидов были испытаны in vitro на их антипролиферативную (цитотоксическую) активность в отношении эстроген-положительной линии клеток РМЖ MCF-7, мультирезистентной клеточной линии NCI/ADR-RES, а также нормальных клеток эпителия молочной железы линии MCF-10A. Цитотоксичность оценивалась с помощью спектрофотометрического МТТ-теста, основанного на митохондриальном восстановлении МТТ-реагента (3-[4,5диметилтиазол-2-ил]-2,5-дифенилтетразолийбромид) в жизнеспособных клетках. В качестве цитотоксических препаратов сравнения были использованы цисплатин тамоксифен (SERM). Величины концентраций И полумаксимального ингибирования клеточного роста IC₅₀ для испытанных соединений приведены в таблице 7.

Полученные данные в целом показывают, что для проявления значимой активности соединение должно содержать свободную фенольную группу, при этом дополнительный 20-гидроксил увеличивает имеющуюся активность, но сам по себе активности не обуславливает. Так, соединения 8 и 11 с метилированным

Таблица 7. Величины IC₅₀ (концентрации полумаксимального ингибирования) испытанных соединений по отношению к ряду клеточных линий.

	Величина IC50, µМ							
Соединение		Клеточная линия						
	MCF-7	NCI/ADR-RES	MCF-10A					
8	НД	-	НД					
9	15.8 ± 1.4	-	НД					
10a	6.8 ± 0.7	-	НД					
10b	4.6 ± 0.5	-	23.0 ± 2.5					
11*	НД	-	НД					
13*	0.21 ± 0.03	-	3.1 ± 0.4					
15	НД	-	НД					
16	0.15 ± 0.03	-	5.9 ± 0.5					
17*	4.6 ± 0.4	-	19.1 ± 1.8					
25a	11.0 ± 1.2	16.9 ± 1.9	НД					
25b	13.9 ± 1.6	15.4 ± 1.7	НД					
27*	3.0 ± 0.4	3.8 ± 0.6	7.5 ± 0.8					
29a	6.0 ± 0.7	8.2 ± 0.9	13.2 ± 1.5					
29b	10.9 ± 1.5	18.6 ± 2.0	24.0 ± 2.7					
Тамоксифен	5.3 ± 0.8	-	НД					
Цисплатин	7.4 ± 0.9	НД	11.9 ± 2.1					

Примечания к таблице:

HД – величина 50% ингибирования клеточного роста не была достигнута при концентрациях ниже 25 μM (IC $_{50}\!\!>\!\!25~\mu M$);

* – соединения испытывались в виде смеси 20(*R*,*S*)-изомеров.

фенольным гидроксилом не проявили активности в условиях эксперимента, хотя отличаются друг от друга наличием 20-кето- (8) либо 20-гидроксигруппы (11). В тоже время замена 20-кетогруппы в 3-гидроксистероиде 9 на 20-гидроксигруппу в соединениях 10а и 10b усиливает антипролиферативное действие приблизительно в три раза. Такой эффект выражен еще сильнее для пары соединений 15 (3-гидрокси-20-кетон) и 16 (3,20-дигидрокси), не содержащих дополнительный цикл:

первое оказалось неактивным в условиях эксперимента, тогда как второе было одним из самых активных ингибиторов пролиферации.

3,20-Дигидроксистероиды 13α-ряда демонстрируют несколько пониженную антипролиферативную активность по сравнению с 13β-рядом, хотя она остается высокой и сравнима с активностью широко применяемых противоопухолевых препаратов – тамоксифена и цисплатина. Для соединений обоих 13β- и 13α-рядов уменьшение размера дополнительного цикла D' до его полного отсутствия ведет к повышению антипролиферативной активности, более резко выраженному для соединений 13β-ряда.

Важной характеристикой полученных 3,20-дигидрокси-19норпрегнатриенов 13α- и 13β-рядов является значительно пониженная активность в отношении нормальных (не опухолевых) клеток эпителия молочной железы MCF-10A, которые используются в качестве модели для исследований функций и трансформаций нормальных клеток молочной железы *in vitro*. Положительным результатом является обнаружение активности некоторых 3,20-дигидрокси-13α-19-норпрегнатриенов в отношении линии раковых клеток NCI/ADR-RES, устойчивых к действию химиотерапевтических препаратов цисплатина и доксорубицина.

2.3.2 Влияние целевых соединений на транскрипционную активность эстрогенного рецептора α

Влияние соединений 8 – 11, 13, 15 – 17, 25а,b, 27, 29а,b на транскрипционную активность ЕRα оценивалась методом ген-репортерного анализа на эстроген-зависимых клетках MCF-7. Для этого использовали трансфекцию плазмиды, содержащей ген-репортер люциферазы под контролем ERE (эстроген-чувствительных элементов) [273]; для нормирования результатов и оценки потенциальной токсичности процедур проводили трансфекцию клеток плазмидой, содержащей ген β-галактозидазы.. Для оценки агонистической активности исследуемых соединений трансфицированные клетки обрабатывали испытуемыми соединениями в концентрации 10 нМ, инкубировали в течение 24 ч

и измеряли активность репортерных белков – люциферазы и β-галактозидазы – начальной стадией конечных продуктов процесса, которого является транскрипция соответствующих репортерных генов. Для оценки соединений как антагонистов рецептора трансфицированные клетки обрабатывали испытуемыми соединениями в концентрации 5 мкМ (13β-стероиды) или 10 мкМ (13α-стероиды) и 17β-эстрадиолом (индуктор активности рецептора эстрогенов) в концентрации 10 нМ, инкубировали в течение 24 ч и измеряли активность репортерных белков. В качестве веществ сравнения использовались 17β-эстрадиол (агонист – активатор транскрипционной активности) и тамоксифен (селективный модулятор ERα – в данном случае ингибитор эстрадиол-индуцированной транскрипционной активности в клетках MCF-7).

Из всех исследованных соединений агонистическую активность проявил только 3,20-дигидрокси-16,17-циклопропано-13 α -19-норпрегнатриен 27, причем эта активность была достаточно высока и составляла около 30 % от активности эстрадиола в условиях эксперимента. Соединения 8, 11, 15 и 17 не проявили собственной агонистической активности и при этом также не оказывали заметного влияния и на эстрадиол-индуцированную транскрипционную активность, т.е. их можно рассматривать как соединения индифферентные к ЕR α . Соединения 16, 25a, 25b, 29a и 29b снижали эстрадиол-индуцированную активность до 60 – 85% от контроля (E2), а соединения 9, 10a, 10b и 13 демонстрировали еще большее ингибирование до 25 – 55% (рис. 19).

Результаты оценки транскрипционной активности с точки зрения наличия функциональных групп (фармакофорных фрагментов) в испытуемых соединениях согласуются с результатами определения антипролиферативной активности: соединение должно содержать свободную фенольную группу, при этом дополнительный 20-гидроксил увеличивает имеющуюся активность, но сам по себе активности не обуславливает. В тоже время соединения с дополнительным шестичленным циклом демонстрируют наибольшее ингибирование транскрипционной активности по сравнению с соединениями с малым дополнительным циклом или без дополнительного цикла.

Рис. 19 Влияние синтезированных соединений на транскрипционную активность ERα в клетках MCF-7.

Так, 16,17-циклогексано-соединения **9** и **10а,b** оказались гораздо активнее соединений **15** и **16** без дополнительного цикла, а соединение **13** (циклопропановое производное) занимает промежуточное положение.

3,20-Дигидроксистероиды 13α-ряда в меньшей степени ингибируют рецептор по сравнению с подобными соединениями 13β-ряда, более того, 3,20-дигидрокси-16α,17α-циклопропано-13α-19-норпрегнатриен **27** показал значительную активацию транскрипционной активности ΕRα при высокой антипролиферативной активности в отношении MCF-7 и мультирезистентных клеток NCI/ADR-RES, что делает это соединение очень интересным объектом для исследования его противоопухолевого потенциала.

Наиболее эффективным ингибитором ERα оказался 3,20(*R*)-дигидрокси-16α,17α-циклогексано-19-норпрегна-1,3,5(10)-триен **10а**.

Таким образом, по результатам биологических испытаний можно считать, что подавляющее большинство синтезированных стероидов представляют собой антиэстрогены. Серьезный интерес для дальнейших биологических исследований вызывают соединения **10a**, **13**, **16**, продемонстрировавшие высокую антипролиферативную и антиэстрогенную активности, и соединение **27**,

99

сочетающее высокую антипролиферативную активность с активацией рецептора (структуры см. в таблице 8).

Таблица 8. Соединения-лидеры, предполагаемые для углубленного биологического исследования.

В заключение можно констатировать, что для 3,20-дигидроксистероидов обоих – 13β - и 13α -рядов – цитотоксичность растет с уменьшением размера дополнительного цикла, в то время как наибольшее ингибирование собственно рецептора демонстрируют соединения с шестичленным дополнительным кольцом – в наибольшей степени – соединения 13β -ряда. Учитывая, что цитотоксичность целевых соединений в отношении $ER\alpha(+)$ клеток РМЖ реализуется многими путями, можно сделать вывод о том, что с увеличением размера дополнительного кольца возрастает вклад ингибирования рецептора, тогда как вклад других механизмов, опосредующих цитотоксичность, уменьшается.

2.4 Молекулярное моделирование взаимодействия 3,20-дигидрокси-19норпрегнатриенов 13β- и 13α-рядов с ERα

Общепризнано, что эстрогены и селективные модуляторы ER проявляют свое действие, связываясь с ER. Далее, в зависимости от конформации лигандрецепторного комплекса, происходит «рекрутирование» коактиваторных либо корепрессорных белков, что в конечном итоге проявляется в эффектах *in vivo*.

Базовые требования высокой аффинности лигандов к ERa хорошо известны благодаря исследованным зависимостям структура-активность И кристаллографическим данным комплексов различных лигандов с ERa [274-276]. Согласно этим требоваиям две разнесенных в пространстве гидроксильных группы (расстояние приблизительно 11 Å) располагаются на концах почти планарного гидрофобного ядра таким образом, что фенольный гидроксил образует водородную связь с аминокислотными остатками глутамата (Glu353) и аргинина (Arg394), в то время как второй гидроксил (17β-OH) связывается с имидазольным остатком гистидина (His524). Все остальные контакты в комплексе являются гидрофобными [274,277] (рис.20). В случае наиболее полно селективных модуляторов ERα исследованных нестероидной природы, проявляющих антагонистическую активность, таких как 4-гидрокситамоксифен или ралоксифен, типичные требования аффинности дополняются требованием наличия объемной боковой цепи с катионным фрагментом, способствующей формированию антагонистической конформации рецептора [278,279] (рис. 20).

К сожалению, рентгеноструктурные данные, которые могли бы конкретнее обрисовать взаимодействие стероидных антагонистов (фулвестрант, TAS-108) с ЕRα на молекулярном уровне, отсутствуют, и это создает серьезные трудности при моделировании взаимодействия стероидных лигандов-антагонистов с молекулой рецептора. При этом, тем не менее, следует ожидать определенной общности требований к структуре соединений, необходимых для их связывания с рецептором, тогда как структурные особенности, определяющие агонистический или антагонистический эффект, могут разниться.

Рис. 20 Взаимодействия характерных агониста и антагонистов – эстрадиола (А), 4-гидрокситамоксифена (В) и ралоксифена (С) – с аминокислотными остатками LBP ERα [277-279].

Для оценки возможных взаимодействий лиганд-рецептор и вероятного влияния лиганда на конформацию рецепторного комплекса, в дальнейшем определяющую его транскрипционную активность, был проведен докинг исследуемых соединений в лиганд-связывающий домен ядерного рецептора эстрогенов α (LBD ERα) человека с расчетом скоринговой функции в программе AutoDock Vina [280].

Для оценки эффекта исследуемых соединений как агонистов или антагонистов ERa, в качестве мишеней для докинга использовались структуры лиганд-рецепторных комплексов в агонистической (1QKU) – с эстрадиолом – и антагонистической конформациях (3ERT) – с 4-гидрокситамоксифеном. Докинг целевых соединений и некоторых их прекурсоров проводился с использованием двух подходов – «гибкого» И «жесткого» докинга. «Гибкая» модель подразумевала пластичность аминокислотных остатков лиганд-связывающего кармана (LBP): Met343, Leu346, Thr347, Leu349, Glu353, Leu384, Leu387, Met388, Leu391, Arg394, Phe404, Met421, Ile424, Leu428, His524 и Leu525. В «жесткой» модели конформации белка и аминокислотных остатков LBP оставались «замороженными» - такими, какими они были в исходной структуре лигандрецепторного комплекса, выбранного для докинга.

Моделирование в режиме «гибкого» докинга показало, что все исследуемые соединения с высокой эффективностью могут аккомодироваться в LBP ERα, причем как в агонистической (1QKU), так и антагонистической (3ERT) конформации рецептора. При этом соединения с шестичленным дополнительным циклом (8-10, 25) характеризуются большей аффинностью (таблица 9), что, вероятно, связано с увеличением гидрофобного взаимодействия, а отсутствие свободной фенольной группы в соединении 11 снижает аффинность, вероятно, изза невозможности образования водородной связи. Кроме того, исследованные соединения в целом показали несколько большее сродство к структуре 1QKU, чем к структуре 3ERT.

«Гибкий» докинг показал типичные водородные связи фенольного гидроксила с остатками Arg394 и Glu353 [274-276] и смещение лигандов в

сторону фенольного гидроксила относительно расчетного положения эстрадиола (рис. 21). В то же время 20-ОН группа в большинстве соединений не включена во взаимодействие с остатком His524 (несмотря на то, что в этих соединениях расстояния между гидроксильными группами (по данным PCA) близки к таковому в эстрадиоле (см. таблицу 10)). При «гибком» докинге водородная связь 20-ОН - His524 обнаруживается только в одном из конформеров комплекса рецептора и 20(R)-изомера соединения **27** для модельной структуры 1QKU (см. рис. 22).

«Жесткий» докинг ожидаемо показывает, что все соединения хуже вписываются в соответствующие структуры лиганд-рецепторных комплексов, чем базовые лиганды – эстрадиол и 4-гидрокситамоксифен (таблица 9). При этом расчетные величины энергий связывания не демонстрируют каких-либо четких корреляций. В отличие от «гибкого» докинга, преимущество по энергиям связывания для агонистической или антагонистической структуры также неочевидно. Более интересными являются предсказываемые в этой модели положения лигандов в LBP (рис. 21). Докинг в структуру 3ERT демонстрирует разупорядоченное расположение лигандов, не соответствующее не только наблюдаемым тенденциям в анализе транскрипционной активности, но и требованиям по связыванию с рецептором: фенольная группа лигандов ориентирована либо в сторону His524, либо находится вне LBP, молекулы некоторых лигандов вообще находятся вне кармана. Таким образом, вариант стероидных обсуждаемых здесь молекул структуру 3ERT, докинга В соответствующую антагонистической конформации рецептора с нестероидным антагонистом, может быть исключен из дальнейшего рассмотрения.

Положения лигандов при «жестком» докинге в агонистическую структуру 1QKU, напротив, демонстрируют большую упорядоченность (рис. 21): осевая ориентация всех молекул совпадает с ориентацией нативного лиганда – эстрадиола (фенольный гидроксил ориентирован в сторону остатков Arg394 и Glu353, а 20-гидроксил – в сторону His524). Как и при «гибком» докинге, молекулы сдвинуты в сторону фенольного гидроксила относительно положения нативного лиганда.

Таблица 9.Расчетныеаффинности(скоринговыефункции)исследованныхсоединенийпоотношениюкLBDЕRαвагонистической(1QKU)иантагонистической(3ERT)конформациях(соединениясгруппированыпоуменьшениюразмерадополнительногоцикла).

Соотинонно	ADV	score	ADV	score	
(конфигурации	(ккал/	моль)	(ккал/	моль)	Примечание
C17/C20	(гибкая модель)		(жесткая модель)		
01//020)	1QKU	3ERT	1QKU	3ERT	
E2	-12	-11.3	-10.7	-9.3	17β-эстрадиол
4-OHT	-10.7	-10.7	-6.2	-9.9	4-гидрокситамоксифен
8	-13.9	-13.4	-7	-9.5	3-метокси-20-кето
9	-14.2	-13.7	-10.1	-9.5	3-гидрокси-20-кето
10a (<i>R</i>)	-13.7	-13.1	-9	-9.3	3,20-дигидрокси
10b (S)	-13.6	-13.4	-9.2	-9.3	3,20-дигидрокси
25a (<i>R</i>)	-14.4	-14.3	-9.4	-8.3	3,20-дигидрокси
25b (S)	-14.5	-14.2	-8.6	-8.3	3,20-дигидрокси
11 (<i>R</i>)	-13.3	-12.9	-6.3	-9.3	3-метокси-20-гидрокси
11 (S)	-13.2	-12.9	-6.3	-8.8	3-метокси-20-гидрокси
13 (<i>R</i>)	-12.7	-12.4	-9.6	-9.7	3,20-дигидрокси
13 (S)	-12.8	-12.2	-10.3	-9.9	3,20-дигидрокси
27 (R)	-13.4	-13	-9.8	-8.1	3,20-дигидрокси
27 (S)	-12.9	-13.1	-9.6	-8.3	3,20-дигидрокси
15	-12.6	-12.1	-10	-9.3	3-гидрокси-20-кето
16 (<i>R</i>)	-12.3	-11.9	-9.2	-9.5	3,20-дигидрокси
29a (a.S)	-13.1	-12.2	-8.9	-8.8	3,20-дигидрокси
29b (β.R)	-12.5	-12.7	-9.3	-8.7	3,20-дигидрокси
17 (<i>R</i>)	-12.5	-12.1	-9.7	-8.7	3,20-дигидрокси- Δ^{16}
17 (S)	-12.5	-11.9	-10.2	-9.1	3,20-дигидрокси- Δ^{16}

При этом молекулы большинства лигандов оказываются перевернуты вдоль продольной оси по сравнению с эстрадиолом, и только три лиганда – 20(*R*) и 20(*S*)-изомеры соединения **27**, а также молекула **29b** – в лиганд-связывающем

кармане лежат подобно эстрадиолу и способны образовать водородную связь 20-ОН с остатком His524 (рис. 21, 22).

Учитывая относительно высокие значения скоринг-функции для этих соединений по сравнению с соединениями с увеличенным гидрофобным фрагментом (**10a,b** и **25a,b**), можно предположить, что лиганды **27** и **29b** в меньшей степени искажают и в большей степени стабилизируют исходно заданную агонистическую конформацию лиганд-рецепторного комплекса 1QKU [281], а следовательно, могут являться агонистами ЕRα в отличие от остальных исследованных соединений.

Таким образом, докинг показал, что все исследованные соединения могут связываться с эстрогенным рецептором, но конформации их комплексов могут различаться в зависимости от структуры исходного лиганда.

Таблица 10. Расстояния между двумя гидроксильными группами в эстрадиоле и исследуемых соединениях (по данным РСА, депонированным в Кембриджский банк структурных данных (CCDC)).

Соединение	Расстояние, Å	Идентификатор структуры в ССОС
17β-Эстрадиол Е2	10.913 - 11.078	По <u>нескольким</u> структурам из БД
10a	10.862	<u>1495042</u>
16	11.124	<u>1495041</u>
29a	9.889	Не опубликовано
29b	11.356	<u>1818712</u>

Рис. 20 Рассчитанные с помощью моделей «гибкого» и «жесткого» докинга положения лигандов в лиганд-связывающем кармане ERα для агонистической (1QKU) и антагонистической (3ERT) конформаций лиганд-рецепторного комплекса. Тонкими линиями обозначены положения молекул лигандов и ключевых аминокислотных остатков (Glu353, Arg394, His524), расчетное положение молекулы эстрадиола представлено пространственно-сферической моделью для докинга либо стержневой моделью (пурпурный), молекулы 4-гидрокситамоксифена стержневой моделью (серый).

Рис. 22 Расположение молекул 25а (А) и 27 (В), продемонстрировавших, антитранскрипционную соответственно, И транскрипционную активности в отношении ERa, и ключевых аминокислотных остатков LBP ERa в одной из конформаций «гибкого» докинга. Толстыми линиями представлено расположение лигандов и аминокислотных остатков, зеленые пунктирные линии представляют значимые водородные связи во фрагменте. Стартовые расположения эстрадиола и аминокислотных остатков в кристаллической структуре 1QKU показаны 27 Для соединения с тонкими линиями. циклопропановым дополнительным кольцом расчетное положение 20-гидроксильной группы практически совпадает с положением 17-гидроксильной группы эстрадиола, в то время как 20-гидроксил в антагонисте 25а и 17гидроксильная группа эстрадиола расположены далеко друг от друга.
Заключение

В результате проведенных исследований был разработан эффективный подход к синтезу новой серии 3,20-дигидрокси-19-норпрегна-1,3,5(10)-триенов эпимерных 13β- и 13α-рядов, как содержащих, так и не содержащих дополнительный карбоцикл в 16,17-положениях. В рамках этого подхода были осуществлены:

- оптимизация синтеза 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20она, как ключевого исходного соединения для последующих синтезов замещенных и незамещенных 3,20-дигидрокси-19-норпрегнатриенов, и получение его неизвестного ранее 13α-аналога;
- синтез первичных аддуктов 3-метокси-16α,17α-циклогексано- и циклопропано-19-норпрегна-1,3,5(10)-триен-20-онов 13β- и 13α-рядов
 реакциями Дильса-Альдера и Кори-Чайковского;
- синтез 3-метокси-19-норпрегна1,3,5(10)-триен-20-онов 13β- и 13αрядов каталитическим гидрированием сопряженной Δ¹⁶-связи соответствующих исходных соединений;
- синтез целевых 3,20-дигидрокси-19-норпрегнатриенов 13β- и 13αрядов путем одновременного восстановления 20-кетогруппы и деметилирования исходных 3-метокси-20-кетостероидов с помощью диизобутилалюминийгидрида (DIBAH).

Методами спектроскопии ЯМР и рентгеноструктурного анализа установлены абсолютные конфигурации возникающего асимметрического центра С20 и конформации кольца С (кресло/ванна) в целевых эпимерных 20гидрокистероидах 13β- и 13α-ряда.

Среди изученных реакций отмечена пониженная стереоселективность нуклеофильного присоединения по 17-кетогруппе 13α-эстрона и каталитического гидрирования 3-метокси-13α-19-норпрегна-1,3,5(10),16-тетраен-20-она **22** и его пониженная реакционная способность в реакции Дильса-Альдера по сравнению с 13β-аналогами.

Все целевые соединения продемонстрировали высокую антипролиферативную активность в микромолярных и субмикромолярных концентрациях в отношении эстроген-зависимой линии клеток РМЖ МСF-7 при низкой токсичности для нормальных эпителиальных клеток МCF-10А. Кроме того, испытания соединений 13α-ряда выявили их активность в отношении полирезистентной клеточной линии NCI/ADR-RES.

Большинство соединений оказались ингибиторами ERα, за исключением циклопропанового производного 13α-ряда, проявившего активирующий эффект на транскрипционную активность эстрогенного рецептора. Наибольший ингибирующий эффект отмечен у 3,20-дигидроксистероида с природной 13β-конфигурацией и дополнительным шестичленным карбоциклом.

Показано, что для проявления биологической активности в рассмотренных моделях наличие 3-гидроксигруппы является обязательным, а наибольшую активность как в тестах на цитотоксичность, так и в тестах на ингибирование/активацию ER, проявляют соединениями с двумя гидроксильными группами.

Показано, что для 3,20-дигидроксистероидов обоих – 13β- и 13α-рядов – цитотоксичность растет с уменьшением размера дополнительного цикла, в то время как наибольшее ингибирование собственно рецептора демонстрируют соединения с шестичленным дополнительным карбоциклом. Учитывая, что цитотоксичность целевых соединений в отношении ER(+) клеток РМЖ опосредуется многими путями, можно сделать вывод о том, что с увеличением размера кольца возрастает вклад ингибирования рецептора, тогда как вклад других механизмов токсичности уменьшается.

В результате исследования выявлены четыре соединения-лидера, отличающиеся высокой активностью при различных вероятных механизмах биологического действия, что в перспективе может обосновать применимость таких соединений для специфических клинических случаев. Показано, что все исследуемые соединения могут связываться с ER, однако их комплексы с рецептором могут иметь различные конформации, что в конечном итоге определяет антиэстрогенную и эстрогенную активность этих соединений.

