ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д.ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН)

На правах рукописи

Alingt

ЛАРИН

Александр Александрович

ДИЗАЙН НОВЫХ ФАРМАКОЛОГИЧЕСКИ ОРИЕНТИРОВАННЫХ И ЭНЕРГОЕМКИХ ПРОИЗВОДНЫХ ФУРОКСАНА

02.00.03 – Органическая химия

Диссертация на соискание ученой степени

кандидата химических наук

Научный руководитель:

Профессор, д.х.н. Махова Н.Н.

Москва - 2019

оглавление

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ4
ВВЕДЕНИЕ
1. ЛИТЕРАТУРНЫЙ ОБЗОР9
1.1.Методы синтеза нитрофуроксанов10
1.1.Окисление аминофуроксанов до нитрофуроксанов10
1.1.2. Синтез динитрофуроксана циклодимеризацией нитроформонитрилоксида15
1.1.3.Синтез нитрофуроксанов окислением нитроглиоксимов17
1.1.4.Синтез нитрофуроксанов на основе домино-реакций алкенов с нитрозирующими реагентами
1.1.5.Дегидратация α-нитрооксимов
1.1.6. Нитрозирование солей 2-замещенных 2-гидроксимино-1,1-динитроэтанов21
1.1.7.Другие методы синтеза нитрофуроксанов
1.2.Методы синтеза азо- и азоксифуроксанов24
1.2.1.Методы синтеза азофуроксанов
1.2.1.1.Окисление 3(4)-аминофуроксанов перманганатом калия
1.2.1.2. Диазотирование аминофуроксанов с последующим азосочетанием с ароматическими соединениями
1.2.2. Методы синтеза азоксифуроксанов27
1.2.2.1.Окислительная трансформация амино- и азофуроксанов
1.2.2.2. Реакция Ковачича аминофуроксанов с псевдонитролами
1.3.Методы синтеза фуроксанов с эксплозофорными ONO ₂ , N ₃ и CN –группами30
1.3.1.Методы синтеза фуроксанов с ONO2-заместителем
1.3.2.Методы синтеза фуроксанов с N ₃ -заместителем32
1.3.3.Методы синтеза цианофуроксанов
1.4.Методы синтеза аннелированных производных фуроксана
1.4.1. Методы синтеза бензофуроксанов

1.4.2. Гетероаннелированных производных фуроксана
1.4.2.1. Методы синтеза аннелированных пиридазинофуроксанов45
1.4.2.2.Синтез фуроксано[3,4- <i>b</i>]пиразинов46
1.5. Методы синтеза гибридных структур содержащих фуроксановый и другие энергоемкие азотсодержащие гетероциклы
1.5.1. Методы синтеза гибридных структур, содержащих фуроксановый и фуразановый гетероциклы
1.5.2. Методы синтеза гибридных структур, содержащих фуроксановый и другие азотсодержащие гетероциклы, связанные С-С связью
1.5.2.1. Методы синтеза имидазолилфуроксанов
1.5.2.2. Методы синтеза 1,2,4-триазолилфуроксанов55
1.5.2.3. Методы синтеза (1,2,3-триазол-1-ил)фуроксанов
1.5.2.4. Методы синтеза тетразолилфуроксанов
1.6. Методы синтеза высокоэнергетических солей различных производных фуроксана58
1.6.1. Высокоэнергетические соли тетразолилфуроксанов
1.6.2. Высокоэнергетические соли нитроамино- и динитрометил-фуроксанов61
1.6.3. Энергетические соли динитрометилфуроксанов
2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
2.1. Синтез фармакологически ориентированных гетарилфуроксанов
2.1.1. Разработка методов синтеза производных (1,2,4-триазин-3-ил)- и пиридилфуроксанов
2.1.2. Синтез гибридных гетероциклических структур, объединяющих фуроксановый цикл с изоксазольным-, изоксазолинильным- и 1,2,4-оксадиазольным структурными фрагментами
2.1.3. Разработка методов синтеза производных 1,2,3-триазолилфуроксанов83
2.2. Синтез энергоемких производных гетарилфуроксанов
2.2.1. Синтез бифуроксанильных структур, содержащих 3-нитрофуроксанильный фрагмент
2.2.2. Синтез 4,4'-динитроамино-3,3'-диазенофуроксана

2.3.Исследование цитотоксической активности синтезированных гетарилфуроксанов..102

2.3.1.Оценка	NO-донорной	способности	гетарилфуроксанов	c	высокой
цитотоксической					
активностью				• • • • • •	105