Таким образом, проведено комплексное исследование по созданию и разработке эффективного синтеза серии новых стероидных противоопухолевых агентов - 3,20-дигидрокси-19-норпрегна-1,3,5(10)-триенов эпимерных 13 β - и 13 α -рядов, получены целевые соединения, доказана их структура, проведено сравнительное компьютерное моделирование лиганд-рецепторных взаимодействий в отношении ЕR α , изучены *in vitro* их биологические эффекты как потенциальных антиэстрогенов и выявлены перспективные соединениялидеры для последующего углубленного анализа их противоопухолевой активности.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

работе были использованы pearentы компании Acros Organics B квалификации "reagent grade" или "analytical grade". Подготовка растворителей стандартным Аналитическая TCX проводилась согласно процедурам. проводилась на пластинах Merck silica gel 60 F254 с использованием дихлорметана (система А), смеси толуол-ацетон в соотношении 40 : 1 (система В) и смеси дихлорметан-ацетон в соотношении 50 : 1 (система С) в качестве элюентов. Пятна на ТСХ визуализировались под УФ и/или опрыскиванием водным раствором KMnO₄. Препаративное разделение проводилось методом колоночной хроматографии на силикагеле 60 (0.063-0.100 мм) (Merck) при соотношении вещество- сорбент 1 : 40. Препаративная обращеннофазовая ВЭЖХ проводилась на препаративной колонке Sunfire C18 (19 мм х 250 мм) со смесью ацетонитрил-вода (70 : 30) в качестве подвижной фазы со скоростью потока 20 мл/мин и УФ-детектированием на длине волны 280 нм. Температуры плавления определялись на микронагревательном столике Boetius. Все выходы даны на очищенные вещества. Одно- и двумерные спектры ЯМР регистрировали на спектрометрах Bruker AM300 (300.13 МГц для ¹Н и 75.5 МГц для ¹³С) и Bruker AV-600 (600.13 МГц для ¹Н и 150.9 МГц для ¹³С) с использованием стандартного ПО компании Bruker. Химические сдвиги даны в величинах б (м.д.) относительно сигналов остаточных протонов дейтерированного растворителя: $\delta_{\rm H}$ 7.27 и $\delta_{\rm C}$ 77.0 для CDCl₃; $\delta_{\rm H}$ 2.50 и $\delta_{\rm C}$ 39.5 для ДМСО- d_6 . Время смешения в экспериментах TOCSY и NOESY составляло 100 мс и 600 мс, соответственно, время спин-лока в экспериментах ROESY составляло 150 мс. ${}^{1}H/{}^{13}C$ и ${}^{1}H/{}^{15}N$ HMBC эксперименты оптимизированы для КССВ 8 Гц. Масс-спектры высокого разрешения (HRMS) micrOTOF Π регистрировались приборе Bruker с ионизацией на электрораспылением (ESI) в режиме положительно заряженных ионов (напряжение на капилляре 4500 В); диапазон масс от m/z 50 до m/z 3000 Да; калибровку внешнюю либо внутреннюю проводили с использованием калибровочных растворов Electrospray Calibrant Solution (Fluka). Растворы в ацетонитриле или метаноле вводились шприцом со скоростью 3 мкл/мин. Газ-

интерфейса 180°C. Данные распылитель температура азот; рентгеноструктурного анализа получены на дифрактометре Bruker APEX DUO. Все расчеты проводились с использованием ПО SHELX. Координаты атомов, длины связей, углы и термические параметры депонированы в Кембриджский банк структурных данных (CCDC), номер ссылки дается в соответствующем разделе Экспериментальной части. Эти данные могут быть получены на сайте http://www.ccdc.cam.ac.uk/data_request/cif, либо по запросу на электронный адрес data_request@ccdc.cam.ac.uk, либо непосредственно адресу Cambridge по Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; факс: +44(0)1223-336033.

3.1 Экспериментальная часть к разделу 2.1

3-Метокси-17β-триметисилоксиэстра-1,3,5(10)-триен-17α-карбонитрил 2

К раствору 30.1 г (106 ммолей) 3-метилового эфира эстрона 1 в 250 мл сухого дихлорметана добавили 1.00 г (3 ммоля) безводного иодида цинка и 14.9 г (20 мл, 150 ммолей) триметилсилилцианида. Смесь кипятили при перемешивании в течение 2 ч до исчезновения пятна исходного вещества на ТСХ (система А). Затем реакционную смесь сконцентрировали в вакууме, твердый остаток растворили в кипящей смеси толуола и гексана (1 : 2). Горячий раствор профильтровали через слой силикагеля (5 г) и дали остыть сначала до комнатной температуры, далее в холодильнике до 8°С. Выпавшие кристаллы отфильтровали, промыли холодным гексаном И высушили. Получено 36.6 Г (90%)силилциангидрина 2, т.пл. 135–136°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, б м.д.): 0.26 (с, 9H, Si(CH₃)₃), 0.85 (с, 3H, 18-CH₃), 1.35–2.58 (м, 13H, остаток 5 х CH₂ и 3 х СН групп стероидного ядра), 2.87 (уш.с, 2H, 6-CH₂), 3.79 (с, 3H, OCH₃), 6.65 (с, 1H, 4-CH), 6.74 (д, 1H, 2-CH, J = 8.4 Гц), 7.22 (д, 1H, 1-CH, J = 8.4 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, б м.д.): 1.3, 12.3, 23.1, 26.3, 27.2, 29.8, 33.3, 38.1, 39.4, 43.4, 48.2, 48.4, 55.3, 111.6, 113.9, 122.4, 126.4, 132.2, 137.9, 157.6. Масс-спектр: m/z 406.2175 [M + Na]⁺, вычислено для C₂₃H₃₃NNaO₂Si 406.2173.

3-Метокси-17β-гидрокси-1,3,5(10)-триен-17α-карбонитрил 3

а) Из метилового эфира эстрона 1 с цианидом калия

В 100 мл тетрагидрофурана суспендировали 25 г (88 ммоля) метилового эфира эстрона 1 и 25 г (385 ммолей) цианида калия. Эту смесь охладили до 0°С на ледяной бане и по каплям прибавили 100 мл ледяной уксусной кислоты. Реакционную смесь перемешивали до достижения комнатной температуры и еще 20 ч при комнатной температуре. Ход реакции контролировали по ТСХ. После исчезновения пятна исходного вещества по ТСХ (система А) в колбу добавили приблизительно 0.7 л воды, перемешали, выпавший осадок отфильтровали и высушили. Получено 23.8 г (87%) циангидрина 3, т.пл. 155–158°С (ср. лит. 158.5°C следующей [261]). Ha стадии вещество использовалось без дополнительной очистки.

b) Из метилового эфира эстрона **1** и триметилсилилцианида с последующим гидролизом О-силилциангидрина

К раствору 70.2 г (250 ммолей) метилового эфира эстрона **1** в 600 мл сухого дихлорметана добавили 2.4 г (7.5 ммолей) безводного иодида цинка и 31.7 г (43 мл, 320 ммолей) триметилсилицианида. Смесь кипятили при перемешивании в течение 2 часов до исчезновения исходного соединения по TCX, после чего удалили растворитель в вакууме. К полученному твердому остатку добавили смесь 600 мл этанола, 90 мл воды и 5 мл концентрированной соляной кислоты и кипятили в течение 1 часа до исчезновения пятна исходного вещества на TCX (система А). Затем добавили 350 мл предварительно нагретой до 80°C дистиллированной воды и дали смеси остыть до комнатной температуры. Осадок отфильтровали, промыли дистиллированной водой и высушили. Получено 66.2 г (85%) циангидрина **3**, т.пл. 158–161°C (разл.) (ср. лит. 158.5°C [261]). Спектр ЯМР ¹H (ДМСО- d_6 , 300 МГц, δ м.д.): 0.79 (с, 3 H, 18-CH₃), 1.22–2.44 (м, 13 H, сигналы 5 х CH₂ и 3 х CH групп стероидного ядра), 2.77 (м, 2 H, 6-CH₂), 3.69 (с, 3 H, OCH₃), 6.56 (уш.с, 1 H, OH), 6.61 (с, 1 H, 4-CH), 6.68 (д, 1 H, 2-CH), *J* = 8.3 Гц), 7.17 (д, 1 H, 2-CH, *J* = 8.3 Гц); спектр ЯМР ¹³С (ДМСО- d_6 , 75 МГц, δ м.д.): 11.9, 122.3, 25.8,

26.7, 29.1, 33.2, 36.6, 38.7, 43.0, 46.8, 49.4, 54.8, 79.8, 111.5, 113.4, 123.0, 126.2, 131.6, 137.3, 157.1. Масс-спектр: *m/z* 312.1963 [M + H]⁺, вычислено для C₂₀H₂₆NO₂ 312.1958.

3-Метоксиэстра-1,3,5(10),16-тетраен-17-карбонитрил 4

а) Из 3-метокси-17β-триметилсилоксиэстра-1,3,5(10)-триен-17αкарбонитрила **2**

К суспензии 10 г (26 ммолей) силилового эфира циангидрина 2, полученного из метилового эфира эстрона и триметилсилилцианида, и 2.1 г (36 ммолей) безводного фторида калия в 20 мл сухого пиридина при перемешивании по каплям добавили 8.23 г (5 мл, 54 ммолей) POCl₃. Реакционную смесь выдержали при комнатной температуре в течение 30 мин, затем кипятили при перемешивании в течение 16 ч. После этого реакционную смесь охладили до 50°С, вылили в 500 мл холодной воды, подкисленной конц. соляной кислотой до рН 1-2, и экстрагировали CHCl₃ (4 х 100 мл). Органический слой промыли равными объемами воды и насыщенного раствора хлорида натрия, высушили над безв. Na₂SO₄, профильтровали через слой силикагеля (10 г), после чего удалили растворитель в вакууме. После перекристаллизации полученного желтого масла из смеси толуол-гексан (3 : 1) получено 3.66 г (48%) сопряженного нитрила 4, т.пл. 174–175°С (ср. лит. 168–170°С [250]). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, б м.д.): 0.97 (с, 3 H, 18-CH₃), 1.22–2.53 (м, 11 H, сигналы 4 х CH₂ и 3 х CH групп стероидного ядра), 2.91 (м, 2 H, 6-CH₂), 3.79 (с, 3 H, OCH₃), 6.66 (уш.с, 1 H, 4-CH), 6.68 (уш.с, 1 H, 16-CH), 6.74 (д, 1 H, 2-CH, *J* = 8.3 Гц), 7.22 (д, 1 H, 1-CH), *J* = 8.3 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, 6 м.д.): 16.3, 26.1, 27.6, 29.5, 32.6, 34.0, 37.1, 44.1, 48.4, 55.2, 111.5, 113.9, 115.9, 126.0, 127.5, 132.0, 137.5, 147.3, 157.6. Maccспектр: m/z 311.2122 [M + NH₄]⁺, вычислено для C₂₀H₂₇N₂O 311.2118.

b) Из 3-метокси-17β-гидроксиэстра-1,3,5(10)-триен-17α-карбонитрила **3**

К раствору 18.4 г (59 ммолей) циангидрина (**3**) в 50 мл сухого пиридина при перемешивании по каплям добавили 18.1 г (11 мл, 118 ммолей) POCl₃. Реакционную смесь выдержали при комнатной температуре в течение 30 мин,

затем кипятили при перемешивании в течение 12 ч до исчезновения пятна исходного соединения на TCX (система А). Завершение реакции подтверждалось легким и четким разделением слоев при смешивании пробы реакционной смеси с CHCl₃ и разбавленным раствором HCl. После этого охладили до 50°C, вылили в 700 мл холодной воды, подкисленной конц. соляной кислотой до pH 1-2, и экстрагировали CHCl₃ (3 x 100 мл). Органический слой промыли равными объемами воды и насыщенного раствора хлорида натрия, высушили над безв. Na₂SO₄, затем удалили растворитель в вакууме. Полученную темно-коричневую вязкую массу растворили в кипящей смеси 150 мл толуола и 60 мл гексана, горячий раствор профильтровали через слой силикагеля (20 г) и дали остыть сначала до комнатной температуры, а потом до 8°C в холодильнике. Образовавшийся осадок отфильтровали, промыли гексаном и высушили. Получено 14 г (82%) сопряженного нитрила **4**, характеристики которого идентичны приведенным в примере выше.

3-Метокси-19-норпрегна-1,3,5(10),16-тетраен-20-он 5 (методика А)

К раствору 3.0 г (10.2 ммоля) 3-метоксиэстра-1,3,5(10),16-тетраен-17карбонитрила **4** в 100 мл сухого диэтилового эфира под аргоном добавили 7.8 мл 3.0 М раствора метилмагнийиодида в диэтиловом эфире (23.5 ммолей). Реакционную смесь кипятили в течение 48 часов. Затем реакционную смесь охладили смесью воды со льдом до температуры 5°C и при охлаждении и интенсивном перемешивании по каплям добавили к ней 20 мл ледяной уксусной кислоты. После этого кипячением при атмосферном давлении удаляли основную массу растворителя до достижения кубовой температуры 80°C – 85°C. Сконцентрированную таким образом реакционную смесь вылили в 300 мл воды, выпавший осадок отфильтровали, высушили и переосалили метанолом из раствора в дихлорметане. Получено 1.0 г (32%) сопряженного кетона **5**, т.пл. 194– 195°C (ср. лит. 192–194°C [250]). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.93 (с, 3 H, 18-CH₃), 1.22–2.53 (м, 11 H, остаток 4 x CH₂ и 3 x CH групп стероидного ядра), 2.30 (с, 3 H, 21-CH₃), 2.91 (м, 2 H, 6-CH₂), 3.79 (с, 3 H, OCH₃), 6.65 (уш.с, 1 H, 4-CH), 6.71 (в, 1 H, 2-CH, *J* = 8.9 Гц), 6.75 (уш.с, 1 H, 16-CH), 7.22 (д, 1 H, 1-CH, *J* = 8.9 Гц); спектр ЯМР ¹³C (CDCl₃, 75 МГц, δ м.д.): 15.9, 26.4, 27.1, 27.7, 29.6, 31.9, 34.7, 36.9, 44.2, 46.4, 55.2, 55.5, 111.3, 113.8, 126.1, 126.1, 132.7, 137.7, 144.3, 155.5, 157.4, 196.8. Масс-спектр: *m*/*z* 311.2015 [M + H]⁺, вычислено для C₂₁H₂₇O₂ 311.2006.

3-Метокси-19-норпрегна-1,3,5(10),16-тетраен-20-он 5 (методика В)

К раствору 10.0 г (34.1 ммоля) 3-метоксиэстра-1,3,5(10),16-тетраен-17карбонитрила 4 в смеси 160 мл толуола и 100 мл сухого диэтилового эфира под аргоном добавили 25 мл 3.0 М раствора метилмагнийиодида в диэтиловом эфире (75 ммолей). Реакционную смесь выдерживали при перемешивании в течение приблизительно 5 часов при температуре 60-65°C до исчезновения исходного нитрила по ТСХ (система А). Затем реакционную смесь охладили до температуры 5°С и при охлаждении и интенсивном перемешивании по каплям добавили к ней 50 мл ледяной уксусной кислоты с такой скоростью, чтобы температура смеси не превышала 15°С. После этого в реакционную смесь добавили еще 40 мл уксусной кислоты и 10 мл воды и кипятили в течение 1 ч. Далее добавили 10 мл воды и 3 мл концентрированной соляной кислоты и кипятили еще 1 ч. После охлаждения отделили органический слой, содержащий толуол и эфир, промыли равными объемами воды и насыщенного раствора хлорида натрия. Все водные слои объединили и экстрагировали CHCl₃ (3 х 30 мл). Органические фракции (CHCl₃) после экстракции водных слоев промыли равными объемами воды и насыщенного раствора хлорида натрия, после чего были объединены с толуольно-эфирной фракцией и высушены над безв. Na₂SO₄. Полученный после удаления растворителя в вакууме твердый желтый остаток растворили в достаточном объеме кипящей смеси толуола и гексана (3 : 1), горячий раствор профильтровали через слой силикагеля и дали раствору остыть в холодильнике при температуре 8°С. Полученный кристаллический осадок отфильтровали, промыли гексаном и высушили. Получено 10.6 г (75%) сопряженного кетона 5, характеристики которого идентичны приведенным в примере выше.

«Димер» **6** (методика *C*)

К раствору 7.47 г (25.5 ммоля) 3-метоксиэстра-1,3,5(10),16-тетраен-17карбонитрила 4 в смеси 120 мл толуола и 70 мл сухого диэтилового эфира под аргоном добавили 14 мл 3.0 М раствора метилмагнийиодида в диэтиловом эфире (42 ммоля). Реакционную смесь выдерживали при перемешивании в течение приблизительно 5 часов при температуре 65°С до исчезновения пятна исходного нитрила на TCX (система А). Затем реакционную смесь охладили до температуры 5°С и, без перемешивания, добавили к ней 10 мл ледяной уксусной кислоты, при этом температура реакционной смеси выросла до 35°С. После этого дали реакционной смеси остыть до комнатной температуры, добавили 25 мл воды и 1 мл конц. соляной кислоты, нагрели до кипения и кипятили в течение 1 ч. После охлаждения отделили органический слой, содержащий толуол и эфир, промыли равными объемами воды и насыщенного раствора хлорида натрия. Все водные слои объединили и экстрагировали CHCl₃ (3 х 30 мл). Органические фракции (CHCl₃) после экстракции водных слоев промыли равными объемами воды и насыщенного раствора хлорида натрия, после чего были объединены с толуольноэфирной фракцией и высушены над безв. Na₂SO₄. Полученное после удаления растворителей в вакууме желтое вязкое масло хроматографировали на силикагеле, используя последовательно в качестве элюирующих растворителей смесь дихлорметана и гексана (2 : 1) – до выхода кетона **5** – и, далее, смесь дихлорметана, гексана и ацетона (4 : 1 : 1). Соответствующие фракции объединили и отогнали растворители в вакууме. В результате было получено 4.75 г (60%) сопряженного кетона 5 с $R_f 0.4$ и 0.76 г (5%) «димера» 6 с $R_f 0.1$ (система A), т.пл. 266–269°С (толуол). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 1.06 (с, 3 H, 18-CH₃), 1.16 (с, 3 H, 18⁻-CH₃), 2.37 (с, 3 H, 21-CH₃), 1.43–2.52 (м, 24 H, остаток 7 х CH₂ и 6 х CH обоих стероидных фрагментов), 2.72 (т, 1 H, 15-CH), 2.93 (м, 5 H, 6-CH₂, 6'-CH₂, 15-CH), 3.81 (с, 6 H, 2 x 3-OCH₃), 6.42 (уш.с, 1H, 16'-CH), 6.68 (уш.с, 2 H, 4-CH, 4'-CH), 6.75 (м, 2 H, 2-CH, 2'-CH), 6.95 (с, 1 H, 20-CH), 7.24 (д, 2 Н, 1-СН, 1'-СН, J = 8.1 Гц), спектр ЯМР ¹³С см. в таблице 3 раздела 2.1. Массспектр: m/z 600.3819 [M + H]⁺, вычислено для C₄₂H₅₀NO₂ 600.3836. Образец для РСА получен дополнительной перекристаллизацией из толуола, CCDC ID: 1495043.

3-Метокси-16а,17а-циклогекс-3',4'-ено-19-норпрегна-1,3,5(10)-триен-20-он 7

К раствору 13.5 г (44 ммоля) 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она 5 в 180 мл сухого дихлорметана под аргоном добавили 0.94 г (7 ммоль) безводного хлористого алюминия. После образования свекольно-красного раствора при перемешивании и комнатной температуре в этот раствор медленно запустили 6.4 г (119 ммолей) сухого бутадиена. Смесь оставили перемешиваться в закрытой колбе при комнатной температуре в течение 18 ч, до исчезновения пятня исходного соединения на TCX (система В). Затем в реакционную смесь добавили 5 мл метанола и 10 мл насыщенного раствора NaHCO₃, после чего раствор изменил окраску на светло-желтую. Органический слой отделили, промыли водой, высушили над безв. Na₂SO₄ и сконцентрировали в вакууме. После перекристаллизации полученного при этом желтого масла из гексана получено 10.9 г (68%) аддукта 7, т.пл. 135–137°С (ср. лит. 136–137.5°С [269]). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, б м.д.): 0.76 (с, 3Н, 18-CH₃), 1.30–2.48 (м, 15Н, остаток 6 х CH₂ и 3 х CH групп стероидных и дополнительного циклов), 2.15 (с, 3H, 21-CH₃), 2.86 (M, 2H, 6-CH₂), 3.14 (M, 1H, 16-CH), 3.79 (c, 3H, OCH₃), 5.83 (M, 2H, 3',4'-СН=СН-), 6.64 (с, 1Н, 4-СН), 6.72 (д, 1Н, 2-СН, J = 8.1 Гц), 7.21 (д, 1Н, 1-СН, J = 8.1 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, 6 м.д.): 16.9, 26.3, 27.1, 27.8, 28.5, 29.8, 29.9, 32,8, 33.8, 34.3, 38.7, 43.5, 46.3, 50.0, 55.2, 66.6, 111.5, 113.8, 126.0, 126.1, 129.4, 132.4, 157.5, 211.1. Масс-спектр: *m/z* 387.2283 [М + Na]⁺, вычислено для C₂₅H₃₂NaO₂ 387.2295.

3-Метокси-16а, 17а-циклогексано-19-норпрегна-1, 3, 5(10)-триен-20-он 8

В 150 мл диоксана растворили 9.2 г (25 ммолей) 3-метокси-16α,17αциклогекс-3',4'-ено-19-норпрегна-1,3,5(10)-триен-20-она 7, в раствор добавили 0.45 г 10% Pd/C в качестве катализатора, после чего систему продули водородом и далее при интенсивном перемешивании гидрировали при атмосферном давлении и комнатной температуре до исчезновения пятна исходного вещества на TCX (система A или B, проявка водным раствором KMnO₄). Затем катализатор отфильтровали, растворитель отогнали в вакууме и остаток перекристаллизовали из смеси гексан-толуол (5 : 1). Получено 8.5 г (93%) 3-метокси-16α,17αциклогексано-19-норпрегна-1,3,5(10)-триен-20-она **8**, т.пл. 138–139°C (ср. лит. 139.5–142°C (метанол) [282]). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.73 (с, 3H, 18-CH₃), 0.81–2.41 (м, 19H, остаток 8 х CH₂ и 3 х CH групп стероидных и дополнительного циклов), 2.17 (с, 3H, 21-CH₃), 2.87 (м, 2H, 6-CH₂), 3.02 (м, 1H, 16-CH), 3.79 (с, 3H, OCH₃), 6.64 (с, 1H, 4-CH), 6.72 (дд, 1H, 2-CH, $J_1 = 8.1$ Гц, $J_2 = 2.3$ Гц), 7.19 (д, 1H, 1-CH, J = 8.8 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): 16.1, 21.2, 22.5, 26.4, 27.2, 27.3, 27.7, 28.0, 29.8, 29.9, 32.3, 34.2, 38.9, 43.9, 47.3, 49.5, 55.3, 64.4, 111.6, 113.9, 126.1, 132.6, 138.0, 157.6, 212.5. Масс-спектр: *m*/*z* 389.2438 [M + Na]⁺, вычислено для С₂₅H₃₄NaO₂ 389.2451.

3-Гидрокси-16а, 17а-циклогексано-19-норпрегна-1, 3, 5(10)-триен-20-он 9

Смесь 0.37 г (1.0 ммоль) гидрированного аддукта **8**, 0.15 г (1 ммоль) иодида натрия, 5 мл уксусной кислоты и 3 мл конц. бромистоводородной кислоты кипятили в течение 3.5 ч и затем вылили в холодную воду. Образовавшийся осадок отфильтровали и высушили. После перекристаллизации из водного метанола получено 0.27 г (77%) 3-гидрокси-20-кетона **9**, т.пл. 239–240°С. Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, δ м.д.): 0.62 (с, 3H, 18-CH₃), 0.71–2.33 (м, 19H, остаток 8 х CH₂ и 3 х CH групп стероидных и дополнительного циклов), 2.09 (с, 3H, 21-CH₃), 2.70 (уш.с, 2H, 6-CH₂), 2.87 (м, 1H, 16-CH), 6.43 (с, 1H, 4-CH), 6.50 (д, 1H, 2-CH, J = 7.7 Гц), 7.01 (д, 1H, 1-CH, J = 7.7 Гц); 8.97 (уш.с, 1H, 3-OH); спектр ЯМР ¹³С (ДМСО-*d*₆, 75 МГц, δ м.д.): 15.9, 20.9, 22.2, 26.2, 26.6, 27.6, 27.7, 27.9, 29.4, 29.6, 31.8, 33.8, 38.7, 43.4, 47.0, 48.8, 63.8, 113.0, 115.2, 126.0, 130.5, 137.3, 155.2, 211.7. Масс-спектр: *m*/*z* 353.2469 [M + H]⁺, вычислено для C₂₄H₃₃O₂ 353.2475. 20(*R*)-3,20-Дигидрокси-16а,17а-циклогексано-19-норпрегна-1,3,5(10)-триен **10а**

К раствору 0.25 г (0.7 ммоля) 3-гидрокси-16α,17α-циклогексано-19норпрегна-1,3,5(10)-триен-20-она 9 в 15 мл абс. ТГФ осторожно прибавили 0.07 г ммоль) LiAlH₄. Реакционная смесь перемешивалась при комнатной (1.8)температуре в течение 48 ч. Затем последовательно по каплям к реакционной смеси прибавили 5 мл метанола, 10 мл насыщ. раствора NH₄Cl и 2 мл конц. соляной кислоты. Органический слой отделили, водный экстрагировали 2 х 10 мл ТГФ и 2 x 10 мл хлороформа. Каждую органическую фракцию отдельно промыли насыщ. раствором NH₄Cl, после чего экстракты объединили, высушили над безв. Na₂SO₄ и отогнали растворители в вакууме. Полученную полутвердую массу очищали колоночной хроматографией (силикагель, дихлорметан-ацетон 20 : 1) с последующей перекристаллизацией из водного этанола. Получено 0.12 г (48%) 20(*R*)-3,20-дигидрокси-16α,17α-циклогексано-19-норпрегна-1,3,5(10)-триена **10а**, т.пл. 196–197°С. Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, б м.д.): 0.86 (с, 3Н, 18-СН₃), 1.05-2.15 (м, 20H, остаток 8 х CH₂ и 4 х CH групп стероидных и дополнительного циклов), 1.14 (д, 3H, 21-CH₃, J = 5.8 Гц), 2.70 (м, 2H, 6-CH₂), 3.82 (м, 1H, 20-CH), 4.12 (д, 1Н, 20-ОН), 6.42 (с, 1Н, 4-СН), 6.48 (д, 1Н, 2-СН, J = 8.1 Гц), 6.99 (д, 1Н, 1-СН, J = 8.1 Гц), 8.95 (уш.с, 1Н, 3-ОН); спектр ЯМР ¹³С см. таблицу 6b в разделе 2.2. Масс-спектр: m/z 355.2639 [M + H]⁺, вычислено для C₂₄H₃₅O₂ 355.2632. Образец для РСА был получен дополнительной перекристаллизацией из водного метанола, ССDС ID: 1495042.

20(S)-3,20-Дигидрокси-16а,17а-циклогексано-19-норпрегна-1,3,5(10)-триен 10b

К раствору 0.37 г (1.0 ммоль) 3-метокси-16α,17α-циклогексано-19норпрегна-1,3,5(10)-триен-20-она 8 в 15 мл абс. толуола под аргоном добавили 5 мл (6 ммолей) 1.2 М раствора DIBAH в толуоле. Смесь кипятили в течение 6 ч, остудили до комн. температуры, после чего последовательно по каплям при интенсивном перемешивании добавили к ней 2 мл метанола, 10 мл воды и 2 мл конц. соляной кислоты. Органический слой отделили, водный экстрагировали 4 х 10 мл этилацетата. Органические фракции объединили, промыли водой и насыщенным раствором NH₄Cl, после чего высушили над безв. Na₂SO₄ и отогнали растворители в вакууме. Полученное масло очищали методом препаративной обращеннофазовой ВЭЖХ. После удаления растворителей в вакууме И перекристаллизации из водного этанола двух основных твердых аморфных 0.16 20(R)-3,20-дигидрокси-16а,17афракций было получено Г (44%)циклогексано-19-норпрегна-1,3,5(10)-триена 10а (характеристики см. выше) и 0.05 г (14%) 20(S)-3,20-дигидрокси-16а,17а-циклогексано-19-норпрегна-1,3,5(10)триена 10b, т.пл. 203-204°С (при температуре 136°С наблюдается полиморфный переход первоначально выделенных кристаллов). Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, δ м.д.): 0.75 (с, 3H, 18-CH₃), 1.07–2.29 (м, 20H, остаток 8 х CH₂ и 4 х CH групп стероидных и дополнительного циклов), 1.10 (д, 3H, 21-CH₃, J = 5.5 Гц), 2.69 (м, 2Н, 6-СН₂), 3.85 (м, 1Н, 20-СН), 4.13 (д, 1Н, 20-ОН), 6.42 (уш.с, 1Н, 4-СН, J = 2.2 Гц), 6.48 (дд, 1H, 2-CH, J₁ = 8.8 Гц, J₂ = 2.2 Гц), 6.99 (д, 1H, 1-CH, J = 8.1 Гц), 8.96 (уш.с, 1H, 3-OH); спектр ЯМР ¹³С см. таблицу 4b в разделе 2.2. Массспектр: *m/z* 377.2552 [M + Na]⁺, вычислено для C₂₄H₃₄NaO₂ 377.2451.

20(R,S)-3-Метокси-20-гидрокси-16а,17а-циклогексано-19-норпрегна-

1,3,5(10)-триен 11

К раствору 0.37 г (1.0 ммоль) 3-метокси-16 α ,17 α -циклогексано-19норпрегна-1,3,5(10)-триен-20-она **8** в 15 мл абс. ТГФ осторожно прибавили 0.08 г (2.1 ммоля) LiAlH₄, после чего реакционную смесь перемешивали при комнатной температуре в течение 48 ч. Затем последовательно, при интенсивном перемешивании, по каплям к реакционной смеси прибавили 5 мл метанола, 10 мл насыщ. раствора NH₄Cl и 2 мл конц. соляной кислоты. Органический слой отделили, водный экстрагировали 2 х 10 мл ТГФ и 2 х 10 мл хлороформа. Каждую органическую фракцию отдельно промыли насыщ. раствором NH₄Cl, после чего экстракты объединили, высушили над безв. Na₂SO₄ и отогнали растворители в вакууме. Перекристаллизацией вязкого остатка из смеси толуол-гексан (1 : 1) получено 0.23 г (62%) 20(*R*,*S*)-3-метокси-20-гидрокси-16 α ,17 α -циклогексано-19норпрегна-1,3,5(10)-триена **11**, т.пл. 145–147°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.85 + 0.99 (с, 3H, 18-CH₃, R+S), 1.16–2.43 (м, 21H, остаток 8 x CH₂ и 4 x CH групп стероидных и дополнительного колец и 20-OH), 1.29 + 1.33 (д, 3H, 21- CH₃, J = 6.61 Гц, R+S), 2.89 (м, 2H, 6-CH₂), 3.81 (с, 3H, OCH₃), 4.08 (кв., 1H, 20- CH, $J_I = 6.6$ Гц, $J_2 = 5.9$ Гц), 6.67 (с, 1H, 4-CH), 6.48 (дд, 1H, 2-CH, $J_I = 8.1$ Гц, $J_2 = 2.2$), 7.22 (д, 1H, 1-CH, J = 8.1 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): (14.4), 14.9, 20.5 (20.1), (20.8), 22.2, 24.2, 24.3, (24.8), (26.2), 26.5, 28.1, 29.9, 30.0, (30.8), (32.2), (33.0), 33.2, 33.5, 36.2, (38.9), 39.1, (40.7), 43.7, (48.1), 48.8, (49.2), 49.6, (49.8), 49.9, 55.2, 73.5, (76.9), 111.4, 113.8, (126.2), 126.3, (132.9), 133.0, 138.1, 157.4 (индивидуальные сигналы минорного 20(*S*)-изомера даны в круглых скобках). Масс-спектр: m/z 369.2779 [M + H]⁺, вычислено для C₂₅H₃₇O₂ 369.2788.

3-Метокси-16а, 17а-циклопропано-19-норпрегна-1,3,5(10)-триен-20-он 12

К раствору 1.55 г (7.0 ммоль) триметилсульфоксонийиодида в смеси 30 мл ДМСО и 10 мл ТГФ при интенсивном перемешивании осторожно прибавили 0.4 г 60% суспензии гидрида натрия в вазелиновом масле (10.0 ммоль). После того, как выделение водорода прекратилось, в реакционную смесь прибавили раствор 1.55 г (5 ммоль) 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-она **5** в 50 мл безводного ТГФ. Реакционную смесь перемешивали еще в течение 24 ч при комнатной температуре до исчезновения пятна исходного соединения на ТСХ (система А), после чего вылили в 400 мл холодной воды и экстрагировали 3 х 50 мл хлороформа. Органические слои объединили, промыли водой и насыщенным раствором хлорида натрия, высушили над безв. Na₂SO₄ и сконцентрировали в вакууме. Полученную вязкую массу кристаллизовали из метанола с небольшой добавкой ТГФ. Получено 0.94 г (59%) 3-метокси-16а,17а-циклопропано-19норпрегна-1,3,5(10)-триен-20-она 12, т.пл. 138–140°С (ср. лит. 137–139°С (метанол) [283]). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.91 (м, 1Н, 22α-CH), 1.01 (с, 3H, 18-CH₃), 1.04 (м, 1H, 22β-CH), 1.22–2.47 (м, 12H, остаток 4 х CH₂ и 4 х СН групп стероидного ядра), 2.00 (с, 3H, 21-CH₃), 2.88 (м, 2H, 6-CH₂), 3.80 (с, 3H, OCH₃), 6.65 (c, 1H, 4-CH), 6.73 (μ , 1H, 2-CH, $J_1 = 8.1 \Gamma \mu$), 7.21 (μ , 1H, 1-CH, J = 8.1Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, б м.д.): 15.0, 17.2, 23.9, 25.7, 26.4, 27.1, 27.8,

29.7, 34.6, 37.0, 41.3, 44.3, 46.6, 47.7, 55.3, 111.5, 113.9, 126.2, 132.7, 137.8, 157.6, 208.0. Масс-спектр: *m/z* 347.1985 [М + Na]⁺, вычислено для C₂₂H₂₈NaO₂ 347.1982.

20(*R*,*S*)-3,20-Дигидрокси-16а,17а-циклопропано-19-норпрегна-1,3,5(10)триен **13**

20(R,S)-3,20-Дигидрокси-16а,17а-циклопропано-19-норпрегна-1,3,5(10)триен 13 был получен из 0.32 г (1.0 ммоль) 3-метокси-16α,17α-циклопропано-19норпрегна-1,3,5(10)-триен-20-она 12 и 4 мл 1.2 М раствора DIBAH (4.8 ммоля) в 20(S)-3,20-дигидрокси-16а,17а-ииклогексано-19толуоле как описано для норпрегна-1,3,5(10)-триена 10b. После очистки методом обращеннофазовой ВЭЖХ и перекристаллизации из водного этанола получено 0.10 г (32%) целевого соединения 13 в виде смеси 20(R) и 20(S) изомеров, т.пл. 210-217°С*. Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, б м.д.): б 0.43 (м, 1Н, 22-СН, R+S), 0.53 + 0.68 (м, 1H, 22-CH, R+S), 0.83 + 1.08 (μ , 3H, 21-CH₃, R+S, $J = 6.6 \Gamma \mu$, $J = 5.5 \Gamma \mu$), $0.87 + 1.08 \Gamma \mu$ 0.91 (с, 3H, 18-CH₃, R+S), 0.90 – 2.27 (м, 12H, остаток 4 х CH₂ и 4 х CH групп стероидного ядра), 2.69 (м, 2H, 6-CH₂), 4.07 (м, 2H, 20-CH и 20-OH), 6.42 (с, 1H, 4-CH), 6.49 (д, 1H, 2-CH, J = 8.7 Гц), 6.99 (д, 1H, 1-CH, J = 8.8 Гц), 8.99 (уш.с, 1H, 3-OH); спектр ЯМР ¹³С см. таблицу 4b в разделе 2.1.2. Масс-спектр: *m/z* 335.1978 [М $+ Na]^+$, вычислено для C₂₁H₂₈NaO₂ 335.1982.

3-Метокси-19-норпрегна-1,3,5(10)-триен-20-он 14

3-Метокси-19-норпрегна-1,3,5(10)-триен-20-он **14** был получен гидрированием 0.71 г (2.3 ммоля) сопряженного кетона **5** как описано для *3метокси-16а,17а-циклогексано-19-норпрегна-1,3,5(10)-триен-20-она* **8**. После перекристаллизации из смеси гексан-толуол (2 : 1) получено 0.65 г (91%) кетона **14**, т.пл. 135°С (ср. лит. 134–136°С [284]). Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.68 (с, 3H, 18-CH₃), 1.25–2.45 (м, 13H, остаток 5 х CH₂ и 3 х CH групп стероидного ядра), 2.18 (с, 3H, 21-CH₃), 2.64 (м, 1H, 17-CH), 2.87 (м, 2H, 6-CH₂), 3.80 (с, 3H, OCH₃), 6.66 (с, 1H, 4-CH), 6.74 (дд, 1H, 2-CH, $J_1 = 8.1$ Гц, $J_2 = 2.3$ Гц), 7.23 (д, 1H, 1-CH, J = 8.8 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): 13.5, 23.0, 24.2, 26.7, 27.8, 29.9, 31.5, 38.8, 39.1, 43.7, 44.5, 55.2, 55.8, 63.9, 111.6, 113.9, 126.3, 132.5, 138.0, 157.6, 209.4. Масс-спектр: *m/z* 335.1969 [М + Na]⁺, вычислено для C₂₁H₂₈NaO₂ 335.1982.

3-Гидрокси-19-норпрегна-1,3,5(10)-триен-20-он 15

Смесь 0.66 г (2.2 ммоля) 3-метокси-19-норпрегна-1,3,5(10)-триен-20-она 14, 0.3 г (2.0 ммоля) иодида натрия, 10 мл ледяной уксусной кислоты и 5 мл конц. бромистоводородной кислоты кипятили в течение 3.5 ч, после чего вылили в ледяную воду. Образовавшийся осадок отфильтровали, растворили в кипящем толуоле, и горячий раствор профильтровали через слой 0.5 г силикагеля. После остывания фильтрата выпавший осадок отфильтровали и перекристаллизовали из метанола. Получено 0.35 г (53%) 3-гидрокси-20-кетостероида 15 в виде желтоватых призм, т.пл. 247–248°С (ср. лит. 244–247°С [285]). Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, δ м.д.): 0.57 (с, 3H, 18-CH₃), 1.15–2.36 (м, 13H, остаток 5 х CH₂ и 3 х CH групп стероидного ядра), 2.10 (с, 3H, 21-CH₃), 2.65 (м, 1H, 17-CH), 2.72 (м, 2H, 6-CH₂), 6.46 (с, 1H, 4-CH), 6.53 (д, 1H, 2-CH, *J* = 8.1 Гц), 7.06 (д, 1H, 1-CH, *J* = 8.1 Гц), 8.96 (уш.с, 1H, 3-OH); спектр ЯМР ¹³С (ДМСО-*d*₆, 75 МГц, δ м.д.): 13.1, 22.3, 23.6, 26.3, 27.3, 29.1, 31.1, 38.1, 38.4, 43.1, 43.6, 54.8, 62.7, 112.7, 114.9, 125.9, 130.1, 137.0, 154.9, 208.5. Масс-спектр: *m/z* 299.2013 [М + Н]⁺, вычислено для С₂₀H₂₇O₂ 299.2006.

20(R)-3,20-Дигидрокси-19-норпрегна-1,3,5(10)-триен 16

20(*R*)-3,20-Дигидрокси-19-норпрегна-1,3,5(10)-триен **16** был получен из 0.25 г (0.93 ммоля) 3-гидрокси-20-кетостероида **15** и 0.08 г (2.1 ммоля) LiAlH₄ как описано для 20(*R*)-*3,20-дигидрокси-16а,17а-циклогексано-19-норпрегна-1,3,5(10)триена* **10а**. Получено 0.12 г (40%) дигидроксистероида **16**, т.пл. 229–230°С (ср. лит. 232–233°С [286]). Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, δ м.д.): 0.71 (с, 3H, 18-CH₃), 1.02 (д, 3H, 21-CH₃, J = 6.6 Гц), 1.05–2.30 (м, 14H, остаток 5 х CH₂ и 4 х CH групп стероидного ядра), 2.70 (м, 2H, 6-CH₂), 3.52 (м, 1H, 20-CH), 4.10 (д, 1H, 20-OH, J = 5.5 Гц), 6.43 (с, 1H, 4-CH), 6.49 (дд, 1H, 2-CH, $J_I = 8.8$ Гц, $J_2 = 2.2$ Гц), 7.03 (д, 1H, 1-CH, J = 8.8 Гц), 8.93 (уш.с, 1H, 3-OH); спектр ЯМР ¹³С см. таблицу 4b в разделе 2.2. Масс-спектр: m/z 301.2166 [M + H]⁺, вычислено для C₂₀H₂₉O₂ 301.2162. Образец для РСА был получен дополнительной перекристаллизацией из водного метанола, CCDC ID: 1495041.

20(R,S)-3,20-Дигидрокси-19-норпрегна-1,3,5(10),16-тетраен 17

20(*R*,*S*)-3,20-Дигидрокси-19-норпрегна-1,3,5(10),16-тетраен **17** был получен из 0.37 г (1.2 ммоля) сопряженного кетона **5** и 4 мл 1.2 М раствора DIBAH (4.8 ммоля) в толуоле как описано для 20(*S*)-*3,20-дигидрокси-16a,17а-циклогексано-19-норпрегна-1,3,5(10)-триена* **10b**, но без хроматографической очистки. После перекристаллизации полученной при обработке массы из водного метанола получено 0.17 г (47%) 20(*R*,*S*)-3,20-дигидрокси-19-норпрегна-1,3,5(10),16-тетраена **17**, т.пл. 195–198°С. Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, δ м.д.): 0.81 + 0.83 (с, 3H, 18-CH₃, R+S), 1.20–2.33 (м, 11H, остаток 4 х CH₂ и 3 х CH групп стероидного ядра), 1.20 + 1.23 (д, 3H, 21-CH₃, R+S, *J* = 6.6 Гц), 2.73 (м, 2H, 6-CH₂), 4.22 (м, 1H, 20-CH), 4.45 + 4.49 (д, 1H, 20-OH, R+S, *J* = 5.3 Гц), 5.50 + 5.52 (уш.с, 1H, 16-CH, R+S), 6.44 (д, 1H, 4-CH, *J* = 2.2 Гц), 6.50 (дд, 1H, 2-CH, *J*₁ = 8.1 Гц, *J*₂ = 2.2 Гц), 7.02 (д, 1H, 1-CH, *J* = 8.8 Гц), 8.96 (уш.с, 1H, 3-OH); спектр ЯМР ¹³С см. таблицу 4b в разделе 2.1.2. Масс-спектр: *m*/*z* 321.1822 [М + Nа]⁺, вычислено для C₂₀H₂₈NaO₂ 321.1825.

Сравнительное исследование восстановления 20-кетогруппы 3-метокси-16α,17α-циклогексано-19-норпрегна-1,3,5(10)-триен-20-она **8** и 3-метокси-19-норпрегна-1,3,5(10)-триен-20-она **14** алюмогидридом лития и DIBAH.

а) LiAlH₄: к раствору кетона (1 ммоль) в 10 мл абс. ТГФ при интенсивном перемешивании аккуратно прибавили 0.05 г (1.3 ммоля) порошка LiAlH₄ и оставили перемешиваться в течение 4 ч. Затем последовательно по каплям, при интенсивном перемешивании, добавили 5 мл метанола, 10 мл насыщ. NH₄Cl и 1 мл конц. соляной кислоты. Органический слой отделили, водный экстрагировали 4 х 10 мл этилацетата и 3 х 10 мл хлороформа. Органические фракции промыли насыщенным раствором NH₄Cl, высушили над безв. Na₂SO₄ и сконцентрировали в вакууме. Неочищенный продукт анализировали методом ЯМР ¹H NMR (CDCl₃,

300 МГц), сравнивая интенсивности основного и минорного пиков при $\delta_{\rm H}$ 0.98 и $\delta_{\rm H}$ 0.84 в случае соединения **8**, и пиков с $\delta_{\rm H}$ 0.81 и $\delta_{\rm H}$ 0.72 в случае соединения **14**.

b) DIBAH: к раствору кетона (1 ммоль) в 10 мл абс. толуола под аргоном добавили 2 мл 1.2 М раствора DIBAH (2.4 ммоля) в толуоле и оставили перемешиваться в течение 4 ч. Затем последовательно по каплям, при интенсивном перемешивании, добавили 2 мл метанола, 10 мл воды, 10 мл этилацетата и 1 мл конц. соляной кислоты. Дальнейшая обработка и анализ смесей проводились, как описано в примере (а) выше.

3.2 Экспериментальная часть к разделу 2.2

3-Метокси-17-триметилсилокси-13а-эстра-1,3,5(10)-триен-17карбонитрил **19**

3-Метокси-17-триметилсилокси-13α-эстра-1,3,5(10)-триен-17-карбонитрил 19 был получен из 7.3 г (26 ммоль) метилового эфира 13α-эстрона 18 и 3.8 г (5.1 39 ммолей) триметилсилилцианида как описано для 3-метокси-17β-МЛ. триметисилоксиэстра-1,3,5(10)-триен-17α-карбонитрила 2. Получено 9.47 г (95%) силилциангидрина 19 в виде смеси 17а и 17β эпимеров. Аналитический образец 3-метокси-17β-триметилсилокси-13α-эстра-1,3,5(10)-триен-17αкарбонитрила был получен перекристаллизацией смеси силилциангидринов 19 из гексана, т.пл. 112–114°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, б м.д.): 0.20 (с, 9Н, Si(CH₃)₃), 1.14 (с, 3H, 18-CH₃), 1.17–2.36 (м, 13H, остаток 5 х CH₂ и 3 х CH групп стероидного ядра), 2.78 (дд, 2H, 6-CH₂, $J_1 = 8.8$ Гц, $J_2 = 3.7$ Гц), 3.79 (с, 3H, OCH₃), 6.61 (д, 1H, 4-CH, J = 2.2 Гц), 6.73 (дд, 1H, 2-CH, $J_1 = 8.8$ Гц, $J_2 = 2.2$ Гц), 7.19 (д, 1H, 1-CH, *J* = 8.1 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, б м.д.): 1.2, 27.0, 28.9, 29.3, 29.7, 30.7, 31.9, 38.5, 40.3, 44.5, 50.9, 55.2, 82.9, 111.9, 113.5, 121.1, 127.5, 132.7, 138.1, 157.3. Масс-спектр: m/z 384.2348 [M + H]+, вычислено для C₂₃H₃₃NO₂Si 384.2353. Образец для РСА был получен перекристаллизацией из гексана, СССС ID: 1813051.

3-Метокси-17-гидрокси-13а-эстра-1,3,5(10)-триен-17-карбонитрил 20

3-Метокси-17-гидрокси-13α-эстра-1,3,5(10)-триен-17-карбонитрил 20 был получен из 28.4 г (100 ммолей) метилового эфира 13α-эстрона 18 и 13.9 г (18.6 мл, 140 ммолей) триметилсилилциангидрина как описано для 3-метокси-17βгидроксиэстра-1,3,5(10)-триен-17а-карбонитрила 3. более Для полного извлечения продукта реакционную смесь выдержали ночь в морозильной камере при температуре –15°С. Получено 27.7 г (89%) циангидрина 20, т.пл. 140–145°С. Аналитический образец 3-метокси-17β-гидрокси-13α-эстра-1,3,5(10)-триен-17αкарбонитрила был получен перекристаллизацией эпимерной смеси циангидринов **20** из толуола, т.пл. 170–175°С (с разложением). Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, δ м.д.): 1.04 (с, 3H, 18-CH₃), 0.71–2.41 (м, 13H, остаток 5 х CH₂ и 3 х CH групп стероидного ядра), 2.72 (д, 2H, 6-CH₂, J = 5.3 Гц), 3.69 (с, 3H, OCH₃), 6.27 (уш.с, 1Н, ОН), 6.59 (с, 1Н, 4-СН), 6.69 (д, 1Н, 2-СН, *J* = 8.1 Гц), 7.17 (д, 1Н, 1-СН, J = 8.1 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): 26.0, 28.6, 29.3, 29.9, 31.5, 32.9, 37.5, 39.5, 43.3, 47.2, 50.4, 54.8, 80.6, 111.7, 113.1, 121.8, 127.2, 132.2, 137.6, 156.9. Масс-спектр: m/z 312.1961 [M + H]⁺, вычислено для C₂₀H₂₆NO₂ 312.1958.