3.1. Синтез фармакологически ориентированных гетарилфуроксанов......111

3.1.1. Синтез производных (1,2,4-триазин-3-ил)- и пиридилфуроксанов......111

3.1.2. Синтез гибридных гетероциклических структур, объединяющих
фуроксановый цикл с изоксазольным-, изоксазолинильным- и 1,2,4-оксадиазольным
структурными фрагментами123
3.1.3. Синтез производных 1,2,3-триазолилфуроксанов129
3.2. Синтез энергоемких производных гетарилфуроксанов
3.2.1. Синтез бифуроксанильных структур, содержащих 3-нитрофуроксанильный фрагмент
3.2.2. Синтез 4,4'-динитроамино-3,3'-диазенофуроксана151
3.2.3. Синтез солей азидо- и азотетразолилфуроксанов с высокоазотными анионами
ВЫВОДЫ 155
БЛАГОДАРНОСТИ
СПИСОК ЛИТЕРАТУРЫ

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

Alk	алкил
Ar	арил
bmim	1-бутил-3-метилимидазолий
bmpyrr	1-бутил-1-метилпирролидиний
BNFF	3,4-бис(3-нитрофуразан-4-ил)фуроксан
BTDO	бензо[1,2,3,4]тетразин-1,3-диоксиды
CEM	сканирующая эмиссионная микроскопия
СРТ	камптотецин
CSD	Кембриджская структурная база данных
DAZIF	бис(азидофуразанил)фуроксан
DBI	диоромоизоцианурат
DBO	1,8-диазаоицикло[5.4.0]ундец-7-ен
DEAD	диэтилацетилендикарбоксилат
DNMNa	натриевая соль динитрометана
empyrr	1-метил-1-этилпирролидиний
ESI	электрораспылительная ионизация
H_2BTF	3,4-бистетразолилфуроксан
HMBC	гетероядерная корреляционная спектроскопия ЯМР для наблюдения дальних констант спин-спинового взаимодействия
HMX	1,3,5,7-тетранитро-1,3,5,7-тетразоцан
HNS	1,3,5-тринитро-2-[2-(2,4,6-тринитрофенил)этенил]бензол
HRMS	масс-спектрометрия высокого разрешения
HTNF	4-нитро-3-(тетразол-5-ил)фуроксан
mCPBA	м-хлорпербензойная кислота
PETN	пентаэритриттетранитрат
RDX	1,3,5-тринитро-1,3,5-триазациклогексан
TATB	1,3,5-триамино-2,4,6-тринитробензол
TEA	триэтиламин
TNT	тринитротолуол
ИК	инфракрасная спектроскопия
ДМСО	диметилсульфоксид
ДМФА	<i>N</i> , <i>N</i> -диметилформамид
PCA	рентгеноструктурный анализ
TCX	тонкослойная хроматография
ЯМР	ядерный магнитный резонанс

ВВЕДЕНИЕ

Актуальность темы. Одной из основных тенденций в современной химии гетероциклических соединений является дизайн и синтез гибридных молекулярных систем различной степени сложности, каждый из фрагментов которых обладает какойлибо практической полезностью. Методы формирования таких структур должны быть максимально эффективными и основаны на доступных и дешевых исходных соединениях при сокращении количества препаративных стадий за счет проведения реакций в *one-pot*варианте. Разработка малостадийных методов синтеза особенно востребована в дизайне новых лекарственных средств, а также высокоэнергетических соединений.

Объектами исследования в настоящей работе являются гетероциклические производные фуроксанов (1,2,5-оксадиазол-2-оксидов). Фуроксаны обладают уникальным комплексом свойств, позволяющим использовать их в дизайне так называемых «двойных технологий». С одной стороны, они являются привлекательными объектами для построения высокоэнергетических соединений благодаря положительной энтальпии образования и присутствию в молекуле двух активных атомов кислорода, а с другой стороны, они являются экзогенными донорами оксида азота - универсального регулятора клеточного метаболизма, который оказывает ключевое воздействие на разнообразные физиологические процессы в организме. Построение фармакологически активных гибридных систем, содержащих фуроксановый цикл – донор NO, в сочетании с различными известными фармакологически активными соединениями, является основным направлением исследования в химии фуроксанов за рубежом, в частности в Туринском университете в лаборатории профессора А. Гаско. С другой стороны, в последние годы как в ряде европейских стран (Франция, Германия), так и в США все шире развиваются исследования по конструированию энергоемких производных фуроксана. Поэтому разработка новых подходов к эффективной сборке гибридных структур, содержащих наряду с фуроксановым циклом фармакофорные или энергоемкие фрагменты, безусловно, является актуальной проблемой.