3-Метокси-13α-эстра-1,3,5(10),16-тетраен-17-карбонитрил 21

3-Метокси-13α-эстра-1,3,5(10),16-тетраен-17-карбонитрил 21 был получен из 27.4 г (88 ммолей) циангидрина 20 как описано для З-метоксиэстра-1,3,5(10),16-тетраен-17-карбонитрила 4 некоторыми с изменениями: a) реакционную смесь кипятили при интенсивном перемешивании в течение 7 ч до исчезновения пятен промежуточных и исходных соединений на ТСХ (система А); b) для перекристаллизации использовалась смесь 30 мл толуола и 80 мл гексана. Получено 21.4 г (83%) сопряженного нитрила 21, т.пл. 98–99°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, б м.д.): 0.97–1.10 (м, 1Н), 1.18 (с, 3Н, 18-CH₃), 1.19–1.30 (м, 1Н), 1.35–1.51 (м, 1Н), 1.56–1.70 (м, 1Н), 1.72–1.79 (м, 1Н), 1.93 (м, 1Н), 2.22–2.42 (м, 4Н), 2.80–2.91 (м, 3Н), 3.79 (с, 3Н, ОСН₃), 6.58 (уш.с, 1Н, 16-СН), 6.61 (д, 1Н, 4-CH. J = 2.2), 6.74 (дд, 1H, 2-CH, $J_1 = 8.1$ Гц, $J_2 = 2.2$ Гц), 7.23 (д, 1H, 1-CH, J = 8.1Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, б м.д.): 27.4, 27.7, 28.8, 30.5, 33.8, 37.6, 40.7,

42.4, 49.7, 50.6, 55.3, 111.9, 113.7, 115.8, 124.6, 127.1, 132.0, 137.9, 146.9, 157.6. Масс-спектр: m/z 311.2113 [M + NH₄]⁺, вычислено для C₂₀H₂₇N₂O 311.2118.

3-Метокси-13α-19-норпрегна-1,3,5(10),16-тетраен-20-он 22

3-Метокси-13α-19-норпрегна-1,3,5(10),16-тетраен-20-он **22** был получен из 12.3 г (42 ммоля) сопряженного нитрила **21** как описано для *3-метокси-19норпрегна-1,3,5(10),16-тетраен-20-она* **5**, за исключением горячего фильтрования толуольно-гексанового раствора через силикагель, вместо чего в данном случае использовалась перекристаллизация из чистого гексана. Получено 10.1 г (77%) сопряженного кетона **22**, т.пл. 88–89°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.93–1.15 (м, 2H), 1.20 (с, 3H, 18-CH₃), 1.35–1.55 (м, 2H), 1.57–1.66 (м, 1H), 1.91– 2.02 (м, 1H), 2.22–2.38 (м, 3H), 2.29 (с, 3H, 21-CH₃), 2.69–2.90 (м, 4H), 3.79 (с, 3H, OCH₃), 6.63 (уш.с, 1H, 4-CH), 6.66 (уш.с, 1H, 16-CH), 6.74 (дд, 1H, 2-CH, *J*₁ = 8.8 Гц, *J*₂ = 2.2 Гц), 7.24 (д, 1H, 1-CH, *J* = 8.8 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): 27.3, 27.9, 28.1, 29.1, 30.6, 32.6, 35.9, 41.2, 42.5, 49.0, 52.2, 55.2, 111.7, 113.6, 127.0, 132.9, 138.0, 144.6, 150.5, 157.5, 197.4. Масс-спектр: m/z 311.2003 [M + H]⁺, вычислено для С₂₁Н₂₇О₂ 311.2006.

3-Метокси-16а,17а-циклогекс-3',4'-ено-13а-19-норпрегна-1,3,5(10)-триен-20-он **23**

К раствору 0.31 г (1.0 ммоль) сопряженного кетона **22** в 3 мл сухого дихлорметана под аргоном прибавили 0.03 г (0.23 ммоль) безв. хлорида алюминия. После перемешивания в течение 30 минут добавили несколько кристаллов 2,2,6,6-тетраметилпиперидин-1-оксила (ТЕМРО), охладили полученную смесь до температуры –8°С и медленно запустили в нее 0.15 г (2.8 ммоля) сухого бутадиена. Реакционную смесь перенесли в охлажденную тефлоновую ампулу устройства «баростат» [287], запечатали ее и выдержали под давлением 600 МПа в течение 2 суток при комнатной температуре. После извлечения ампулы из баростата реакционную смесь перенесли в колбу, добавили 0.5 мл метанола и 5 мл насыщ. раствора NaHCO₃. Органический слой отделили, промыли водой и насыщ. раствором хлорида натрия, высушили над безв. Na₂SO₄

и удалили растворители в вакууме. Остаток в виде масла, собранный из трех одинаковых экспериментов (~1 г) хроматографировали на 100 г нейтральной окиси алюминия с использованием смеси гексан-толуол (градиент толуола 0 – 40%) в качестве элюента. После хроматографии получено 0.74 г (68%) аддукта **23**. Аналитический образец, т.пл. 112–114°С, получен дополнительной перекристаллизацией из смеси метанол-дихлорметан. Спектры ЯМР ¹Н (CDCl₃, 600 МГц) и ¹³С (CDCl₃, 150 МГц), см., соответственно, таблицы 6а и 6b в разделе 2.2. Масс-спектр: m/z 382.2743 [M + NH₄]⁺, вычислено для C₂₅H₃₆NO₂, 382.2741). Образец для РСА был получен перекристаллизацией из метанола, ССDС ID: 1495040.

3-Метокси-16а,17а-циклогексано-13а-19-норпрегна-1,3,5(10)-триен-20-он

24

3-Метокси-16а,17а-циклогексано-13а-19-норпрегна-1,3,5(10)-триен-20-он **24** был получен гидрированием 0.25 г (0.7 ммоля) аддукта **23** как описано для *3-метокси-16а,17а-циклогексано-19-норпрегна-1,3,5(10)-триен-20-она* **8**. После перекристаллизации из смеси метанола и дихлорметана получено 0.21 г (83%) гидрированного аддукта **24**, т.пл. 108–111°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.83–0.99 (м, 2Н), 1.10–1.73 (м, остаток 12 Н стероидных и дополнительного циклов), 1.24 (с, 3H, 18-CH₃), 1.88–2.24 (м, 3H), 2.17 (с, 3H, 21-CH₃), 2.28–2.43 (м, 1H, 11α-H), 2.43–2.61 (м, 1H, 9-H), 2.73–2.89 (м, 3H, 6-CH₂ + 16-H), 3.78 (с, 3H, OCH₃), 6.59 (с, 1H, 4-CH), 6.74 (дд, 1H, 2-CH, $J_1 = 8.1$ Гц, $J_2 = 2.2$ Гц), 7.09 (д, 1H, 1-CH, J = 8.8 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): 20.1, 22.5, 24.2, 24.5, 26.5, 27.4, 27.6, 28.6, 29.9, 30.4, 32.8, 35.1, 36.5, 41.6, 47.3, 50.5, 55.3, 64.5, 112.3, 113.1, 128.0, 134.6, 137.6, 157.2, 212.7. Масс-спектр: m/z 389.2440 [M + Na]⁺, вычислено для C₂₅H₃₄NaO₂ 389.2451.

20(*R*)- и 20(*S*)-3,20-дигидрокси-16а,17а-циклогексано-13а-19-норпрегна-1,3,5(10)-триены **25a** и **25b**

3,20-Дигидрокси-13α-19-норпрегнатриены **25а** и **25b** были получены из 0.181 г (0.5 ммоля) гидрированного аддукта **24 и** 1.6 мл 1.2 М раствора DIBAH

(1.9 ммоля) в толуоле как описано для 20(S)-*3,20-дигидрокси-16а,17ациклогексано-19-норпрегна-1,3,5(10)-триена* **10b**. После перекристаллизации из водного метанола получено, соответственно, 0.045 г (26%) 20(R)-3,20дигидроксистероида **25a** и 0.033 г (19%) 20(S)-3,20-дигидроксистероида **25b**.

20(*R*)-3,20-Дигидрокси-16а,17а-циклогексано-13а-19-норпрегна-1,3,5(10)триен **25а**: т.пл. 182–183°С. Спектры ЯМР ¹Н (ДМСО-*d*₆, 600 МГц) и ¹³С NMR (ДМСО-*d*₆, 150 МГц), см., соответственно, таблицы 6а и 6b в разделе 2.2. Массспектр: m/z 377.2443 [M + Na]⁺, вычислено для C₂₄H₃₄NaO₂ 377.2451.

20(S)-3,20-Дигидрокси-16а,17а-циклогексано-13а-19-норпрегна-1,3,5(10)триен **25b**: т.пл. 243–248°С (разл.). Спектры ЯМР ¹Н (ДМСО-*d*₆, 600 МГц) и ¹³С NMR (ДМСО-*d*₆, 150 МГц), см., соответственно, таблицы 6а и 6b в разделе 2.2. Масс-спектр: m/z 377.2443 [M + Na]⁺, вычислено для C₂₄H₃₄NaO₂ 377.2451.

3-Метокси-16а,17а-циклопропано-13а-19-норпрегна-1,3,5(10)-триен-20-он 26

3-Метокси-16а,17а-циклопропано-13а-19-норпрегна-1,3,5(10)-триен-20-он **26** был получен из 1.55 г (5 ммоль) сопряженного кетона **22** как описано для *3метокси-16а,17а-циклопропано-19-норпрегна-1,3,5(10)-триен-20-она* **12**. После перекристаллизации из метанола получено 0.81 г (50%) циклопропанового 13астероида **26**, т.пл. 131–132.5°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.91– 0.95 (м, 1H, 22α-CH), 1.05–1.19 (м, 2H), 1.24–1.44 (м, 3H), 1.39 (с, 3H, 18-CH₃), 1.49–1.59 (м, 1H), 1.69–1.78 (м, 1H), 1.88–1.95 (м, 1H), 1.88 (с, 3H, 21-CH₃), 2.05– 2.11 (м, 1H), 2.26–2.55 (м, 3H), 2.61–2.84 (м, 3H), 3.78 (с, 3H, OCH₃), 6.58 (с, 1H, 4-CH), 6.74 (д, 1H, 2-CH, *J* = 8.1 Гц), 7.13 (д, 1H, 1-CH, *J* = 8.8 Гц); спектр ЯМР ¹³С (CDCl₃, 75 МГц, δ м.д.): 18.4, 24.8, 25.8, 26.3, 27.4, 28.0, 29.9, 30.3, 34.4, 35.4, 42.6, 43.8, 48.4, 50.0, 55.2, 112.2, 113.1, 128.1, 134.5, 137.1, 157.2, 206.7. Масс-спектр: m/z 325.2159 [M + H]⁺, вычислено для C₂₂H₂₉O₂ 325.2162. 20(R,S)-3,20-Дигидрокси-16а,17а-циклопропано-13а-19-норпрегна-1,3,5(10)триен **27**

20(R,S)-3,20-Дигидрокси-16α,17α-циклопропано-13α-19-норпрегна-1,3,5(10)-триен 27 был получен из 0.39 г (1.2 ммоля) циклопропанового стероида **26** и 4 мл 1.2 М раствора DIBAH (4.8 ммоля) в толуоле как описано для 20(R,S)-3,20-дигидрокси-16а,17а-циклопропано-19-норпрегна-1,3,5(10)-триена 13. Получено 0.09 г (24%) 3,20-дигидроксистеоида 27 в виде смеси 20(*R*) и 20(*S*) изомеров, т.пл. 188–196°С*. Спектр ЯМР ¹Н (ДМСО-*d*₆, 300 МГц, б м.д.): 0.06 + 0.16 (м, 1H+1H, 22-CH, R+S), 0.51–0.58 (м, 2H, 22-CH, R+S), 0.83 + 1.08 (д, 3H+3H, 21-CH₃, R+S, $J = 5.9 \Gamma \mu$), 1.14 + 1.23 (c, 3H+3H, 18-CH₃, R+S), 1.03–1.23 (m, 7H, остаток 2 x 8-CH, 2 x 14-CH и 2 x 7-CH групп из обоих R+S изомеров и 16-H от 20(*R*)-изомера), 1.35–1.61 (м, 8Н, остаток 2 х 11-СН и 2 х 15-СН групп обоих *R*+S изомеров, 12-CH₂ от 20(S)-изомера, 12-CH от 20(R) изомера и 16-H от 20(S)изомера), 1.78–1.89 (м, 3H, остаток 2 х 7-СН обоих R+S изомеров, 12-СН от 20(*R*)-изомера), 2.09–2.16 (м, 2H, 2 х 15-СН обоих *R*+*S* изомеров), 2.28–2.65 (м, 8H, 2 x 6-CH2, 2 x 9-CH и 2 x 11-CH обоих *R*+*S* изомеров), 3.93–4.13 (м, 4H, 20-CH и 20-ОН обоих *R*+*S* изомеров), 6.38 (с, 1H + 1H, 4-CH), 6.52 (дд, 1H + 1H, 2-CH, *J*₁ $= 8.1 \Gamma_{\text{H}}, J_2 = 2.2 \Gamma_{\text{H}}, 6.93-6.97 \text{ (M, 1H + 1H, 1-CH)}, 8.97 \text{ (yIII.c, 1H + 1H, 3-OH)};$ спектр ЯМР ¹³С NMR (ДМСО-*d*₆, 150 МГц), см. таблицу 6b в разделе 2.2. Массспектр: m/z 335.1981 [M + Na]⁺, вычислено для C₂₁H₂₈NaO₂ 335.1982.

3-Метокси-13α,17α-19-норпрегна-1,3,5(10)-триен-20-он 28а

3-Метокси-13α,17α-19-норпрегна-1,3,5(10)-триен-20-он **28a** был получен гидрированием 0.37 г (1.2 ммоля) сопряженного кетона **22** как описано для *3-метокси-16а,17α-циклогексано-19-норпрегна-1,3,5(10)-триен-20-она* **8** за исключением финальной перекристаллизации из толуольно-гексановой смеси. После перекристаллизации из чистого гексана получено 0.13 г (34%) кетона **28a**, т.пл. 96–97°С. Спектр ЯМР ¹Н (CDCl₃, 300 МГц, δ м.д.): 0.92 (с, 3H, 18-CH₃), 1.07–2.40 (м, 13H, остаток 5 х CH₂ и 3 х CH групп стероидного ядра), 2.15 (с, 3H, 21-CH₃), 2.84–2.88 (м, 2H, 6-CH₂), 3.12 (м, 1H, 17-CH), 3.80 (с, 3H, OCH₃), 6.66 (с, 1H,

4-CH), 6.76 (дд, 1H, 2-CH, $J_1 = 8.1$ Гц, $J_2 = 2.2$ Гц), 7.27 (д, 1H, 1-CH, J = 8.1 Гц); спектр ЯМР ¹³C (CDCl₃, 75 МГц, δ м.д.): 24.1, 25.4, 25.7, 26.3, 28.3, 30.5, 31.9, 34.9, 41.2, 42.4, 45.6, 54.2, 54.5, 55.2, 111.7, 113.6, 126.6, 132.5, 138.2, 157.6, 210.6. Массспектр: m/z 330.2424 [M + NH₄]⁺, вычислено для C₂₁H₃₂NO₂ 330.2428. Образец для РСА был получен перекристаллизацией из гексана, CCDC ID: 1813769.

20(S)-3,20-Дигидрокси-13α,17α-19-норпрегна-1,3,5(10)-триен **29a** и 20(R)-3,20-дигидрокси-13α,17β-19-норпрегна-1,3,5(10)-триен **29b**

В 20 мл диоксана растворили 0.48 г (1.5 ммоля) сопряженного кетона 22, в раствор добавили 0.06 г 10% Pd/C в качестве катализатора, после чего систему продули водородом и далее при интенсивном перемешивании гидрировали при атмосферном давлении и комнатной температуре до исчезновения пятна исходного вещества на ТСХ (система А или В, проявка водным раствором KMnO₄). Затем катализатор отфильтровали, растворитель отогнали в вакууме. Полученный остаток выдержали в вакууме 2 мм рт. ст. на кипящей водяной бане до постоянной массы, затем растворили в 25 мл абс. толуола. К этому раствору под аргоном прибавили 5 мл 1.2 М раствора DIBAH (6 ммоль) в толуоле и кипятили в течение 5 ч, после чего остудили и при интенсивном перемешивании последовательно добавили 1 мл метанола, 10 мл воды и 2 мл конц. соляной кислоты. Органический слой отделили, водный экстрагировали 4 х 5 мл этилацетата. Органические фракции объединили, промыли водой и насыщенным раствором NH₄Cl, после чего высушили над безв. Na₂SO₄ и отогнали растворители в вакууме. Из полученной вязкой массы продукты выделяли колоночной хроматографией на силикагеле с использованием смеси хлороформ-гексанэтилацетат (5:1:1) в качестве элюента. Для контроля разделения использовали ТСХ (система С). После разделения и перекристаллизации продуктов из водного метанола получено 0.14 г (32%) 20(S)-3,20-дигидрокси-13a,17a-19-норпрегна-1,3,5(10)-триена 29а, т.пл. 161–163°С, и 0.06 г (14%) 20(R)-3,20-дигидрокси-*13а,17β-19-норпрегна-1,3,5(10)-триена* **29b**, т.пл. 166–171°С.

20(S)-3,20-Дигидрокси-13а,17а-19-норпрегна-1,3,5(10)-триен **29а**: спектры ЯМР ¹Н (ДМСО-d₆, 600 МГц) и ¹³С NMR (ДМСО-d₆, 150 МГц), см., соответственно, таблицы 6а и 6b в разделе 2.2. Масс-спектр: m/z 301.2158 [М + H]⁺, вычислено для C₂₀H₂₉O₂ 301.2162.

20(R)-3,20-Дигидрокси-13а,17 β -19-норпрегна-1,3,5(10)-триен **29b**: спектры ЯМР ¹Н (ДМСО-d₆, 600 МГц) и ¹³С NMR (ДМСО-d₆, 150 МГц), см., соответственно, таблицы 6а и 6b в разделе 2.2. Масс-спектр: m/z 301.2158 [М + H]⁺, вычислено для C₂₀H₂₉O₂ 301.2162. Образец для РСА был получен перекристаллизацией из водного метанола, ССDС ID: 1818712.

20(S)-3,20-Дигидрокси-13а,17а-19-норпрегна-1,3,5(10)-триен **29а** из кетона **28а**.

Смесь 0.159 г (0.5 ммоля) кетона **28а**, 0.08 г (0.5 ммоля) иодида натрия, 5 мл ледяной уксусной кислоты и 2 мл конц. бромистоводородной кислоты кипятили в течение 3.5 ч, после чего вылили в 70 мл воды со льдом. Образовавшийся осадок отфильтровали, тщательно высушили и растворили в 10 мл абс. ТГФ. К этому раствору при интенсивном перемешивании прибавили 0.04 г, (1.1 ммоля) LiAlH₄. Реакционную смесь перемешивали при комнатной температуре в течение 12 ч, после чего последовательно, по каплям, при интенсивном перемешивании, добавили в нее 1 мл метанола, 5 мл насыщ. раствора NH₄Cl и 1 мл конц. соляной кислоты. Органический слой отделили, водный экстрагировали 5 х 5 мл этилацетата. Органические фракции объединили, промыли водой и насыщ. раствором NH_4Cl , высушили над безв. Na_2SO_4 и отогнали растворители в вакууме. Полученную массу очищали методом препаративной обращеннофазовой ВЭЖХ. После удаления растворителей в вакууме и перекристаллизации из водного этанола получено 0.037 г (23%) 20(S)-3,20-дигидрокси-13α,17α-19-норпрегна-1,3,5(10)-триена 29а, т.пл. 161–163°С. Спектры ЯМР ¹Н (ДМСО-d₆, 600 МГц) и ¹³С NMR (ДМСО- d_6 , 150 МГц), см., соответственно, таблицы 6а и 6b в разделе 2.2. Масс-спектр: m/z 301.2158 [M + H]⁺, вычислено для C₂₀H₂₉O₂ 301.2162.

3.3 Экспериментальная часть к разделу 2.3

3.4.1 Клеточные линии и оценка антипролиферативной активности (цитотоксичности)

Гормонзависимые ERa-положительные клетки рака молочной железы человека MCF-7 и нормальные клетки молочной железы MCF-10A были приобретены в Американской типовой коллекции клеточных культур АТСС (США). Мультирезистентные клетки NCI/ADR-RES были получены из коллекции клеток опухолей человека NCI-60. Культивирование клеток MCF-7 и NCI/ADR-RES проводили в стандартной среде DMEM (HyClone) с добавкой 10% телячьей фетальной сыворотки и 0.1 мг/мл пирувата натрия (Santa Cruz) при температуре 37°С, в атмосфере, содержащей 5% СО₂ при относительной влажности 80-85%. Нормальные клетки молочной железы MCF-10A культивировали в среде DMEM/F12 (Gibco) с добавлением 7% лошадиной сыворотки, 20 нг/мл эпидермального ростового фактора, 0.5 мкг/мл гидрокортизона и 10 мкг/мл инсулина при температуре 37°С и относительной влажности 80-85% в атмосфере, содержащей 5% СО2. Способность исследуемых соединений ингибировать рост клеток оценивали методом МТТ [288], основанном на способности NADPHзависимых оксидоредуктазных ферментов восстанавливать тетразолиевый MTT (3-[4,5-диметилтиазол-2-ил]-2,5-дифенилтетразолийбромид) краситель (Applichem, США) в живой клетке до нерастворимого формазана. Посев проводили с плотностью 10⁴ клеток на ячейку в 24-ячеечных планшетах (Corning) в 900 мкл культуральной среды. Испытуемые соединения растворяли в ДМСО (Applichem) до концентрации 10 мМ непосредственно перед экспериментом и затем разводили до требуемых концентраций культуральной средой. В качестве веществ сравнения использовали цисплатин и тамоксифен (Merck). Спустя 24 часа после посева в ячейки вносили по 100 мкл растворов с различной концентрацией соединений в культуральной среде, после чего клетки растили в течение 72 часов. После инкубации с соединениями культуральную среду удаляли, и в каждую ячейку добавляли раствор МТТ-реагента в соответствующей культуральной среде до конечной концентрации 0.2 мг/мл и выдерживали в

течение 3 ч. После этого клеточные супернатанты удаляли, а выпавшие кристаллы МТТ-формазана растворяли в 100% ДМСО (350 мкл в ячейку). Планшеты аккуратно встряхивали и измеряли поглощение на длине волны 571 нм на планшетном сканере MultiScan (ThermoFisher). Выживаемость клеток выражали в процентах от контроля. Кривые зависимости отклика от дозы анализировали методом регрессионного анализа с использованием сигмоидных кривых (логарифм концентрации *vs* нормализованное поглощение). Концентрации полумаксимального ингибирования (IC₅₀) вычисляли с помощью ПО GraphPad Prism.

3.4.2 Транскрипционная активность эстрогенного рецептора а

Для определения транскрипционной активности эстрогенного рецептора а (ERa) гормонзависимые клетки MCF-7 трансфицировали плазмидой, содержащей репортерный ген люциферазы под контролем промотора с эстрогенчувствительными элементами (ERE) [289]. Плазмида ERE-TK-LUC, содержащая репортерный ген, была любезно предоставлена Дж. Рейдом (Dr. George Reid) [273]. Трансфекцию проводили в течение 24 ч при температуре 37°С в не содержащей феноловый красный среде DMEM (безфенольная среда DMEM) с добавлением 10% сыворотки DCC (условия среды не содержащей стероидов) с использованием набора Metafectene (Biontex Laboratories GmbH). Для контроля эффективности И потенциальной токсичности трансфекции клетки сотрансфицировали β-галактозидазной плазмидой. После трансфекции к клеткам добавляли растворы испытуемых соединений в безфенольной культуральной среде DMEM с добавкой 10% сыворотки DCC. Люциферазную активность измеряли согласно стандартному протоколу (Promega) с использованием микропланшетного сканера Infinite M200 Pro (Tecan). Активность β-галактозидазы оценивали измерением поглощения при 405 нм с использованием планшетного сканера MultiScan FC (ThermoFisher). Активность люциферазы выражали в произвольных единицах, соответствующих отношению активности люциферазы к активности галактозидазы, в качестве образцов сравнения использовали холостую пробу и пробу с эстрадиолом.

3.4 Экспериментальная часть к разделу 2.4

Трехмерные структуры лиганд-рецепторных комплексов эстрогенного рецептора α с эстрадиолом ERα-E2 и 4-гидрокситамоксифеном ERα-4OHT, соответственно, в агонистической и антагонистической конформациях были получены из белкового банка данных PDB (1QKU [281] и 3E25°C [278]). Геометрию каждого из исследуемых лигандов строили на основании структурных данных для известных стероидов 13α- и 13β-рядов и данных о структуре новых соединений, полученных в ходе настоящего исследования (сочленение циклов С и D, конфигурация боковой цепи, конформация цикла C), после чего оптимизировали с использованием пакета МОРАС2016 [290] в базисе РМ7 [291] и сходимости SCFC25°C=1.D-9 И GNORM=0.01 параметрами (ккал/моль). Дополнительно проводили локальную оптимизацию диэдральных углов. Поскольку на финальном этапе докинга конформации могут варьироваться в широких пределах, их глобальную оптимизацию не проводили. Докинг проводился с использованием программы AutoDock Vina [280]. Структуры лигандов и белка для докинга были подготовлены с использованием программы AutoDockTools 4 [292] в составе пакета MGLTools 1.5.6.

Согласно стандартной процедуре в модели белка оставляли только одну цепь, из которой извлекали молекулу базового лиганда (эстрадиол или тамоксифен) и молекулы кристаллизационной воды. После этого к оставшейся цепи добавляли атомы водорода и рассчитывали Гастайгеровские частичные заряды атомов, при этом неполярные атомы водорода объединяли с соотвествующими атомами углерода, тогда как атомы водорода в составе полярных групп, способные образовывать водородные связи, оставляли в явном виде. Молекулы лигандов были подготовлены аналогичным образом.

Для симуляции в режиме «гибкого» докинга структуру белка разделили на гибкую и жесткую часть. Гибкая часть включает 16 аминокислотных остатков, окружающих лиганд-связывающий карман (LBP): МЕТ343, LEU346, THR347, LEU349, GLU353, LEU384, LEU387, MET388, LEU391, ARG394, PHE404,

MET421, ILE424, LEU428, HIS524 и LEU525. Белковые цепи и аминокислотные остатки вне LBP оставляли фиксированными.

Симуляции в режиме «жесткого» докинга проводили в кубической области внутри белка («docking box») с длиной ребра 15 Å и центром с хуz-координатами 104, 14 и 22 Å. Для «гибкого» докинга размер бокса увеличили, чтобы предоставить место для вращения аминокислотных остатков LBP, как показано в таблице 11.

Параметр	«Жесткий»	«Гибкий»
	докинг	докинг
size_x	15 Å	22 Å
size_y	15 Å	18 Å
size_z	15 Å	18 Å
center_x	104 Å	104 Å
center_y	14 Å	16 Å
center_z	22 Å	23.5 Å
exhaustiveness	8, 32, 64	8

Таблица 11. Параметры докинга программы AutoDock Vina.

выводы

1. Создан новый тип стероидных антиэстрогенов, содержащих 3гидроксиэстра-1,3,5(10)-триеновый скелет природной и эпимерной 13αконфигурации с 1'-гидроксиэтильной боковой цепью в 17-положении и содержащих либо не содержащих дополнительный конденсированный в положениях 16α,17α трех- или шестичленный карбоцикл.

 Разработаны эффективные синтезы ключевых 3-метокси-19-норпрегна-1,3,5(10),16-тетраен-20-онов 13β- и 13α-рядов.

3. Разработаны методы синтеза и получены 3-метокси-16α,17αциклогексано- и -циклопропано-19-норпрегна-1,3,5(10)-триен-20-оны 13β- и 13αрядов реакциями Дильса-Альдера и Кори-Чайковского, соответственно, и 3метокси-13β- и 13α-19-норпрегна-1,3,5(10)-триен-20-оны каталитическим гидрированием 16,17-двойной связи ключевых исходных стероидов.

4. Предложен способ получения целевых 3,20-дигидрокси-19норпрегнатриенов 13β- и 13α-рядов одновременным восстановлением 20кетогруппы и деметилированием соответствующих 3-метокси-20-кетостероидов с помощью диизобутилалюминийгидрида (DIBAH).

5. Методами спектроскопии ЯМР и рентгеноструктурного анализа установлены абсолютные конфигурации возникающего асимметрического центра С20 и конформации кольца С (кресло/ванна) в целевых эпимерных 3,20гидрокистероидах 13β- и 13α-ряда.

6. Методом молекулярного моделирования показано, что все целевые соединения связываются с ERα, но их комплексы с рецептором могут иметь различные конформации, определяющие их биологические эффекты.

7. Целевые соединения показали высокую антипролиферативную активность (цитотоксичность) в отношении эстроген-зависимой линии клеток рака молочной железы и способность ингибировать эстрогенный рецептор.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

(aq.)	водный
AcOH	: уксусная кислота
BINAP	: 2,2'-бис(дифенилфосфино)-1,1'-бинафтил
CDI	: N,N'-карбонилдиимидазол
DDH	: 1,3-дибром-5,5-диметилгидантоин
DDQ	: 2,3-дихлор-5,6-дицианохинон
DHP	: 2,3-дигидропиран
DIBAH	: диизобутилалюминия гидрид
DIPEA	: диизопропилэтиламин
DMAP	: N,N-диметиламинопиридин
DMDO	: диметилдиоксиран
dppd	: N,N'-дифенил-п-фенилендиамин
dppf	: 1,1'-ферроцендиил-бис(дифенилфосфин)
DTBP	: ди- <i>трет</i> -бутилпероксид
ER	: рецептор эстрогенов
Et	: этил
HMDS	: гексаметилдисилазан
LBD	: лиганд-связывающий домен
LBP	: лиганд-связывающий карман
LDA	: лития диизопропиламид
LIDAKOR	: лития диизопропиламид и калия трет-бутоксид
Me	: метил
MOM	: метоксиметил
mPCBA	: мета-пероксобензойная кислота
MsO	: метансульфонат
MW	: микроволновое излучение
NBA	: N-бромацетамид
NBS	: N-бромсукцинимид

NCS	: N-хлорсукцинимид
NIS	: N-йодсукцинимид
NPFT	: N-фторпиридиния трифторметилсульфонат
PCC	: пиридиния хлорхромат
Ph	: фенил
Pr	: пропил
Ру	: пиридин
SDI	: N,N'-сульфонилдиимидазол
SERD	: селективный супрессор (дегрейдер) рецептора эстрогенов
SERM	: селективный модулятор рецептора эстрогенов
TBAF	: тетрабутиламмония фторид
TBDMS	: трет-бутилдиметилсилил
TFA	: трифторуксусная кислота
TfO	: трифторметилсульфонат
THP	: тетрагидропиранил
TMS	: триметилсилил
TsO	: толуолсульфонат
ΓΜΦΤΑ	: гексаметилфосфотриамид
ДМСО	: диметилсульфоксид
ДМФА	: N,N-диметилформамид
дцк	: N,N'-дициклогексилкарбодиимид
мол.	: мольный
ОФ-ВЭЖХ	: обращеннофазовая высокоэффективная жидкостная хроматография
РМЖ	: рак молочной железы
PCA	: рентгеноструктурный анализ
ΤΓΦ	: тетрагидрофуран
ЭКВ.	: эквивалент
ЯМР	: ядерный магнитный резонанс

СПИСОК ЛИТЕРАТУРЫ

- Siegel, L. Cancer Statistics, 2016 / L. Siegel, K. D. Miller, A. Jemal // CA Cancer J. Clin. – 2016. – V. 66, I. 1. – P. 7-30.
- Lumachi, F. Current medical treatment of estrogen receptor-positive breast cancer / F. Lumachi, D. A. Santeufemia, S. M. M. Basso // World J. Biol. Chem. – 2015. – V. 6, I. 3. – P. 231-239.
- 3. Ahmad, I. Recent developments in steroidal and nonsteroidal aromatase inhibitors for the chemoprevention of estrogen-dependent breast cancer / I. Ahmad, Shagufta // Eur. J. Med. Chem. 2015. V. 102. P. 375-386.
- Ouellet, C. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties / C. Ouellet, R. Maltais, É. Ouellet, X. Barbeau, P. Lagüe, D. Poirier // Eur. J. Med. Chem. – 2016. – V. 119. – P. 169-182.
- McDonnell, D. P. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer / D. P. McDonnell, S. E. Wardell // Cur. Opin. Pharmacol. – 2010. – V. 10, I. 6. – P. 620-628.
- McDonnell, D. P. Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer / D. P. McDonnell, S. E. Wardell, J. D. Norris // J. Med. Chem. 2015. V. 58, I. 12. P. 4883-4887.
- Robertson, J.F.R. Fulvestrant (Faslodex®) how to make a good drug better / J.
 F. R. Robertson // Oncologist. 2007. V. 12, I. 7. P. 774-784.
- 8. Traboulsi, T. Antiestrogens: structure-activity relationships and use in breast cancer treatment / T. Traboulsi, M. El Ezzy. J. L. Gleason, S. Mader // J. Mol. Endocrinol. 2017. V. 58, I. 1. P. R15-R31.
- Goldvaser, H. Toxicity of Extended Adjuvant Therapy With Aromatase Inhibitors in Early Breast Cancer: A Systematic Review and Meta-analysis / H. Goldvaser, T. A. Barnes, B. Šeruga, D. W. Cescon, A. Ocaña, D. Ribnikar, E. Amir // J. Natl. Cancer Inst. – 2018. – V. 110, I. 1. – P. 31-39.
- Kamernitsky, A. V. Pregna-D'-pentaranes, Progestins and Antiprogestins / A. V. Kamernitsky, I. S. Levina // Russ. J. Bioorg. Chem. 2005. V. 31, I. 2. P. 105-118; *ibid.* V. 31, I. 3. P. 199-209.
- Scherbakov, A. M. Cytotoxic activity and molecular modeling of progestins, pregna-D'-pentaranes / A. M. Scherbakov, I. S. Levina, L. E. Kulikova, I. V. Fedyushkina, V. S. Skvortsov, A. V. Veselovsky, Yu. V. Kuznetsov, I. V.

Zavarzin // Biochemistry (Moscow), Suppl. Series B: Biomed. Chem. – 2016. – V. 10, I. 4. – P. 341-345.

- Katzenellebogen, J.A. The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: Addressing the "Core Issue" in the Design of Estrogen Receptor Ligands. / J.A. Katzenellebogen // J. Med. Chem. – 2011. – V. 54, I. 15. – P. 5271-5282.
- Kuznetsov, Yu. V. New estrogen receptor antagonists. 3,20-Dihydroxy-19norpregna-1,3,5(10)-trienes: Synthesis, molecular modeling, and biological evaluation / Yu. V. Kuznetsov, I. S. Levina, A. M. Scherbakov, O. E. Andreeva, I. V. Fedyushkina, A. S. Dmitrenok, A. S. Shashkov, I. V. Zavarzin // Eur. J. Med. Chem. – 2018. – V. 143. – P. 670–682.
- Brooks, S. C. From ligand structure to biological activity: modified estratrienes and their estrogenic and antiestrogenic effects in MCF-7 cells / S. C. Brooks, D. F. Skafar // Steroids – 2004. – V. 69, I. 6. – P. 401-418.
- Gupta, A. Current status on development of steroids as anticancer agents / A. Gupta, B. Sathish Kumar, A. S. Negi // J. Steroid Biochem. Mol. Biol. 2013. V. 137. P. 242–270.
- Jameera Begam, A. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review / A. Jameera Begam, S. Jubie, M.J. Nanjan // Bioorgan. Chem. – 2017. – V. 71. – P. 257-274.
- Patel, H. K. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment / H. K. Patel, T. Bihani // Pharm. Therap. – 2018. – V. 186. – P. 1-24.
- Ivanov, A. Synthesis, functionalization and biological activity of arylated derivatives of (+)-estrone / A. Ivanov, S. Abida Ejaz, S. J. A. Shah, P. Ehlers, A. Villinger, E. Frank, G. Schneider, J. Wölfling, Q. Rahman, J. Iqbal, P. Langer // Bioorg. Med. Chem. – 2017. – V. 25, I. 3. – P. 949–962.
- Yun Chen, A. Chemical Synthesis of Six Novel 17β-Estradiol and Estrone Dimers and Study of Their Formation Catalyzed by Human Cytochrome P450 Isoforms / A. Yun Chen, A. J. Lee, X. - R. Jiang, B. T. Zhu // J. Med. Chem. – 2007. – V. 50, I. 22. – P. 5372-5381.
- 20. Lee, A. J. Chemical synthesis of two novel diaryl ether dimers of estradiol- 17β / A. J. Lee, J. W. Sowell, W. E. Cotham, B. T. Zhu // Steroids 2004. V. 69, I. 1. P. 61–65.
- 21. Pat. US 6051726. Synthesis of 2-alkoxyestradiols / Y. Sachdeva, S. Ram. Pub. 2000. 12 pp.

- 22. Xin, M. An efficient, practical synthesis of 2-methoxyestradiol / M. Xin, Q. You, H. Xiang // Steroids 2010. V. 75, I. 1. P. 53-56.
- 23. Mitchell, J. S. Estrogen conjugation and antibody binding interactions in surface plasmon resonance biosensing / J. S. Mitchell, Y. Wu, C. J. Cook, L. Main // Steroids 2006. V. 71, I. 7. P. 618–631.
- 24. Ahmed, N. ¹⁸F-labelling of A-ring substituted 16α-fluoro-estradiols as potential radiopharmaceuticals for PET imaging / N. Ahmed, G. Garcia, H. Ali, J. E. van Lier // Steroids 2009. V. 74, I. 1. P. 42–50.
- 25. Liu, Y. Synthesis of 4-Formyl Estrone Using a Positional Protecting Group and Its Conversion to Other C-4-Substituted Estrogens / Y. Liu, B. Kim, S. D. Taylor // J. Org. Chem. 2007. V. 72, I. 23. P. 8824-8830.
- 26. Pat. US 7037907 B1. Estradiol conjugates and uses thereof / A. G. Stewart, D. J. McAllister, M. P. Collis, A. D. Robertson. Pub. 2006. 19 pp.
- 27. Bacsa, I. Synthesis of A-ring halogenated 13α-estrone derivatives as potential 17β-HSD1 inhibitors / I. Bacsa, R. Jójárt, G. Schneider, J. Wölfling, P. Maróti, B. E. Herman, M. Szécsi, E. Mernyák // Steroids 2015. V. 104. P. 230–236.
- Lista, L. Mild and efficient iodination of aromatic and heterocyclic compounds with the NaClO₂/NaI/HCl system / L. Lista, A. Pezzella, A. Napolitano, M. d'Ischia // Tetrahedron – 2008. – V. 64, I.1. – P. 234-239.
- 29. Zhou, C. Y. Mild Arming and Derivatization of Natural Products via an In(OTf)3-Catalyzed Arene Iodination / C. Y. Zhou, J. Li, S. Peddibhotla, D. Romo // Org. Lett. 2010. V. 12, I. 9. P. 2104-2107.
- Pat. US 6541463 B1. Inhibitors of type 5 and type 3 17β-hydroxysteroid dehydrogenase and methods for their use / F. Labrie, A. Belanger, S. Gauthier, Y. Merand, D. Poirier, L. Provencher, S. M. Singh. - Pub. 2003. - 126 pp.
- Mostafa, Y. A. A-ring substituted 17β-arylsulfonamides of 17β-aminoestra-1,3,5(10)-trien-3-ol as highly potent reversible inhibitors of steroid sulfatase / Y. A. Mostafa, B. Kralt, P. P. N. Rao, S. D. Taylor // Bioorg. Med. Chem. – 2015. – V. 23, I. 17. – P. 5681–5692.
- Stavber, S. Efficient Synthesis of 4-Fluorocyclohexa-2,5-dienone Derivatives Using N-Fluoro-1,4-diazoniabicyclo[2.2.2]octane Salt Analogues / S. Stavber, M. Jereb, M. Zupan // Synlett – 1999. – I. 9. – P.1375-1378.
- 33. Bogautdinov, R. P. Fluorination of steroid estrogens with Selectfluor®: Elucidation of regio- and stereoselectivity / R. P. Bogautdinov, A. F. Fidarov, S. N. Morozkina, A. A. Zolotarev, G. L. Starova, S. I. Selivanov, A. G. Shavva // J. Fluorine Chem. – 2014. – V. 168. – P. 218–222.
- 34. Hostetler, E. D. Synthesis of 2-[¹⁸F]Fluoroestradiol, a Potential Diagnostic Imaging Agent for Breast Cancer: Strategies to Achieve Nucleophilic Substitution of an Electron-Rich Aromatic Ring with [¹⁸F]F⁻ / E. D. Hostetler, S. D. Jonson, M. J. Welch, J. A. Katzenellenbogen // J. Org. Chem. – 1999. – V. 64, I. 1. – P. 178-185.
- 35. Yasui, N. Preparation of o-Fluorophenols from Nonaromatic Precursors: Mechanistic Considerations for Adaptation to Fluorine-18 Radiolabeling / N. Yasui, C. G. Mayne, J. A. Katzenellenbogen // Org. Lett. – 2015. – V. 17, I. 22. – P. 5540–5543.
- Shah, J. H. Synthesis of 2- and 17-substituted estrone analogs and their antiproliferative structure–activity relationships compared to 2-methoxyestradiol / J. H. Shah, G. E. Agoston, L. Suwandi, K. Hunsucker, V. Pribluda, X. H. Zhan, G. M. Swartz, T. M. LaVallee, A. M. Treston // Bioorg. Med. Chem. – 2009. – V. 17, I. 20. – P. 7344-7352.
- 37. Pat. US 20020082433 A1. Antiangiogenic agents / G. E. Agoston, J. H. Shah, K. A. Hunsucker, V. S. Pribluda, T. M. LaVallee, S. J. Green, C. J. Herbstritt, X. H. Zhan, A. M. Treston. Pub. 2002. 37 pp.
- Pat. US 6046186. Estrone sulfamate inhibitors of estrone sulfatase, and associated pharmaceutical compositions and methods of use / M. Tanabe, R. H. Peters, W.-R. Chao, K. Shigeno. - Pub. 2000. - 43 pp.
- Edsall, A. B. Effects of Altering the Electronics of 2-Methoxyestradiol on Cell Proliferation, on Cytotoxicity in Human Cancer Cell Cultures, and on Tubulin Polymerization / A. B. Edsall, A. K. Mohanakrishnan, D. Yang, P. E. Fanwick, E. Hamel, A. D. Hanson, G. E. Agoston, M. Cushman // J. Med. Chem. – 2004. – V. 47, I. 21. – P. 5126-5139.
- 40. Mun, J. Synthesis of 2-[¹¹C]methoxy-3,17β-estradiol to measure the pharmacokinetics of an antitumor drug candidate, 2-methoxy-3,17β-estradiol / J. Mun, R. J. Voll, M. M. Goodman // J. Label. Compd. Radiopharm. 2006. V. 49, I. P. 1117–1124.
- Wang, M. Synthesis of 2-[¹¹C]methoxy-3,17β-O,O-bis(sulfamoyl)estradiol as a new potential PET agent for imaging of steroid sulfatase (STS) in cancers / M. Wang, Lu Xu, M. Gao, K. D. Miller, G. W. Sledge, Qi-H. Zheng // Steroids 2012. V. 77, I. 8-9. P. 864–870.
- Cushman, M. The Effect of Exchanging Various Substituents at the 2-Position of 2-Methoxyestradiol on Cytotoxicity in Human Cancer Cell Cultures and Inhibition of Tubulin Polymerization / M. Cushman, A. K. Mohanakrishnan, M. Hollingshead, E. Hamel // J. Med. Chem. – 2002. – V. 45, I. 21. – P. 4748-4754.

- Hughes, R. A. 2-Methoxyestradiol and Analogs as Novel Antiproliferative Agents: Analysis of Three-Dimensional Quantitative Structure-Activity Relationships for DNA Synthesis Inhibition and Estrogen Receptor Binding / R. A. Hughes, T. Harris, E. Altmann, D. McAllister, R. Vlahos, A. Robertson, M. Cushman, Z. Wang, A. G. Stewart // Mol. Pharmacol. – 2002. – V. 61, I. 5. – P. 1053–1069.
- Leese, M. P. A-Ring-Substituted Estrogen-3-O-sulfamates: Potent Multitargeted Anticancer Agents / M. P. Leese, H. A. M. Hejaz, M. F. Mahon, S. P. Newman, A. Purohit, M. J. Reed, B. V. L. Potter // J. Med. Chem. 2005. V. 48, I. 16. P. 5243-5256.
- 45. Kiuru, P. S. Short synthesis of 2-methoxyestradiol and 2-hydroxyestradiol / P. S. Kiuru, K. Wähälä // Steroids 2003. V. 68, I. 4. P. 373–375.
- 46. Hou, Yu. A Short, Economical Synthesis of 2-Methoxyestradiol, an Anticancer Agent in Clinical / Yu. Hou, C. Y. Meyers, M. Akomeah // J. Org. Chem. 2009. V. 74, I. 16. P. 6362–6364.
- 47. Pat. US 5763432 A. Steroid inhibitors of estrone sulfatase and associated pharmaceutical compositions and methods of use / M. Tanabe, R. H. Peters, W.-R. Chao, K. Shigeno. Pub. 1998. 23 pp.
- 48. Peters, R. H. Steroidal oxathiazine inhibitors of estrone sulfatase / R. H. Peters, W. R. Chao, B. Sato, K. Shigeno, N. T. Zaveri, M. Tanabe // Steroids 2003. V. 68, I. 1. P. 97-110.
- 49. Panchapakesan, G. Synthesis of 2-substituted 17β-hydroxy/17-methylene estratrienes and their in vitro cytotoxicity in human cancer cell cultures / G. Panchapakesan, V. Dhayalan, N. D. Moorthy, N. Saranya, A. K. Mohanakrishnan // Steroids 2011. V. 76, I. 13. P. 1491–1504.
- Bubert, C. 3,17-Disubstituted 2-Alkylestra-1,3,5(10)-trien-3-ol Derivatives: Synthesis, In Vitro and In Vivo Anticancer Activity / C. Bubert, M. P. Leese, M. F. Mahon, E. Ferrandis, S. Regis-Lydi, P. G. Kasprzyk, S. P. Newman, Y. T. Ho, A. Purohit, M. J. Reed, B. V. L. Potter // J. Med. Chem. – 2007. – V. 50, I. 18. – P. 4431-4443.
- 51. Rao, P. N. A new, practical synthesis of 2-methoxyestradiols / P. N. Rao, J. W. Cessac // Steroids 2002. V. 67, I. 13-14. P. 1065-1070.
- Parihar, S. Synthesis of combretastatin A4 analogues on steroidal framework and their anti-breast cancer activity / S. Parihar, A. Kumar, A. K. Chaturvedi, N. Kumar Sachan, S. Luqman, B. Changkija, M. Manohar, O. Prakash, D. Chanda, F. Khan, C. S. Chanotiya, K. Shanker, A. Dwivedi, R. Konwar, A. S.Negia // J. Steroid Biochem. Mol. Biol. – 2013. – V. 137. – P. 332–344.