В связи с этим **целью** настоящей диссертационной работы является разработка эффективных *one-pot* методов синтеза и исследование свойств гибридных структур, содержащих фуроксановый цикл в комбинации с фармакофорными или энергоемкими азотсодержащими и азот-кислородными гетероциклами.

В процессе исследования предполагалось решить следующие основные задачи:

- 1. Разработать эффективные *one-pot* методы синтеза новых фармакологически ориентированных гибридных гетероциклических систем, содержащих наряду с фуроксановым циклом (NO-донор) различные фармакофорные гетероциклы.
- Разработать удобные *one-pot* методы синтеза новых энергоемких производных фуроксана – 3-нитробифуроксанильных структур, нитраминофуроксанов и энергоемких солей тетразолилфуроксанов, и оценить их физико-химические и энергетические характеристики.
- 3. Исследовать цитотоксическую активность и оценить NO-донорную способность синтезированных фармакологически ориентированных гетарилфуроксанов.

Научная новизна.

На основе тандемной реакции гетеро-Дильса-Альдера/ретро-Дильса-Альдера легко доступных производных (1,2,4-триазин-3-ил)фуроксанов с енамином ((1-(пирролидин-1-ил)циклогексеном) и норборнадиеном разработаны два простых, диастереоселективных *one-pot* метода синтеза гетарилфуроксанов, содержащих наряду с NO-донорным фуроксановым циклом тетрагидроизохинолиновый, пиридиновый, терпиридиновый и инденопиридиновый гетероциклы.

В результате исследования каскадного one-pot процесса: нитрование гидроксиминофуроксанов, термолиз образовавшихся нитроловых кислот до фуроксанилкарбонитрилоксидов [3+2]-циклоприсоединение ИХ К различным И диполярофилам – алкинам, алкенам и активированным нитрилам, разработан общий, простой и региоселективный способ получения изоксазолил-, изоксазолинил- и (1,2,4оксадиазол-3-ил)фуроксанов.

Исследование [3+2]-циклоприсоединения 4-азидо-3-арилфуроксанов к бензоилуксусному и хлорацетоуксусному эфирам при катализе ТЕА привело к разработке нового метода синтеза (1,2,3-триазол-1-ил)фуроксанов, а химическая трансформация хлорметильной и сложноэфирной групп существенно расширила круг функциональных производных этой гетероциклической системы.

На основе исследования каскада *one-pot* реакций – ацилирование натриевой соли динитрометана хлорангидридами фуроксанилгидроксамовых кислот, нитрозирование продукта ацилирования и внутримолекулярная циклизации продукта нитрозирования, разработан региоселективный метод синтеза ранее недоступных бифуроксанильных систем с 3-нитробифуроксанильным каркасом.

Практическая значимость

Разработаны простые и удобные *one-pot* методы синтеза серии фармакологически ориентированных гетарилфуроксанов, содержащих фуроксановый цикл (NO-донор) и различные фармакофорные гетероциклы: 1,2,4-триазиновый, тетрагидроизохинолиновый, пиридиновый, терпиридиновый, инденопиридиновый, изоксазольный, изоксазолиновый, 1,2,4-оксадиазольный и 1,2,3-триазольный гетероциклы.

Разработаны препаративные способы получения энергоемких производных фуроксана – 3-нитробифуроксанильные структуры и энергоемкие соли азидо- и 3азотетразолилфуроксанов с высокоазотными катионами. Среди нитробифуроксанильных соединений выявлены наиболее эффективные структуры, содержащие азидную, нитрильную и нитрогруппы у второго фуроксанового цикла. Оценены физико-химические И детонационные характеристики солей тетразолилфуроксанов с высокоазотными катионами И среди них выявлены перспективные высокоэнтальпийные соединения с удовлетворительными термической стабильностью и чувствительностью к механическим воздействиям.

Исследована цитотоксическая активность ряда синтезированных гетарилфуроксанов *in vitro* методом МТТ теста на пяти линиях клеток рака человека (A549, HCT116, HeLa, MCF7, RD) и выявлено, что хорошей цитотоксической активностью против всех исследованных линий раковых клеток обладают 4-амино-3-(инденотриазин-3-ил)фуроксан и нитробифуроксанилы. Разработан спестрофотометрический модуль для оценки способности генерировать оксид азота (NO). Выявлена корреляция между цитотоксической активностью и NO-донорной способностью наиболее эффективных структур.