- Prakasham, A. P. A simple and convenient synthesis of 2-methoxyestradiol from estrone / A. P. Prakasham, K. Shanker, A. S. Negi // Steroids – 2012. – V. 77, I. 5. – P. 467-470.
- 54. Solum, E. J. Synthesis, biological evaluation and molecular modeling of new analogs of the anti-cancer agent 2-methoxyestradiol: potent inhibitors of angiogenesis / E. J. Solum, J. J. Cheng, I. Sylte, A. Vika, T. V. Hansen // RSC Adv. 2015. V. 5. P. 32497–32504.
- 55. Akselsen, Ø. W. *orth*o-Formylation of estrogens. Synthesis of the anti-cancer agent 2-methoxyestradiol / Ø. W. Akselsen, T. V. Hansen // Tetrahedron 2011. V. 67, I. 40. P. 7738-7742.
- 56. Van Gansbeke, K. Regioselective monoalkylation of 17β-estradiol for the synthesis of cytotoxic estrogens / K. Van Gansbeke, E. J. Solum, S. Liekens, A. Vika, T. V. Hansen // Steroids – 2017. – V. 124. – P. 54–59.
- 57. Parnes, R. Reductive Alkylation of Arenes by a Thiol-Based Multicomponent Reaction / R. Parnes, D. Pappo // Org. Lett. 2015. V. 17, I. 12. P. 2924–2927.
- 58. Pat. WO 2016132355 A1. Introduction of alkyl substituents to aromatic compounds / D. Pappo, R. Parnes. Pub. 2016. 87 pp.
- 59. Jereb, M. Acid-promoted direct electrophilic trifluoromethylthiolation of phenols / M. Jereb, K. Gosak // Org. Biomol. Chem. 2015. V. 13. P. 3103–3115.
- 60. Bedford, R. B. Palladium-Catalyzed Ortho-Arylation of Carbamate-Protected Estrogens / R. B. Bedford, P. B. Brenner, S. J. Durrant, T. Gallagher, C. Méndez-Gálvez, M. Montgomery // J. Org. Chem. – 2016. – V. 81, I. 9. – P. 3473–3478.
- 61. Xiao, B. Synthesis of Dibenzofurans via Palladium-Catalyzed Phenol-Directed C-H Activation/C-O Cyclization / B. Xiao, T.- J. Gong, Z. J. Liu, J. H. Liu, D. F. Luo, J. Xu, L. Liu // J. Am. Chem. Soc. 2011. V. 133, I. 24. P. 9250-9253.
- 62. Kanoh, N. A mild two-step propargylation of aromatic bioactive small molecules / N. Kanoh, T. Okamura, T. Suzuki, Y. Iwabuchi //Org. Biomol. Chem. 2017. V. 15. P. 7190-7195.
- Stéphan, E. Access to new steroids via a (1,2) Wittig rearrangement / E. Stéphan, M. Dousset, N. Foy, G. Jaouen // J. Chem. Research (S) – 2002. – I. 10. – P. 506– 507.
- 64. Njar, V. High-Yield Synthesis of Novel Imidazoles and Triazoles from Alcohols and Phenols / V. C. O. Njar // Synthesis 2000. I. 14. P. 2019-2028.

- Agoston, G. E. Synthesis, antiproliferative, and pharmacokinetic properties of 3and 17-double-modified analogs of 2-methoxyestradiol / G. E. Agoston, J. H. Shah, L. Suwandi, A. D. Hanson, X. Zhan, T. M. LaVallee, V. Pribluda, A. M. Treston // Bioorg. Med. Chem. Lett. – 2009. – V. 19, I. 21. – P. 6241-6244.
- Maltais, R. Discovery of a Non-Estrogenic Irreversible Inhibitor of 17β-Hydroxysteroid Dehydrogenase Type 1 from 3-Substituted-16β-(mcarbamoylbenzyl)-estradiol Derivatives / R. Maltais, D. Ayan, A. Trottier, X. Barbeau, P. Lagüe, J.-E. Bouchard, D. Poirier // J. Med. Chem. – 2014. – V. 57, I. 1. – P. 204-222.
- 67. Liu, J. Fulvestrant-3 Boronic Acid (ZB716): An Orally Bioavailable Selective Estrogen Receptor Downregulator (SERD) / J. Liu, S. Zheng, V. L. Akerstrom, C. Yuan, Y. Ma, Q. Zhong, C. Zhang, Q. Zhang, S. Guo, P. Ma, E. V. Skripnikova, M. R. Bratton, A. Pannuti, L. Miele, T. E. Wiese, G. Wang // J. Med. Chem. 2016. V. 59, I. 17. P. 8134–8140.
- Pat. WO 2016004166 A1. Boron-based prodrug strategy for increased bioavailability and lower-disage requirements for drug molecules containing at least one phenol (or aromatic hydroxyl) group / G. Wang, Q. Zhong, S. Zheng. – Pub. 2016. – 61 pp.
- 69. Suwandi, L. S. Synthesis and antitumor activities of 3-modified 2methoxyestradiol analogs / L. S.Suwandi, G. E. Agoston, J. H. Shah, A. D. Hanson, X. H. Zhan, T. M. LaVallee, A. M. Treston // Bioorg. Med. Chem. Lett. - 2009. - V. 19, I. 22. - P. 6459-6462.
- Pat. WO 2014128108 A1. Estra-1,3,5(10),16-tetraene-3-carboxamides for inhibition 17.beta.-hydroxysteroid dehydrogenase (AKR1 C3) / U. Bothe, M. Buselmann, N. Barak, A. Rotgeri, O. M. Fischer, T. Marquardt. – Pub. 2014. - 98 pp.
- Purushottamachar, P. Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate / P. Purushottamachar, A. K. Kwegyir-Afful, M. S. Martin, V. P. Ramamurthy, S. Ramalingam, V. C. O. Njar // ACS Med. Chem. Lett. – 2016. – V. 7, I. 7. – P. 708-713.
- 72. Pat. US 7371741 B2. Estradiol derivatives and pharmaceutical compositions using same / G. E. Agoston, T. M. LaVallee, V. S. Pribluda, J. H. Shah, A. M. Treston. Pub. 2008. 61 pp.
- 73. Pat. US 7498322 B2. Antiangiogenic agents / G. E. Agoston, J. H. Shah, L. Suwandi, T. M. LaVallee, A. M. Treston. 2009. 33 pp.
- 74. Fang, Z. Structure elucidation by synthesis of four metabolites of the antitumor drug ENMD-1198 detected in human plasma samples / Z. Fang, G. E. Agoston,

G. Ladouceur, A. M. Treston, LiQuan Wang, M. Cushman // Tetrahedron – 2009. – V. 65, I. 51. – P. 10535-10543.

- Pat. WO 2008124922 A1. 17alpha-substituted steroids as systemic antiandrogens and selective androgen receptor modulators / F. Labrie, S. Gauthier, J. Cloutier, J. Mailhot, S. Potvin, S. Dion, J.-Y. SancÉau. – Pub. 2008. – 180 pp.
- 76. Fu, W. Ch. Exploiting Aryl Mesylates and Tosylates in Catalytic Mono-αarylation of Aryl- and Heteroarylketones / W. Ch. Fu, C. M. So, O. Y. Yuen, I. T. Chuk Lee, F. Y. Kwong // Org. Lett. – 2016. – V. 18, I. 8. – P. 1872–1875.
- Whitaker, L. One-pot borylation/Suzuki–Miyaura sp²–sp³ cross-coupling / L.
 Whitaker, H. Y. Harb, A. P. Pulis // Chem. Commun. 2017. V. 53. P. 9364-9367.
- Vandavasi, J. K. A Nickel-Catalyzed Carbonyl-Heck Reaction / J. K. Vandavasi, X. Hua, H. B. Halima, S. G. Newman // Angew. Chem. Int. Ed. – 2017. – V. 56, I. 48. – P. 15441-15445.
- 79. Pat. WO 2010059943 A2. Fluorination of organic compounds / T. Ritter, T. Furuya, P.-P. Tang. Pub. 2010. 137 pp.
- Ichiishi, N. Cu-Catalyzed Fluorination of Diaryliodonium Salts with KF / N. Ichiishi, A. J. Canty, B. F. Yates, M. S. Sanford // Org. Lett. – 2013. – V. 15, I. 19. – P. 5134–5137.
- Lee, E. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging / E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter // Science – 2011. – V. 334, I. 6056. – P. 639-642.
- Garrec, K. Cp₂ZrMeCl: A Reagent for Asymmetric Methyl Addition / K. Garrec, S. P. Fletcher // Org. Lett. – 2016. – V. 18, I. 15. – P. 3814-3817.
- 83. Caprioglio, D. An alternative synthesis of the breast cancer drug fulvestrant (Faslodex®): catalyst control over C–C bond formation / D. Caprioglio, S. P. Fletcher // Chem. Commun. 2015. V. 51. P. 14866-14868.
- 84. Pat. CN 104387435 A. New compound and preparation method and application thereof / L. Wenjuan, M. Lan. Pub. 2015. 14 pp.
- 85. Pat. US 2006030552 A1. Process for the preparation of 7alpha-alkylated 19norsteroids / P. L. MacDonald, E. Bigatte, P. Rossetto. – Pub. 2006. – 48 pp.
- 86. Pat. US 6500669 B1. Programmable genotoxic agents and uses therefor / J. M. Essigmann, R. G. Croy, K. J. Yarema; M. Morningstar. Pub. 2002. 48 pp.

- Brazier, E. J. Fulvestrant: From the Laboratory to Commercial-Scale Manufacture / E. J. Brazier, P. J. Hogan, C. W. Leung, A. O'Kearney-McMullan, A. K. Norton, L. Powell, G. E. Robinson, E. G. Williams // Org. Proc. Res. Dev. - 2010. - V. 14. - P. 544-552
- Li, C. Stereoselective synthesis of some methyl-substituted steroid hormones and their in vitro cytotoxic activity against human gastric cancer cell line MGC-803 / C. Li, W. Qiu, Z. Yang, J. Luo, F. Yang, M. Liu, J. Xie, J. Tang // Steroids – 2010. – V. 75, I. 12. – P. 859–869.
- 89. Ahmed, N. A novel and stereoselective synthesis of 7α -alkynylestra-1,3,5(10)-triene-3,17\beta-estradiol / N. Ahmed, J. E. van Lier // Tetrahedron Lett. 2007. V. 48, I. 33. P. 5723–5726.
- 90. Labaree, D. C. Synthesis and Evaluation of B-, C-, and D-Ring-Substituted Estradiol Carboxylic Acid Esters as Locally Active Estrogens / D. C. Labaree, J.x. Zhang, H. A. Harris, C. O'Connor, T. Y. Reynolds, R. B. Hochberg // J. Med. Chem. – 2003. – V. 46, I. 10. – P. 1886-1904.
- 91. Ali, H. Synthesis of nitrile derivatives of estrogens / H. Ali, J. E. van Lier // Bioorg. Med. Chem. Lett. – 2002. – V. 12, I. 20. – P. 2847–2849.
- Pat. WO 2015181116 A1. Process and intermediates for the preparation of 7alkylated steroids / E. A. Perez, J. A. H. Turiel, N. F. J. Gallo, B.-L. A. Lorente, E. L. A. Garcia. – Pub. 2015. – 78 pp.
- 93. Pat. US 2001039269 A1. Synthesis of anti-estrogenic and other therapeutic steroids from 21-hydroxy-19-norpregna-4-en-3-one / R. H. Peters, J. Liu, J. G. Johansson, K. Ryan, W.-R. Chao, M. Tanabe. Pub. 2001. 51 pp.
- 94. Pat. US 6696436 B1. B-homoestra-1,3,5(10)-trienes as modulators of tubulin polymerization / E. Hamel, M. S. Cushman. Pub. 2004. 22 pp.
- 95. Banerjee, S. An estradiol-conjugate for radiolabelling with ¹⁷⁷Lu: an attempt to prepare a radiotherapeutic agent / S. Banerjee, T. Das, S. Chakraborty, G. Samuel, A. Korde, M. Venkatesh, M. R. A. Pilla // Bioorg. Med. Chem. 2005. V. 13, I. 13. P. 4315–4322.
- 96. Pat. US 2003092692 A1. Cytoprotective steroids (II) / R. F. Lathe, J. R. Seckl, K. F. Martin, E. A. Wulfert. Pub. 2003. 15 pp.
- 97. Mons, S. An Efficient Synthesis of 6-Oxo-17-β-Estradiol and its O-Carboxymethyl Oxime / S. Mons, L. Lebeau, C. Mioskowski // Synth. Commun. 1998. V. 28, I. 2. P. 213-218.
- Zhao, L. Design, Synthesis, and Estrogenic Activity of a Novel Estrogen Receptor ModulatorA Hybrid Structure of 17β-Estradiol and Vitamin E in

Hippocampal Neurons / L. Zhao, C. Jin, Z. Mao, M. B. Gopinathan, K. Rehder, R. D. Brinton // J. Med. Chem. – 2007. – V. 50, I. 18. – P. 4471-4481.

- 99. Allan, G. M. Modification of Estrone at the 6, 16, and 17 Positions: Novel Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 / G. M. Allan, H. R. Lawrence, J. Cornet, C. Bubert, D. S. Fischer, N. Vicker, A. Smith, H. J. Tutill, A. Purohit, J. M. Day, M. F. Mahon, M. J. Reed, B. V. L. Potter // J. Med. Chem. – 2006. – V. 49, I. 4. – P. 1325-1345
- Pat. US 5633392 A. Estrenes for inducing hypothalamic effects / D. L. Berliner, N. W. Adams, C. L. Jennings-White. – Pub. 1997. – 63 pp.
- Pat. US 6057439 A. Steroids as neurochemical stimulators of the VNO to alleviate symptoms of PMS and anxiety / C. L. Jennings-White, D. L. Berliner, N. W. Adams, L. Monti-Bloch. – Pub. 2000. – 284 pp.
- 102. Pat. US 6117860 A. Steroids as neurochemical stimulators of the VNO to treat paroxistic tachycardia / C. L. Jennings-White, D. L. Berliner, N. W. Adams, L. Monti-Bloch. – Pub. 2000. – 299 pp.
- 103. Gaši, K. P. Synthesis, anti-oxidant activity, and cytotoxicity of salicyloyl derivatives of estra-1,3,5(10)-triene and androst-5-ene / K. P. Gaši, E. Djurendić, S. Dojčinović-Vujašković, A. Gaković, S. Jovanović-Šanta, V. Kojić, M. Sakač // Chem. Papers – 2012. – V. 66, I. 4. – P. 284–294.
- 104. Sakača, M. N. Synthesis and Estrogenic Activity Screening of Some 6,9-Disubstituted Estradiol Derivatives / M. N. Sakača, K. M. Penov Gaši, M. Popsavin, E. A. Djurendić, S. Andrić, R. M. Kovačević // Collect. Czech. Chem. Commun. – 2005. – V. 70, I. 4. – P. 479-486.
- 105. Kanbe, Y. Newly discovered orally active pure antiestrogens / Y. Kanbe, M.-H. Kim, M. Nishimoto, Y. Ohtake, T. Yoneya, I. Ohizumi, T. Tsunenari, K. Taniguchi, S.-i. Kaiho, Y. Nabuchi, H. Araya, S. Kawata, K. Morikawa, J.-C. Jo, H.-A. Kwon, H.-S.Lim, H.-Y. Kim // Bioorg. Med. Chem. Lett. 2006. V. 16, I. 18. P. 4959–4964.
- 106. Cyrus, K. Jostling for Position: Optimizing Linker Location in the Design of Estrogen Receptor - Targeting PROTACs / K. Cyrus, M. Wehenkel, E.-Y. Choi, H. Lee, H. Swanson, K.-B. Kim // ChemMedChem – 2010. – V. 5, I. 7. – P. 979 – 985.
- Pat. JP 2016027000 A. Steroidal compound and medicine comprising the same / M. Okamoto, N. Shimizu, J. Toyohara, K. Ishiwatari, K. Oda, M. Sakata, K. Shinozaki, N. Tonegawa. – Pub. 2016. – 19 pp.

- Hussey, S. L. Synthesis of Chimeric 7α-Substituted Estradiol Derivatives Linked to Cholesterol and Cholesterylamine / S. L. Hussey, E. He, B. R. Peterson // Org. Lett. – 2002. – V. 4, I. 3. – P. 415-418.
- Jiang, X.-R. Synthesis of 7α-substituted derivatives of 17β-estradiol / X.-R. Jiang, J. W. Sowell, B. T. Zhu // Steroids – 2006. – V. 71, I. 5. – P. 334–342.
- 110. Pat. US 2012071455 A1. 6-Substituted demethyl-estradiol derivatives as selective ER-beta agonists / J. Yarger, S. H. Nye. Pub. 2012. 27 pp.
- Spera, D. Estradiol derivatives bearing sulfur-containing substituents at the 11β or 7α positions: versatile reagents for the preparation of estrogen conjugates / D. Spera, G. Cabrera, R. Fiaschi, K. E. Carlson, J. A. Katzenellenbogen, E. Napolitano // Bioorg. Med. Chem. 2004. V. 12, I. 16. P. 4393–4401.
- 112. Cadot, C. C6-(N,N-butyl-methyl-heptanamide) derivatives of estrone and estradiol as inhibitors of type 1 17β-hydroxysteroid dehydrogenase: Chemical synthesis and biological evaluation / C. Cadot, Y. Laplante, F. Kamal, V. Luu-The, D. Poirier // Bioorg. Med. Chem. – 2007. – V. 15, I. 2. – P. 714–726.
- 113. Mitra, K. A Rationally Designed Genotoxin that Selectively Destroys Estrogen Receptor-Positive Breast Cancer Cells / K. Mitra, J. C. Marquis, S. M. Hillier, P. T. Rye, B. Zayas, A. S. Lee, J. M. Essigmann, R. G. Croy // J. Am. Chem. Soc. – 2002. – V. 124, I. 9. – P. 1862-1863.
- 114. Skaddan, M. B. Synthesis and Binding Affinities of Novel Re-Containing 7α-Substituted Estradiol Complexes: Models for Breast Cancer Imaging Agents / M. B. Skaddan, F. R. Wüst, J. A. Katzenellenbogen // J. Org. Chem. – 1999. – V. 64, I. 22. – P. 8108-8121.
- 115. Bélanger, A. Regio and stereospecific synthesis of 11β-substituted 19norsteroids: Influence of 11β-substitution on progesterone receptor affinity - (1) / A. Bélanger, D. Philibert, G. Teutsch // Steroids - 1981. – V. 37, I. 4. – P. 361-382.
- 116. The structure and function of oestrogens. IV. Synthesis of 17α-ethynyloestradiol specifically polydeuterated in ring C / D. J. Collins, J. Sjovall // Aust. J. Chem. 1983. V. 36. I. 2. P. 339-360.
- 117. Hanson, R. N. Synthesis and evaluation of 11β-(4-Substituted phenyl) estradiol analogs: Transition from estrogen receptor agonists to antagonists / R. N. Hanson, E. Hua, J. A. Hendricks, D. Labaree, R. B. Hochberg // Bioorg. Med. Chem. 2012. V. 20, I. 12. P. 3768–3780.
- 118. Hendricks, J. A. Synthesis of a spin-labeled anti-estrogen as a dynamic motion probe for the estrogen receptor ligand binding domain / J. A. Hendricks, S. V.

Gullà, D. E. Budil, R. N. Hanson // Bioorg. Med. Chem. Lett. – 2012. – V. 22, I. 4. – P. 1743–1746.

- Hendricks, J. A. Synthesis of a spin-labeled anti-estrogen as a dynamic motion probe for the estrogen receptor ligand binding domain / J. A. Hendricks, R. N. Hanson, M. Amolins, J. M. Mihelcic, B. S. Blagg // Bioorg. Med. Chem. Lett. – 2013. – V. 23, I. 12. – P. 3635–3639.
- 120. Lobaccaro, C. Steroidal Affinity Labels of the Estrogen Receptor. 3. Estradiol 11β-n-Alkyl Derivatives Bearing a Terminal Electrophilic Group: Antiestrogenic and Cytotoxic Properties / C. Lobaccaro, J.-F. Pons, M.-J. Duchesne, G. Auzou, M. Pons, F. Nique, G. Teutsch, J.-L. Borgna // J. Med. Chem. – 1997. – V. 40, I. 14. – P. 2217-2227.
- 121. Larkin, J. P. The Synthesis of 17α-Methyl-11β-arylestradiol: Large-Scale Application of the Cerium (III)-Mediated Alkylation of a Ketone / J. P. Larkin, C. Wehrey, P. Boffelli, H. Lagraulet, G. Lemaitre, A. Nedelec, D. Prat // Org. Proc. Res. Dev. – 2002. – V. 6, I. 1. – P. 20-27.
- 122. Prat, D. Industrial Synthesis of 4-Chloro,11β-arylestradiol: How to Circumvent a Poor Diastereoselectivity / D. Prat, F. Benedetti, G. F. Girard, L. N. Bouda, J. Larkin, C. Wehrey, J. Lenay // Org. Proc. Res. Dev. – 2004. – V. 8, I. 2. – P. 219-228.
- Pat. US 2004224933 A1. Novel process and intermediates for preparing 17halogenated 19-norsteroid compounds / F. Nique, C. Moratille, P. Roussel, J. Bousquet. – Pub. 2004. – 9 pp.
- 124. Pat. US 2004229853 A1. Novel method and intermediates for preparing 19norsteroid compounds / D. Prat, C. Moratille, F. Benedetti, L. Nait-Bouda. – Pub. 2004. – 27 pp.
- 125. Pat. US 4954490. 11.beta -substituted progesterone analogs / E. C. Cook, M. C. Wani, Y.-W. Lee, J. R. Reel, D. Rector. Pub. 1990. 14 pp.
- 126. Pat. WO 2007144674 A1. Industrial process for the synthesis of 17a-acetoxy-13b-[4-(N,N-dimethylamino)-phenyl]-19-norpregna-4,9-diene-3,20-dione and new intermediates of the process / L. Dancsi, G. Visky, Z. Tuba, J. Csoergei, C. Molnar, E. Magyari. – Pub. 2007. – 24 pp.
- 127. Lao, K. Design, synthesis and biological evaluation of novel 2-methoxyestradiol analogs as dual selective estrogen receptor modulators (SERMs) and antiangiogenic agents / K. Lao, Y. Wang, M. Chen, J. Zhang, Q. You, H. Xiang // Eur. J. Med. Chem. – 2017. – V.139. – P. 390-400.

- 128. Pat. US 2003114524 A1. Compounds with hydroxycarbonyl-halogenoalkyl side chain / J. Jo, H. Kwon, H. Lim, J. Choi, K. Morikawa, Y. Kanbe, M. Nishimoto, M. Kim, Y. Nishimura. – Pub. 2003. – 70 pp.
- 129. Ekhato, I. V. Norethindrone acetate (NA) and ethinyl estradiol (EE) related oxidative transformation products in stability samples of formulated drug product: synthesis of authentic references / I. V. Ekhato, T. Hurley, M. Lovdahl, T. J. Revitte, L. Guo, Y. Huang, S. Clipper, C. Colson // Steroids – 2002. – V. 67, I. 3-4. – P. 165-174.
- Alsayari, A. Design, synthesis, and biological evaluation of steroidal analogs as estrogenic/anti-estrogenic agents / A. Alsayari, L. Kopel, M. S. Ahmed, A. Pay, T. Carlson, F. T. Halaweish // Steroids – 2017. – V. 118. – P. 32-40.
- 131. Kürti, L. A Short, Scalable Synthesis of the Carbocyclic Core of the Anti-Angiogenic Cortistatins from (+)-Estrone by B-Ring Expansion / L. Kürti, B. Czakó, E. J. Corey // Org. Lett. – 2008. – V. 10, I. 22. – P. 5247-5250.
- Hendry, D. Radiolabelling of steroids: the synthesis of 17α-[4-¹⁴C]trenbolone / D. Hendry, E. Knagg, N. A. Smith, G. T. Woolley //J. Label. Compd. Radiopharm. – 2013. – V. 56, I. 9-10. – P. 455–460.
- 133. Harburn, J. J. Synthesis of novel steroidal inhibitors of HIV-1 protease / J. J. Harburn, G. C. Lofius, B. A. Marples // Tetrahedron – 1998. – V. 54, I. 39. – P. 11907-11924.
- 134. Collins, B .S. L. Copper-Catalyzed Arylative Meyer-Schuster Rearrangement of Propargylic Alcohols to Complex Enones Using Diaryliodonium Salts / B .S. L. Collins, M. G. Suero, M. J. Gaunt //Angew. Chem. Int. Ed. – 2013. – V. 52, I. 22. – P. 5799 –5802.
- 135. Laplante, Y. Estradiol and estrone C-16 derivatives as inhibitors of type 1 17βhydroxysteroid dehydrogenase: Blocking of ER⁺ breast cancer cell proliferation induced by estrone / Y. Laplante, C. Cadot, M.-A. Fournier, D. Poirier // Bioorg. Med. Chem. – 2008. – V. 16, I. 4. – P. 1849–1860.
- 136. Maltais, R. Identification of fused 16β,17β-oxazinone-estradiol derivatives as a new family of non-estrogenic 17β-hydroxysteroid dehydrogenase type 1 inhibitors / R. Maltais, A. Trottier, A. Delhomme, X. Barbeau, P. Lagüe, D. Poirier // Eur. J. Med. Chem. – 2015. – V. 93. – P. 470-480.
- 137. Perron, V. Synthesis of 17β-estradiol-linked platinum(II) complexes and their cytocidal activity on estrogen-dependent and -independent breast tumor cells / V. Perron, D. Rabouin, É. Asselin, S. Parent, R. C.-Gaudreault, G. Bérubé // Bioorg. Chem. 2005. V. 33, I. 1. P. 1–15.

- 138. Saha, P. Design, synthesis, cytocidal activity and estrogen receptor α affinity of doxorubicin conjugates at 16α-position of estrogen for site-specific treatment of estrogen receptor positive breast cancer / P. Saha, S. Fortin, V. Leblanc, S. Parent, É. Asselin, G. Bérubé // Steroids – 2012. – V. 77, I. 11. – P. 1113–1122.
- 139. Agoston, G. E. Synthesis and structure–activity relationships of 16-modified analogs of 2-methoxyestradiol / G. E. Agoston, J. H. Shah, T. M. LaVallee, X. Zhan, V. S. Pribluda, A. M.Treston // Bioorg. Med. Chem. – 2007. – V. 15, I. 24. – P. 7524-7537.
- 140. Kuduk, S. D. Synthesis and evaluation of geldanamycin-estradiol hybrids / S. D. Kuduk, F. F. Zheng, L. Sepp-Lorenzino, N. Rosen, S. J. Danishefsky // Bioorg. Med. Chem. Lett. 1999. V. 9, I.9. P. 1233-1238.
- 141. Boivin, R. P. Structure–Activity Relationships of 17α-Derivatives of Estradiol as Inhibitors of Steroid Sulfatase / R. P. Boivin, V. Luu-The, R. Lachance, F. Labrie, D. Poirier // J. Med. Chem. – 2000. – V. 43, I. 23. – P. 4465-4478.
- 142. Tremblay, M. R. Solid-phase synthesis of phenolic steroids: Towards combinatorial libraries of estradiol derivatives / M. R. Tremblay, D. Poirier // Tetrahedron Lett. – 1999. V. 40, I. 7. – P. 1277-1280.
- Oaksmith, J. M. Synthesis of a COMC–estradiol conjugate for targeted, tissueselective cancer chemotherapy / J. M. Oaksmith, B. Ganem // Tetrahedron Lett. – 2009. – V. 50, I. 26. – P. 3497–3498.
- 144. Labaree, D. C. Estradiol-16α-carboxylic Acid Esters as Locally Active Estrogens
 / D. C. Labaree, T. Y. Reynolds, R. B. Hochberg // J. Med. Chem. 2001. V.
 44, I. 11. P. 1802-1814.
- 145. Pat. WO 2010142705 A1. Substituted 16,17-annellated steroid compounds for use in women's healthcare / F. A. Dijcks, H. J. J. Loozen, S. Addo, A. G. H. Ederveen. – Pub. 2010. – 29 pp.
- 146. Pat. EP 0869132 A1. Steroid compounds having contraceptive and antiosteoporosis activity / H. J. J. Loozen. – Pub. 1998. – 22 pp.
- 147. Descôteaux, C. Improved synthesis of unique estradiol-linked platinum(II) complexes showing potent cytocidal activity and affinity for the estrogen receptor alpha and beta / C. Descôteaux, V. Leblanc, G. Bélanger, S. Parent, É. Asselin, G. Bérubé // Steroids 2008. V. 73, I. 11. P. 1077–1089.
- 148. Gupta, A. Simple and Efficient Synthesis of Steroidal Hybrids of Estrogen and Vitamin D3 / A. Gupta, R. Gueddah, G. Bérubé // Synth. Commun. – 2009. – V. 39, I. 1. – P. 61-69 (2009).

- 149. Farhane, S. Convergent stereoselective and efficient synthesis of furanic-steroid derivatives / S. Farhane, M.-A. Fournier, R. Maltais, D. Poirier // Tetrahedron – 2011. – V. 67, I. 13. – P. 2434-2440.
- 150. Jeyachandran, V. Synthesis of novel 16-spiro steroids: 7-(Aryl)tetrahydro-1Hpyrrolo[1,2-c][1,3]thiazolo estrone hybrid heterocycles / V. Jeyachandran, S. V. Kumar, R. R. Kumar // Steroids – 2014. – V. 82. – P. 29-37.
- Pat. CN 105153259 A. 2/16-site-substituted chalcone derivative taking estrogen as mother nucleus and preparation method and application of derivative / X. Shi, C. Wang, Z. Zhang, H. Gao, S. Sun, X. Lu, Z. Wang, T. Yang, P. Li, M. Wang, X. Du. – Pub. 2015. – 31 pp.
- 152. Riebe, S. Synthesis of 16-E-([aryl]idene)-3-methoxy-estrones by a palladium catalysed Mizoroki-Heck reaction / S. Riebe, S. Jopp, P. Ehlers, E. Frank, G. Schneider, J. Wölfling, A. Villinger, P. Langer // Tetrahedron Lett. – 2017. – V. 58, I. 29. – P. 2801–2803.
- 153. Jopp, S. Synthesis of novel 16-E-(arylidene)-3-methoxy-α-estrones via a palladium catalysed Suzuki-Miyaura reaction / S. Jopp, M. Liesegang, P. Ehlers, E. Frank, G. Schneider, J. Wölfling, P. Langer // Tetrahedron Lett. 2018. V. 59, I. 1. P. 26–28.
- 154. Mohareb, R. M. Heterocyclic ring extension of estrone: Synthesis and cytotoxicity of fused pyran, pyrimidine and thiazole derivatives / R. M. Mohareb, F. Al-Omran, R. A. Azzam // Steroids – 2014. – V. 84. – P. 46–56.
- 155. Gavaskar, D. An expedient sequential one-pot four component synthesis of novel steroidal spiro-pyrrolidine heterocycles in ionic liquid / D. Gavaskar, A. R. Suresh Babu, R. Raghunathan, M. Dharani, S. Balasubramanian // Steroids – 2016. – V. 109. – P. 1–6.
- 156. Arenas-González, A. Synthesis of monomeric and dimeric steroids containing [1,2,4]triazolo[1,5-a]pyrimidines / A. Arenas-González, L. A. Mendez-Delgado, P. Merino-Montiel, J. M. Padrón, S. Montiel-Smith, J. L. Vega-Báez, S. Meza-Reyes // Steroids -2016. – V. 116. – P. 13–19.
- 157. Tapolcsányi, P. Synthesis and receptor-binding examination of 16hydroxymethyl-3,17-estradiol stereoisomers / P. Tapolcsányi, J. Wölfling, G. Falkay, Á. Márki, R. Minorics, G. Schneider // Steroids – 2002. – V.67, I. 7. – P. 671–678.
- 158. Fischer, D. S. E-Ring Modified Steroids as Novel Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 / D. S. Fischer, G. M. Allan, C. Bubert, N. Vicker, A. Smith, H. J. Tutill, A. Purohit, L. Wood, G. Packham, M. F. Mahon, M. J. Reed, B. V. L. Potter// J. Med. Chem. – 2005. – V. 48, I. 18. – P. 5749-5770.

- 159. Schneider, G. Stereocontrolled synthesis of the four 16-hydroxymethyl-19nortestosterone isomers and their antiproliferative activities / G. Schneider, A. Kiss, E. Mernyák, Z. Benke, J. Wölfling, É. Frank, N. Bózsity, A. Gyovai, R. Minorics, I. Zupkó // Steroids – 2016. – V. 105. – P. 113–120.
- 160. Erben, F. Benzo-Annulated Steroids: Synthesis of Octahydro-indenophenanthrenes by Formal [3+3] Cyclocondensation Reaction with 1,3-Bis[(trimethylsilyl)oxy]buta-1,3-dienes / F. Erben, V. Specowius, J. Wölfling, G. Schneider, P. Langer // Helv. Chim. Acta. – 2013. – V. 96, I. 5. – P. 924-930.
- 161. Jovanović-Šanta, S. Synthesis and Biological Activity of New 16,17-Secoestrone Derivatives / S. Jovanović-Šanta, S. Andrić, R. Kovačević, V. Pejanović // Collect. Czech. Chem. Commun. – 2000. - V. 65, I. 1. – P. 77-82.
- 162. Sakač, M. N. Synthesis, X-ray Crystal Structure and Antiestrogenic Activity of 17-Methyl-16,17-secoestra-1,3,5(10)-triene Derivatives / M. N. Sakač, D. A. Miljković, K. M. Penov-Gaši, M. Popsavin, O. R. Klisurić, S. M. Stanković, S. Andrić, R. Kovačević // Collect. Czech. Chem. Commun. – 2005. – V. 70, I. 1. – P. 63-71.
- 163. Magyar, A. Synthesis of 16,17-seco-steroids with iminomethyl-2-pyridine and aminomethylene-2-pyridine structures as chiral ligands for copper ions and molecular oxygen activation / A. Magyar, B. Schönecker, J. Wölfling, G. Schneider, W. Günther, H. Görls // Tetrahedron Asymmetry – 2003. – V. 14, I. 18. – P. 2705–2715.
- 164. Xie, L. Photoinduced rearrangement of vinyl tosylates to β-ketosulfones / L. Xie, X. Zhen, S. Huang, X. Su, M. Lin, Y. Li // Green Chem. – 2017. – V. 19, I. 15. – P. 3530-3534.
- Pat. WO 2005077968 A2. Steroids for cancer treatment / L. Pettersson. Pub. 2005. – 80 pp.
- 166. Seimbille, Y. Synthesis of 2,16α- and 4,16α-difluoroestradiols and their 11β-methoxy derivatives as potential estrogen receptor-binding radiopharmaceuticals / Y. Seimbille, H. Ali, J. E. van Lier // J. Chem. Soc., Perkin Trans. 1. 2002. V. 0, I. 5. P. 657–663.
- 167. Kil, H. S. Alternative synthesis for the preparation of 16α-[¹⁸F]fluoroestradiol / H. S. Kil, H. Y. Cho, S. J. Lee, S. J. Oh, D. Y. Chi // J. Label. Compd. Radiopharm. 2013. V. 56, I. 12. P. 619–626.
- 168. Kádár, Z. A facile 'click' approach to novel 15β-triazolyl-5α-androstane derivatives, and an evaluation of their antiproliferative activities in vitro / Z. Kádár, J. Molnár, G. Schneider, I. Zupkó, É. Frank // Bioorg. Med. Chem. – 2012. – V. 20, I. 4. – P. 1396–1402.

- 169. Pat. US 2004198711 A1. 15Alpha-substituted estradiol carboxylic acid esters as locally active estrogens / R. Hochberg. Pub. 2004. 22 pp.
- Pat. WO 2014207311 A1. Therapeutically active estratrienthiazole derivatives as inhibitors of 17.beta.-hydroxysteroid dehydrogenase, type 1 / L. Hirvelä, L. Kangas, P. Koskimies, R. Lammintausta, M. Unkila. – Pub. 2014. – 105 pp.
- 171. Chen, Y. Allyl-Palladium-Catalyzed Ketone Dehydrogenation Enables Telescoping with Enone α,β-Vicinal Difunctionalization / Y. Chen, D. Huang, Y. Zhao, T. R. Newhouse // Angew. Chem. Int. Ed. – 2017. – V. 56, I. 28. – P. 8258 –8262.
- 172. Iida, T. Chemical synthesis of the 17-propanamide derivatives of stereoisomeric Δ^{14} -17α- and 17β-estradiols: potential 17β-hydroxysteroid dehydrogenase inhibitors / T. Iida, S. Ogawa, H. Tamegai, Y. Adachi, H. Saito, S. Ikegawa, H. Konishi, A. Takagi, T. Matsuzaki // Chem. Phys. Lipids 2011. V. 164, I. 2. P. 106–112.
- 173. Rao, P. N. Synthesis and antimitotic activity of novel 2-methoxyestradiol analogs / P. N. Rao, J. W. Cessac, T. L. Tinley, S. L. Mooberry // Steroids – 2002. – V. 67, I. 13-14. – P.
- 174. Bartels, A. On the Palladium(II)-Catalysed Oxidative Rearrangement of Propargylic Acetates / A. Bartels, R. Mahrwald, K. Müller // Adv. Synth. Catal. – 2004. – V. 346, I. 4. – P. 483 - 485.
- 175. Cadierno, V. Isomerization of Propargylic Alcohols into α,β-Unsaturated Carbonyl Compounds Catalyzed by the Sixteen-Electron Allyl-Ruthenium(II) Complex [Ru(η³-2-C₃H₄Me)(CO)(dppf)][SbF₆] / V. Cadierno, S. E. García-Garrido, J. Gimeno // Adv. Synth. Catal. – 2006, - V. 348, I. 1-2. – P. 101-110.
- 176. García-Álvarez, J. Novel rhenium(I) catalysts for the isomerization of propargylic alcohols into α,β-unsaturated carbonyl compounds: an unprecedented recyclable catalytic system in ionic liquids / J. García-Álvarez, J. Díez, J. Gimeno, C. M. Seifried // Chem. Commun. 2011. V. 47, I. 22. P. 6470–6472.
- 177. Gergely, M. High-yielding synthesis of N-triazolyl carboxamides via palladiumcatalysed aminocarbonylation / M. Gergely, B. Boros, L. Kollár // Tetrahedron – 2017. – V. 73, I. 48. – P. 6736-6741.
- 178. Szarka, Z. Highly Efficient Synthesis of Steroidal Hydroxamic Acid Derivatives via Homogeneous Catalytic Carbonylation Reaction / Z. Szarka, R. Skoda-Földes, L. Kollár, Z. Berente, J. Horváth, Z. Tuba // -29Tetrahedron – 2000. – V. 56, I. 29. – P. 5253-5257.

- 179. Balogh, J. Facile Synthesis of Steroidal Primary Amides via Palladium-Catalyzed Aminocarbonylation of Steroidal Alkenyl Halides / J. Balogh, S. Mahó, V. Háda, L. Kollár, R. Skoda-Földes // Synthesis – 2008. – No. 19. P 3040–3042.
- 180. Petz, A. Facile, high-yielding synthesis of steroidal crown ethers via palladiumcatalyzed carbonylation reaction / A. Petz, G. Gálik, J. Horváth, Z. Tuba, Z. Berente, Z. Pintér, L. Kollár // Synth. Commun. – 2001. – V. 31, I. 3. – P. 335– 341.
- 181. Balogh, J. Synthesis of new steroid-β-lactam hybrids via palladium-catalyzed aminocarbonylation / J. Balogh, R. Skoda-Földes, K. Vazdar, I. Habuš // J. Organomet. Chem. – 2012. – V. 703. – P. 51-55.
- 182. Skoda-Földes, R. Facile synthesis of steroidal phenyl ketones via homogeneous catalytic carbonylation / R. Skoda-Földes, Z. Székvölgyi, L. Kollár, Z. Berente, J. Horváth, Z. Tuba // Tetrahedron – 2000. – V. 56, I. 21. – P. 3415-3418.
- 183. Petz, A. Facile synthesis of 17-formyl steroids via palladium-catalyzed homogeneous carbonylation reaction / A. Petz, J, Horváth, Z. Tuba, Z. Pintér, L. Kollár // Steroids – 2002. – V. 67, I. 9. – P. 777-781.
- 184. Skoda-Földes, R. Facile Synthesis of Steroidal [16,17-c]Tetrahydropyridazine Derivatives by One-Pot Stille Coupling and Hetero-Diels-Alder Reactions / R. Skoda-Földes, L. Kollár // Synthesis – 2006. – No. 17. – P. 2939–2943.
- 185. De Riccardis, F. Design and Synthesis of Estrarubicin: a Novel Class of Estrogen-Anthracenedione Hybrids / F. De Riccardis, D. Meo, I. Izzo, M. Di Filippo, A. Casapullo // Eur. J. Org. Chem. – 1998. – I. 9. – P. 1965-1970.
- 186. Sun, Q. Pd(PPh₃)₄/AgOAc-catalyzed coupling of 17-steroidal triflates and alkynes: Highly efficient synthesis of D-ring unsaturated 17-alkynylsteroids / Q. Sun, C. Jiang, H. Xu, Z. Zhang, L. Liu, C. Wang // Steroids – 2010. – V. 75, I. 12. – P. 936-943.
- 187. Pat. JP 2016509038 A. Estra-1,3,5(10),16-tetraene-3-carboxamides for inhibition of 17.beta.-hydroxysteroid dehydrogenase (AKR1 C3). Pub. 2016. 92 pp.
- 188. Ács, P. The synthesis of 17-alkoxycarbonyl- and 17-carboxamido-13α-estra-1,3,5(10),16-tetraene derivatives via palladium-catalyzed carbonylation reactions / P. Ács, A. Takács, A. Szilágyi, J. Wölfling, G. Schneider, L. Kollár // Steroids – 2008. – V. 73, I. 6. – P. 669–675.
- 189. Sun, C.-L. Construction of Polysubstituted Olefins through Ni-Catalyzed Direct Activation of Alkenyl C-O of Substituted Alkenyl Acetates / C.-L. Sun, Y. Wang, X. Zhou, Z.-H. Wu, B.-J. Li, B.-T. Guan, Z.-J. Shi // Chem. Eur. J. – 2010. – V. 16, I. 20. – P. 5844 – 5847.

- 190. Rao, P. N. Synthesis and antimitotic activity of novel 2-methoxyestradiol analogs. Part III / P. N. Rao, J. W. Cessac, J. W. Boyd, A. D. Hanson, J. Shah // Steroids – 2008. – V. 73, I. 2. – P. 171-183.
- 191. Rouillard, F. Chemical Synthesis of (S)-spiro(estradiol-17,2'-[1,4]oxazinan)-6'one Derivatives Bearing Two Levels of Molecular Diversity / F. Rouillard, J. Roy, D. Poirier // Eur. J. Org. Chem. – 2008. – I. 14. – P. 2446–2453.
- 192. Romero-Hernández, L. L. Synthesis of unprecedented steroidal spiro heterocycles as potential antiproliferative drugs / L. L. Romero-Hernández, P. Merino-Montiel, S. Meza-Reyes, J. L. Vega-Baez, Ó. López, J. M. Padrón, S. Montiel-Smith // Eur. J. Med. Chem. – 2018. – V. 143. – P. 21-32.
- 193. Isaacs, A. K. Studies Directed toward the Elucidation of the Pharmacophore of Steroid-Based Sonic Hedgehog Signaling Inhibitors / A. K. Isaacs, C. Xiang, V. Baubet, N. Dahmane, J. D. Winkler // Org. Lett. – 2011. – V. 13, I. 19. – P. 5140-5143.
- 194. Leese, M. P. Structure-Activity Relationships of C-17 Cyano-Substituted Estratrienes as Anticancer Agents / M. P. Leese, F. L. Jourdan, K. Gaukroger, M. F. Mahon, S. P. Newman, P. A. Foster, C. Stengel, S. Regis-Lydi, E. Ferrandis, A. Di Fiore, G. De Simone, C. T. Supuran, A. Purohit, M. J. Reed, B. V. L. Potter // J. Med. Chem. – 2008. – V. 51, I. 5. – P. 1295-1308.
- 195. Jourdan, F. Synthesis, Antitubulin, and Antiproliferative SAR of Analogues of 2-Methoxyestradiol-3,17-O,O-bis-sulfamate / F. Jourdan, M. P. Leese, W. Dohle, E. Hamel, E. Ferrandis, S. P. Newman, A. Purohit, Mi.l J. Reed, B. V. L. Potter // J. Med. Chem. – 2010. – V. 53, I. 7. – P. 2942-2951.
- 196. Kopel, L. C. Synthesis of novel estrone analogs by incorporation of thiophenols via conjugate addition to an enone side chain / L. C. Kopel, M. S. Ahmed, F. T. Halaweish // Steroids – 2013. – V. 78, I. 11. – P. 1119-1125.
- 197. Pat. WO 2004085459 A1. Oestrogen derivatives as inhibitors of steroid sulphatase / M. Leese, A. Purohit, M. J. Reed, S. P. Newman, S. K. Chander, F. Jourdan, B. V. L. Potter. – Pub. 2004. – 170 pp.
- 198. Thiemann, T. Areno-annelated estra-1,3,5(10),6,8,11,14,16-octaenes / T. Thiemann, M. Watanabe, S. Mataka // New J. Chem. – 2001. – V. 25, I. 9. – P. 1104-1107.
- 199. Baji, Á. Microwave-assisted one-pot synthesis of steroid–quinoline hybrids and an evaluation of their antiproliferative activities on gynecological cancer cell lines / Á. Baji, A. Gyovai, J. Wölfling, R. Minorics, I. Ocsovszki, I. Zupkó, É. Frank // RSC Adv. – 2016. – V. 6, I. 33. – P. 27501–27516.

- 200. Volkova, Y. A. Access to steroidal pyridazines via modified thiohydrazides / Y. A. Volkova, Y. S. Antonov, A. V. Komkov, A. M. Scherbakov, A. S. Shashkov, L. G. Menchikov, E. I. Chernoburova, I. V. Zavarzin // RSC Adv. 2016. V. 6, I. 49. P. 42863–42868.
- 201. Watanabe, M. Benzothieno and benzofurano annelated estranes / M. Watanabe, S. Mataka, T. Thiemann // Steroids 2005. V. 70, I. 13. P. 856–866.
- 202. Gogoi, J. Microwave-assisted Pd-catalyzed synthesis of fused steroidal and non-steroidal pyrimidines from β-halo-α,β-unsaturated aldehydes / J. Gogoi, P. Gogoi, P. Bezbaruah, R. C. Boruah // Tetrahedron Lett. 2013. V. 54, I. 52. P. 7136–7139.
- 203. Kaishap, P. P. A facile synthesis of benzo[b][1,4]thiazepine derivatives by palladium acetate catalyzed reaction / P. P. Kaishap, K. Shekarrao, P. Saikia, S. Gogoi, R. C. Boruah // Tetrahedron Lett. 2014. V. 55, I. 11. P. 1927–1930.
- 204. Gogoi, J. One-Pot Stereoselective Synthesis of (Z)- β -Ketoenamides from β -Halo α , β -Unsaturated Aldehydes / J. Gogoi, P. Gogoi, R. C. Boruah // Eur. J. Org. Chem. 2014. I. 16. P. 3483–3490.
- 205. Arichi, N. Synthesis of steroidal derivatives bearing a small ring using a catalytic [2+2] cycloaddition and a ring-contraction rearrangement / N. Arichi, K. Hata, Y. Takemoto, K.-ichi Yamada, Y. Yamaoka, K. Takasu // Tetrahedron – 2015. – V. 71, I. 2. – P. 233-244.
- 206. Arichi, N. Synthesis and biological evaluation of steroidal derivatives bearing a small ring as vitamin D receptor agonists / N. Arichi, S. Fujiwara, M. Ishizawa, M. Makishima, D. H.Hua, K.-ichi Yamada, Y. Yamaoka, K. Takasu // Bioorg. Med. Chem. Lett. 2017. V. 27, I. 15. P. 3408–3411.
- 207. Fager-Jokela, E. Development of intermolecular additive free Pauson–Khand reactions for estrone E-ring extension using microwaves / E. Fager-Jokela, E. Kaasalainen, K. Leppänen, J. Tois, J. Helaja // Tetrahedron – 2008. – V. 64, I. 45. – P. 10381–10387.
- 208. Kaasalainen, E. E-Ring extended estrone derivatives: introduction of 2phenylcyclopentenone to the estrone D-ring via an intermolecular Pauson–Khand reaction / E. Kaasalainen, J. Tois, L. Russo, K. Rissanen, J. Helaja // Tetrahedron Lett. – 2006. – V. 47, I. 32. – P. 5669–5672.
- 209. Kuhl, A. Preparation of 17β-(Hydroxymethyl)-3-methoxyestra-1,3,5(10)- trien-18-oic Acid 18,20-Lactone, a New C(18)-Oxygenated Steroid / A. Kuhl, W. Kreiser // Helv. Chim. Acta 1998. V. 81, I. 12. P. 2264-2269.