На примере 4-амино-3-(инденотриазин-3-ил)фуроксана исследована апоптозиндуцирующая активность синтезированных гетарилфуроксанов и установлено, что это соединение является перспективным апоптоз-индуцирующим агентом, более эффективным, чем известный противораковый препарат камптотецин.

Публикации

По теме диссертационного исследования опубликовано 7 статей в ведущих отечественных и зарубежных журналах и 14 тезисов докладов на российских и международных конференциях.

Степень достоверности обеспечивается тем, что экспериментальные работы и спектральные исследования синтезированных соединений выполнены на современном сертифицированном оборудовании, обеспечивающем получение надежных данных.

Состав и структура соединений, обсуждаемых в диссертационной работе, подтверждены данными ЯМР ¹H, ¹³C, ¹⁴N, ¹⁵N и ИК-спектроскопии, масс-спектрометрии (высокого разрешения и под электронным ударом), рентгеноструктурного анализа и элементного анализа.

Личный вклад автора состоит в поиске, анализе и обобщении научной информации по известным способам синтеза различных производных гетарилфуроксанов. Соискатель самостоятельно выполнял описанные в диссертации химические эксперименты, а также самостоятельно проводил выделение и очистку конечных продуктов реакций. Диссертант устанавливал строение полученных соединений с помощью физико-химических и спектральных методов анализа, а также обрабатывал и интерпретировал полученные ЯМР - исследования синтезированных соединений проводились результаты. В лаборатории ядерного магнитного резонанса № 30 ФГБУН ИОХ РАН (к.х.н. М. И. Стручкова и к.х.н. Е.Д. Даева). Рентгеноструктурный анализ некоторых синтезированных соединений проводился в ФГБУН ИНЭОС РАН (к.х.н. И. В. Ананьев). Дифференциальнотермический анализ, дифференциальная сканирующая калориметрия, а также определение детонационных параметров (чувствительность к удару и трению) выполнялся Н. В. Муравьевым в ФГБУН ИХФ РАН в лаборатории энергетических материалов. Соискатель также осуществлял апробацию работ на конференциях и подготовку публикаций по выполненным исследованиям.

Структура работы. Диссертационная работа изложена на 176 страницах машинописного текста, включает 16 рисунков, 124 схемы и 13 таблиц. Состоит из введения, списка сокращений и условных обозначений, литературного обзора, обсуждения результатов, экспериментальной части, выводов и списка цитируемой литературы, включающего 196 источников.

1.ЛИТЕРАТУРНЫЙ ОБЗОР

Энергоемкие производные фуроксанов

Среди большого разнообразия азотсодержащих гетероциклов фуроксаны (1,2,5оксадиазол-2-оксиды) занимают особое место. С одной стороны, они являются привлекательными объектами для построения высокоэнергетических соединений, а с другой стороны, они являются экзогенными донорами оксида азота (NO) универсального регулятора клеточного метаболизма, и в комбинации с другими фармакофорными гетероциклами проявляют широкий спектр биологической активности. В последние годы опубликован ряд обзоров, посвященных NO-донорной способности производных фуроксана [1-6]. Поскольку сведения о синтезе энергоемких производных фуроксана ранее не обобщались (опубликованы только отдельные разделы в более крупных обзорах [7-10]), то в качестве литературного обзора в настоящей диссертационной работе представлена информация по синтезу и свойствам энергоемких производных фуроксанов, хотя выполненные в работе исследования направлены как на получение в ряду фуроксанов новых потенциальных NO-доноров, так и на разработку методов синтеза новых энергоемких соединений. Изучение химии фуроксанов в ИОХ РАН было начато профессором Л. И. Хмельницким, который суммировал все предыдущие исследования в двухтомной монографии [11,12], которая выдержала уже два издания и недавно была переведена на китайский язык.