- 210. Hajnal, A. One-Step Conversion of Oxetane-Fused to 1,3-Oxazine-Fused Steroids / A. Hajnal, J. Wölfling, G. Schneider // Collect. Czech. Chem. Commun. – 1998.
 - V. 63, I. 10. – P. 1613-1622.
- 211. Zhang, L.-S. Direct Borylation of Primary C-H Bonds in Functionalized Molecules by Palladium Catalysis / L.-S. Zhang, G. Chen, X. Wang, Q.-Y. Guo, X.-S. Zhang, F. Pan, K. Chen, Z.-J. Shi // Angew. Chem. Int. Ed. – 2014. – V. 53, I. 15. – P. 3899–3903.
- 212. Liu, H. New Methylene Homologation Method for Cyclic Ketones / H. Liu, C. Sun, N.-K. Lee, R. F. Henry, D. Lee // Chem. Eur. J. 2012. –V. 18, I. 38. P. 11889-11893.
- 213. Cadu, A. One-Pot Synthesis of Keto Thioethers by Palladium/Gold-Catalyzed Click and Pinacol Reactions / A. Cadu, R. A. Watile, S. Biswas, A. Orthaber, P. J. R. Sjöberg, J. S. M. Samec // Org. Lett. – 2014. – V. 16, I. 21. – P. 5556–5559.
- 214. Trafalis, D. Synthesis and evaluation of new steroidal lactam conjugates with aniline mustards as potential antileukemic therapeutics / D. Trafalis, E. Geromichalou, P. Dalezis, N. Nikoleousakos, V. Sarli // Steroids 2016. V. 115. P. 1-8.
- 215. Magyar, A. Synthesis of N-[2-(2-pyridyl)ethyl]-17a-aza-d-homosteroids and their biomimetic copper-mediated ligand hydroxylations with molecular oxygen / A. Magyar, B. Schönecker, J. Wölfling, G. Schneider, W. Günther, H. Görls// Tetrahedron Asymmetry 2003. V. 14, I. 13. P. 1925–1934.
- 216. Fischer, D. S. D-Ring Modified Estrone Derivatives as Novel Potent Inhibitors of Steroid Sulfatase / D. S. Fischer, L. W. L. Woo, M. F. Mahon, A. Purohit, M. J. Reed, B. V. L. Potter // Bioorg. Med. Chem. – 2003. – V. 11, I. 8. – P. 1685– 1700.
- 217. Olmstead, K. K. 1,2-Hydrogen shifts in thermal and photic Bamford-Stevens reactions of cyclohexanones. Activation by an endocyclic oxygen / K. K. Olmstead, A. Nickon // Tetrahedron – 1998. – V. 54, I. 40. – P. 12161-12172.
- 218. Schönecker, B. Conformational Design for 13α-Steroids / B. Schönecker, C. Lange, M. Kötteritzsch, W. Günther, J. Weston, E. Anders, H. Görls // J. Org. Chem. 2000. V. 65, I. 18. –P. 5487-5497.
- 219. Mernyák, E. Addition reactions at the 16(17) double bond of 3-methoxy-13αestra-1,3,5(10),16-tetraene / E. Mernyák, B. Schönecker, C. Lange, M. Kötteritzsch, H. Görls, J. Wölfling, G. Schneider // Steroids – 2003. – V. 68, I. 3. – P. 289–295.
- 220. Mernyák, E. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro

antiproliferative activities / E. Mernyák, I. Kovács, R. Minorics, P. Sere, D. Czégány, I. Sinka, J. Wölfling, G. Schneider, Z. Újfaludi, I. Boros, I. Ocsovszki, M.Varga, I. Zupkó // J. Steroid Biochem. Mol. Biol. – 2015. – V. 150. – P. 123–134.

- 221. Schwarz, S. Synthesis and conformation of four 16,17-diols in the 3-methoxy-13α-estra-1,3,5(10)-triene series / S. Schwarz, B. Schönecker, K. Fritsche, A. Poser, C. Lange, W. Günther, S. Göttke, H. Görls, S. Bäsler // Steroids 2003. V. 68, I. 2. P. 113–123.
- Wölfling, J. Stereoselective halogenation of the 16-hydroxymethyl-3-methoxy-13α-estra-1,3,5(10)-trien-17-ols and their solvolytic investigation / J. Wölfling, E. Mernyák, P. Forgó, G. Schneider // Steroids – 2003. – V. 68, I. 5. – P. 451–458.
- 223. Maltais, R. Impact of structural modifications at positions 13, 16 and 17 of 16β-(m-carbamoylbenzyl)-estradiol on 17β-hydroxysteroid dehydrogenase type 1 inhibition and estrogenic activity / R. Maltais, A. Trottier, X. Barbeau, P. Lagüe, M. Perreault, J.-F. Thériault, S.-X. Lin, D. Poirier // J. Steroid Biochem. Mol. Biol. – 2016. – V. 161. – P. 24–35.
- 224. Shagufta. Synthetic studies towards steroid-amino acid hybrids / Shagufta, R. Singh, G. Panda // Ind. J. Chem. Sect. B. 2009. V. 48B, I. 7. P. 989-995.
- 225. Kuhl, A. New Synthesis of 18-Norestradiol / A. Kuhl, H. Karels, W. Kreiser // Helv. Chim. Acta – 1999. – V. 82, I. 1. – P. 30-34.
- 226. Pat. US 6958327 B1. 18-Norsteroids as selectively active estrogens / A. Hillish, W. Boidol, W. Schwede, P. Esperling, G. Sauer, C. Hegele-Hartung, U. Kollenkirchen, K.-H. Fritzemeier. Pub. 2005. 19 pp.
- Wölfling, J. Synthesis and receptor-binding examinations of the normal and 13-epi-D-homoestrones and their 3-methyl ethers / J. Wölfling, E. Mernyák, É.Frank, G. Falkay, Á. Márki, R. Minorics, G. Schneider // Steroids 2003. V. 68, I. 3. P. 277–288.
- 228. Jackman, M. M. Synthesis of Functionalized Nitriles by Microwave-Promoted Fragmentations of Cyclic Iminyl Radicals / M. M. Jackman, S. Im, S. R. Bohman, C. C. L. Lo, A. L. Garrity, S. L. Castle // Chem. Eur. J. – 2018. – V. 24, I. 3. – P. 594 – 598.
- 229. Dauncey, E. M. Photoinduced Remote Functionalisations by Iminyl Radical Promoted C-C and C-H Bond Cleavage Cascades / E. M. Dauncey, S. P. Morcillo, J. J. Douglas, N. S. Sheikh, D. Leonori // Angew. Chem. Int. Ed. – 2018. – V. 57, I. 3. – P. 744 –748.

- 230. Mernyák, E. Synthesis and stereochemical investigations of novel nitrogencontaining 13α-estrone derivatives / E. Mernyák, G. Schneider, R. Herbst-Irmer, M. Kubas, J. Wölfling // Steroids – 2006. – V. 71, I. 7. – P. 558–564.
- 231. Mernyák, E. Electrophile-induced generation of cyclic azomethine imines from steroidal δ-alkenyl hydrazones / E. Mernyák, L. Márk, É. Frank, G. Schneider, J. Wölfling // Steroids – 2009. – V. 74, I. 4-5. – P. 474–482.
- 232. Mernyák, E. Syntheses and antiproliferative effects of d-homo- and dsecoestrones / E. Mernyák, J. Szabó, I. Bacsa, J. Huber, G. Schneider, R. Minorics, N. Bózsity, I. Zupkó, M. Varga, Z. Bikádi, E. Hazai, J. Wölfling // Steroids – 2014. – V. 87. – P. 128-136.
- 233. Mernyák, E. Synthesis and in vitro antiproliferative evaluation of d-secooxime derivatives of 13β- and 13α-estrone / E. Mernyák, G. Fiser, J. Szabó, B. Bodnár, G. Schneider, I. Kovács, I. Ocsovszki, I. Zupkó, J. Wölfling // Steroids 2014. V. 89. P. 47–55.
- 234. Wölfling, J. Synthesis of Azasteroids and d-Homosteroids by Intramolecular Cyclization Reactions of Steroid Arylimines / J. Wölfling, É. Frank, G. Schneider, M. T. Bes, L. F. Tietze // Synlett – 1998. – No. 11. – P. 1205-1206.
- 235. Frank, É. Stereoselective approach to some novel 16-methylated and 16halomethylated tetrahydropyran and δ-lactone derivatives in both the normal and the 13α-estrone series / É. Frank, E. Mernyák, J. Wölfling, G. Schneider // Synlett - 2002. – No. 11. – P. 1803–1806.
- 236. Tietze, L. F. Novel Medium Ring Sized Estradiol Derivatives by Intramolecular Heck Reactions / L. F. Tietze, K. M. Sommer, G. Schneider, P. Tapolcsányi, J. Wölfling, P. Müller, M. Noltemeyer, H. Terlaud // Synlett – 2003. – No. 10. – P. 1494–1496.
- 237. Mernyák, E. Stereoselective Synthesis of Condensed Aza-d-homo-estrone Derivatives by 1,3-Dipolar Cycloaddition / E. Mernyák, G. Benedek, G. Schneider, J. Wölfling // Synlett – 2005. – No. 4. – P. 0637-0639.
- 238. Frank, É. Stereoselective synthesis of some novel heterocyclic estrone derivatives by intramolecular 1,3-dipolar cycloaddition / É. Frank, J. Wölfling, B. Aukszi, V. König, T. R. Schneider, G. Schneider // Tetrahedron – 2002. – V. 58, I. 34. – P. 6843–6849.
- 239. Tietze, L. F. A Novel Approach in Drug Discovery: Synthesis of Estrone-Talaromycin Natural Product Hybrids / L. F. Tietze, G. Schneider, J. Wölfling, A. Fecher, T. Nöbel, S. Petersen, I. Schuberth, C. Wulff // Chem. Eur. J. – 2000. – V. 6, I. 20. – P. 3755-3760.

- 240. Frank, É. Intramolecular Hydro-N-alkylation of Hydrazones and Oxime Ethers: Synthesis of Novel D-Secoestrone Isoquinuclidines via Domino 1,5-Hydride Shift/Cyclization / É. Frank, G. Schneider, Z. Kádár, J. Wölfling // Eur. J. Org. Chem. – 2009. – I. 21. – P. 3544-3553.
- 241. Sakač, M. N. An intramolecular one-pot synthesis of steroidal triazoles via 1,3-dipolar cycloadditions of in situ generated diazo compounds / M. N. Sakač, A. R.Gaković, J. J.Csanádi, E. A. Djurendić, O. Klisurić, V. Kojić, G. Bogdanović, K. M. Penov Gaši // Tetrahedron Lett. 2009. V. 50, I. 28. P. 4107–4109.
- 242. Ekholm, F. S. Synthesis of a Small Library of Estradiol Based Glycosteroid Mimics Containing a Modified D - Ring / F. S. Ekholm, G. Schneider, J. Wölfling, R. Leino // Eur. J. Org. Chem. – 2011. – I. 6. – P. 1064–1077.
- 243. Penov-Gaši, K. M. Selective antitumour activity and ERα molecular docking studies of newly synthesized D-homo fused steroidal tetrazoles / K. M. Penov-Gaši, A. M. Oklješa, E. T. Petri, A. S. Ćelić, E. A. Djurendić, O. R. Klisurić, J. J. Csanadi, G. Batta, A. R. Nikolić, D. S. Jakimov, M. N. Sakač // MedChemComm - 2013. – V. 4, I. 2. – P. 317-323.
- 244. Pike, A. C.W. Lessons learnt from structural studies of the oestrogen receptor / A. C.W. Pike // Best Pract. Res. Clin. Endocrinol. Metab. – 2006. – V. 20, I. 1. – P. 1-14.
- 245. Croxtall, J. D. Fulvestrant. A Review of its Use in the Management of Hormone Receptor-Positive Metastatic Breast Cancer in Postmenopausal Women / J. D. Croxtall, K. McKeage // Drugs – 2011. – V. 71, I. 3. – P. 363-380.
- 246. Characterization of New Estrogen Receptor Destabilizing Compounds: Effects on Estrogen-Sensitive and Tamoxifen-Resistant Breast Cancer / J. Hoffmann, R. Bohlmann, N. Heinrich, H. Hofmeister, J. Kroll, H. Künzer, R. B. Lichtner, Y. Nishino, K. Parczyk, G. Sauer, H. Gieschen, H.-F. Ulbrich, M. R. Schneider // J. Natl. Cancer Inst. – 2004. – V. 96, I. 3. – P. 210-218.
- 247. Hoffman, K. L. The terminal substituents of 7α, 6-hexanyl derivatives of estradiol determine their selective estrogen receptor modulator versus agonist activities / K. L. Hoffman, E. A. Foster, C. L. Smith // Steroids 2012. V. 77, I. 5. P. 496–503.
- 248. Yamamoto, Y. Both N- and C-terminal transactivation functions of DNA-bound ERα are blocked by a novel synthetic estrogen ligand / Y. Yamamoto, O. Wada, I. Takada, Y. Yogiashi, J. Shibata, J. Yanagisawa, K. Kitazato, S. Kato // Biochem. Biophys. Res. Commun. 2003. V. 312, I. 3. P. 656–662.

- 249. Kamernitsky, A. V. Pregna-D'-pentaranes, Progestins and Antiprogestins / A. V. Kamernitsky, I. S. Levina // Russ. J. Bioorg. Chem. 2005. V. 31, I. 2. P. 105-118; V. 31, I. 3. P. 199-209.
- 250. Burn, D. 16α-Methyl-19-norpregn-4-ene- and -5(10)-ene-3,20-diones / D. Burn, V. Petrow // J. Chem. Soc. 1962. I. 0. P. 364-366.
- 251. Lökös, M. 48. Synthesis of 16a-ethyl-21- hydroxy-19-norpregn-4-ene-3,20-dione from 17-substituted 3-methoxyestradiols / M. Lökös, T. Bakos, I. Vincze. // Steroids – 1993. – V. 58, I. 4. – P. 185-189.
- 252. Schulster, D. Synthesis of 3-hydroxy-19-nor[21-¹⁴C]pregna-1,3,5(10)-trien-20-one from [¹⁴C]methyl iodide / D. Schulster, J. Whitehead, A. Kellie // Biochem. J. 1964. V. 93, I. 3. P. 512-514.
- Федорова, О. И. Реакция гидратации 17-замещенных 19-норстероидов / О. И. Федорова, Г. С. Гриненко // Хим. - фарм. ж. – 1978. – Т. 12, № 1. – С. 112-113.
- 254. García-Álvarez, J. Synthesis and Reactivity of New Rhenium(I) Complexes Containing Iminophosphorane-Phosphine Ligands: Application to the Catalytic Isomerization of Propargylic Alcohols in Ionic Liquids / J. García-Álvarez, J. Díez, J. Gimeno, C. M. Seifried, C. Vidal // Inorg. Chem. – 2013. – V. 52, I. 9. – P. 5428-5437.
- 255. Kurosu, M. Reaction of methylcerium reagent with tertiary amides: Synthesis of saturated and unsaturated ketones from tertiary amides / M. Kurosu, Y. Kishi // Tetrahedron Lett. – 1998. – V. 39, I. 27. – P. 4793-4796.
- 256. Schweder, B. Δ^{16} -20-Ketosteroide durch C₂-Verlängerung aus Δ^{16} -17substituierten Steroiden / B. Schweder, E. Uhlig, M. Döring, D. Kosemund // J. Prakt. Chemie/Chem.-Z. – 1993. – B. 335, A. 5. – S. 439-444.
- 257. Van Leusen, D. A novel method to build acetyl and hydroxyacetyl side-chains in 17-oxosteroids / D. van Leusen, A. M. van Leusen // Tetrahedron Lett. 1984. V. 25, I. 24. P. 2581-2584.
- 258. Stoelwinder, J. Chemistry of N,P-acetals: application to the synthesis of 20ketosteroids / J. Stoelwinder, W. Van Zoest, A. M. van Leusen // J. Org. Chem. – 1992. – V. 57, I. 8. – P. 2249-2252.
- 259. Goldberg, M. W. Über Steroide und Sexualhormone. (Mitteilung). D-Homooestron / M. W. Goldberg, S. Studer // Helv. Chim. Acta – 1941. – V. 24, I. 1. – P. 478-482.
- 260. Velluz, L. Méthylcétones apparentées à l'œstrone, par MM / L. Velluz; S. Müller // Bull. Soc. Chim. France 1950. V. 17, No. 1-2. P. 166-168.

- Birch, A. J. Hydroaromatic steroid hormones. IV. (+)-19-Nor-D-Homotestosterone / A. J. Birch, R. J. Harrisson // Aust. J. Chem. – 1955. – V. 8, I. 4. – P. 519-522.
- 262. Baldwin, J. E. Photochemical Transformations. Part XX1V. The Synthesis of 18-Hydroxyoestrone / J. E. Baldwin, D. H. R. Barton, I. Dainis, J. L. C. Pereira // J. Chem. Soc. Perkin trans. 1. - 1968. – V. 18. – P. 2283-2289.
- 263. El Garrouj, D. Steroidal Affinity Labels of the Estrogen Receptor. 2. 17.alpha.-[(Haloacetamido)alkyl]estradiols / D. el Garrouj, S. Aliau, A. Aumelas, J. L. Borgna // J. Med. Chem. – 1995. – V. 38, I. 13. – P. 2339-2348.
- 264. Ercoli, A. An Improved Method of Preparing Testosterone, Dihydrotestosterone and Some of their Esters / A. Ercoli, P. de Ruggieri // J. Am. Chem. Soc. 1953. V. 75, I. 3. P. 650-653.
- 265. McGuire, M. A. A Novel, Practical Synthesis of Estra-1,3,5(10)-triene-3,17βdicarboxylic Acid 17-tert-Butylamide (SK&F 105656) from Estrone, via a Palladium-Catalyzed Methoxycarbonylation of a 3-Fluorosulfonate / M. A. McGuire, E. Sorenson, F. W. Owings, T. M. Resnick, M. Fox, N. H. Baine // J. Org. Chem. – 1994. – V. 59, I. 22. – P. 6683-6686.
- 266. Golinski, M. Addition of tert-butyldimethyl- or tert-butyldiphenylsilyl cyanide to hindered ketones / M. Golinski, C. P. Brock, D. S. Watt // J. Org. Chem. – 1993. V. 58, I. 1. – P. 159-164.
- 267. Peters, R. H. 17-Desoxy estrogen analogs / R. H. Peters, D. F. Crowe, M. A. Avery, W. K. M. Chong, M. Tanabe // J. Med. Chem. 1989. V. 32, I. 7. P. 1642-1652.
- 268. Pat. DD 240545 A1. Verfahren zur Herstellung von delta noch 16-17-cyanosteroiden / H. Kasch, G. Bertram. – Pub. 1986. – 5 pp.
- 269. Kamernitzky, A. V. Lewissäure-katalysierte Diels-Alder-Reaktionen von 17-Acetyl-estra-1,3,5(10),16-tetraenen mit 1,3-Dienen / A. V. Kamernitzky, I. S. Levina, H. Kasch // Z. Chem. – 1986. – V. 26, I. 10. – P. 374-375.
- 270. Tietze, L. F. Synthesis of new 16-spirosteroids / L. F. Tietze, J. Wölfling, G. Schneider, M. Noltemeyer // Steroids 1994. V. 59, I. 5. P. 305-309.
- 271. Siemann, H.-J. A novel synthesis of 14,15-methylene estradiol (J 824) / H.-J. Siemann, P. Droescher, B. Undeutsch, S. Schwarz // Steroids 1995. V. 60, I. 4. P. 308-315.
- 272. Levina, I. S. Catalysis by Lewis acids at high pressure as a method of involving hindered steroid dienophiles in the Diels-Alder reaction / I. S. Levina, L. E. Kulikova, A. V. Kamernitskii, B. S. El'yanov, E. M. Gonikberg // Russ. Chem. Bull. 1992. V. 41, I. 7. P. 1253-1257.

- 273. Reid, G. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling / G. Reid, M. R. Hubner, R. Metivier, H. Brand, S. Denger, D. Manu, J. Beaudouin, J. Ellenberg, F. Gannon // Mol. Cell – 2003. – V. 11, I. 3. – P. 695-707.
- 274. Anstead, G. M. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site / G. M. Anstead, K. E. Carlson, J. A. Katzenellenbogen // Steroids – 1997. – V. 62, I. 3. – P. 268–303.
- 275. Jordan, V. C. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. Receptor interactions / V. C. Jordan // J. Med. Chem – 2003. – V. 46, I. 6. – P. 883-908.
- 276. Nilsson, S. Development of subtype-selective oestrogen receptor-based therapeutics / S. Nilsson, K. F. Koehler, J.-Å. Gustafsson // Nat. Rev. Drug Discov. 2011. V. 10. P. 778-792.
- 277. Warnmark, A. Interaction of Transcriptional Intermediary Factor 2 Nuclear Receptor Box Peptides with the Coactivator Binding Site of Estrogen Receptor Alpha / A. Warnmark, E. Treuter, J.-Å. Gustafsson, R. E. Hubbard, A. M. Brzozowski, A.C.W. Pike // J. Biol. Chem. – 2002. – V. 277. – P. 21862-21868 (pdb: 1GWQ).
- 278. Shiau, A. K. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen / A. K. Shiau, D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner, D. A. Agard, G. L. Greene // Cell – 1998. – V. 95, I. 7. – P. 927-937 (pdb: 3Ert).
- 279. Heldring, N. Structural Insights Into Corepressor Recognition by Antagonist-Bound Estrogen Receptors / N. Heldring, T. Pawson, D. Mcdonnell, E. Treuter, J.-Å. Gustafsson, A.C.W. Pike // J. Biol. Chem. – 2007. – V. 282. - P. 10449-10455 (pdb: 2JF9).
- 280. Trott, O. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading / O. Trott, A. J. Olson // J. Comput. Chem. 2010. V. 31, I. 2. P. 455-461.
- 281. Gangloff, M. Crystal Structure of a Mutant hERα Ligand-binding Domain Reveals Key Structural Features for the Mechanism of Partial Agonism / M. Gangloff, M. Ruff, S. Eiler, S. Duclaud, J. M. Wurtz, D. Moras // J. Biol. Chem. - 2001. - V. 276. - P. 15059-15065 (pdb 1QKU)
- 282. Pat. DD 251143 A1. Ponsold, K. Verfahren zur herstellung von 16alpha,17alphacyclohexano-17beta-acetyl-gon-4-en-3-onen / K. Ponsold, H. Kasch, A. Kurischko, W. Stölzner, A. Kamernitzki, I. Levina, G. Nikitina, W. Korchow. – Pub. 1987. – 6 ss.

- 283. Burn, D. 802. Modified steroid hormones. Part XXX. Some 16α,17αmethylenepregnen-20-ones and derived compounds / D. Burn, J. W. Ducker, B. Ellis, F. K. Hiscock, A. P. Leftwick, C. M. Peach, V. Petrow, D. M. Williamson // J. Chem. Soc. – 1963. – I. 0. – P. 4242-4248.
- 284. Djerassi, C. Steroids. XII.¹ Aromatization Experiments in the Progesterone Series²/C. Djerassi, G. Rosenkranz, J. Iriarte, J. Berlin, J. Romo // J. Am. Chem. Soc. – 1951. – V. 73, I. 4. – P. 1523-1526.
- 285. Kočovsky, P. Stereoelectronically Controlled, Thallium(III)-Mediated C-19 Degradation of 19-Hydroxy Steroids. An Expedient Route to Estrone and its Congeners via 19-Nor-10.beta.-hydroxy Intermediates / P. Kočovsky, R. S. Baines // J. Org. Chem. – 1994. – V. 59, I. 18. – P. 5439-5444.
- 286. Schulster, D. C₂₀ steroids. The metabolism of 3-hydroxy-19-nor[21-¹⁴C]pregna-1,3,5(10)-trien-20-one in the rabbit / D. Schulster, A. E. Kellie // Biochem. J. – 1967. – V. 103, I. 3. – P. 759-776.
- 287. Zharov, A. A. Kinetics and mechanism for synthesis of iodo-containing telomeres and block copolymers at high pressures / A. A. Zharov, I. N. Guzyaeva // Russ. Chem. Bull. – 2014. – V. 63, I. 2. – P. 355-359.
- 288. Iselt, M. The tetrazolium dye assay for rapid in vitro assessment of cytotoxicity / M. Iselt, W. Holtei, P. Hilgard // Arzneimittel-Forschung – 1989. – V. 39. – P. 747-749.
- 289. Scherbakov, A. M. Oestrogen treatment enhances the sensitivity of hormoneresistant breast cancer cells to doxorubicin / A. M. Scherbakov, Y. S. Lobanova, O. E. Andreeva, V. A. Shatskaya, M. A. Krasil'nikov // Biosci. Rep. – 2011. – Vol. 31, I. 2. – P. 137-143.
- 290. MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016).
- 291. Stewart, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters / J. J. P. Stewart // J. Mol. Model. – 2013. – V. 19, I. 1. – P. 1-32.
- 292. Morris, G. M. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility / G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson // J. Comput. Chem. – 2009. – V. 30, I. 16. – P. 2785-2791.