Основными преимуществами фуроксанов как компонентов энергоемких структур являются: положительная энтальпия образования, высокая плотность, в большинстве случаев высокая термическая стабильность и низкая летучесть. Молекула фуроксана содержит два активных атома кислорода в виде скрытой нитрогруппы. Большая часть известных энергоемких производных фуроксана построена как комбинация фуроксанового цикла с различными эксплозофорными функциональными группами (NO₂, ONO₂, N-NO₂, N=N, N=N(O), N₃, CN) и с другими энергоемкими гетероциклами, а также синтезирована серия нитраминофуроксанов и их солей с высокоазотными катионами. Поэтому предлагаемый обзор включает следующие разделы:

- 1. Синтез нитрофуроксанов,
- 2. Синтез азо- и азоксифуроксанов,
- 3. Синтез фуроксанов, содержащих в качестве заместителей ОNO₂, N₃ и CN –группы,
- 4. Синтез гибридных структур, содержащих фуроксановый цикл в сочетании с другими энергоемкими гетероциклами.

5. Синтез нитроамино, динитраминометильных и тетразолиевых солей фуроксана.

1.1.Методы синтеза нитрофуроксанов.

Для синтеза нитрофуроксанов предложен ряд методов, которые включают как традиционные подходы (окисление аминофуроксанов, окислительная циклизация нитроглиоксимов, циклодимеризация нитрилоксидов, дегидратация α-нитрооксимов), так и недавно предложенные методы, основанные на трансформации предшественников, уже содержащих нитрогруппу. К таким подходам можно отнести довольно хорошо разработанный метод, основанный на нитрозировании дикалиевых солей 2-замещенных 2-гидроксимино-1,1-динитроэтанов. В последние годы появился ряд эффективных методов получения нитрофуроксанов из непредельных соединений.

1.1.1. Окисление аминофуроксанов до нитрофуроксанов.

4-Нитрофуроксаны можно получить окислением 4-аминофуроксанов, однако при окислении 3-аминоизомеров 3-нитрофуроксаны не образуются (схема 1).

Схема 1

На основе этого подхода была получена серия 4-нитрофуроксанов 2а-h с разнообразными заместителями у С(3)-атома углерода фуроксанового цикла, причем в зависимости от характера этих заместителей приходится использовать различные окислительные смеси. Так, для окисления 4-аминоизомеров **1а-с** в 4-нитрофуроксаны **2а-с** оказалось достаточным использовать в качестве окислителя трифторнадуксусную кислоту в CH₂Cl₂ [13,14]. Однако для получения 4-нитрофуроксанов 2d-h окислением 4аминофуроксанов 1d-h, содержащих электроноакцепторные заместители у C(3) атома углерода, потребовались более жесткие условия – смесь конц. перекиси водорода и серной кислоты [15-17]. Интересно, что, несмотря на эти довольно жесткие условия, окисление аминогруппы хемоселективно. Так, 4-аминогруппа 4-аминопроходит В 3-гидроксиалкилфуроксанах 1g,h может быть окислена до нитрогруппы действием перекисных окислителей с образованием соответствующих нитропроизводных 2g,h без затрагивания гидроксиалкильной части молекулы (схема 2).

Еще более сильная окислительная смесь (85% H₂O₂ в конц. H₂SO₄, катализатор Na₂WO₄) потребовалась 4-аминогрупп 4,4'-диаминодля окисления В 3,3'-диазенофуроксане электроноакцепторного 3 из-за сильного влияния диазенодифуроксанильного Использование этой окислительной фрагмента. смеси позволило синтезировать 4,4'-динитро-3,3'-диазенофуроксан 4 – одно из самых мощных взрывчатых веществ, известных к настоящему времени [18-20] (схема 3).

Для получения исходного 4,4'-диамино-3,3'-диазенофуроксана **3** использовали доступный 3-азидокарбонил-4-аминофуроксан **1**. Вначале аминофуроксан окисляли КМпО4 до азопроизводного **5** в среде ацетон-HCl. Затем азидокарбонильные группы в соединении **5** вводили в перегруппировку Курциуса нагреванием реакционной смеси в системе диоксан-вода при 80 °C. В этих условиях первоначально образовавшиеся 3-аминоизомеры термически перегруппировывались в более устойчивый 4,4'-диаминоизомер с образованием искомого 4,4'-диамино-3,3'-азофуроксана **3** (схема 4) [21].

При замене KMnO₄ на трихлоризоцианурат азосочетание амина **1d** до азосоединения **5** проходит с более высоким выходом (схема 5) [22].

В работе [22] было обнаружено, что замена H_2SO_4 на метансульфокислоту CH_3SO_3H при окислении диамина **3** приводит к увеличению выхода динитроазофуроксана **4** до 69%, возможно вследствие того, что соединение **3** лучше растворимо в CH_3SO_3H (схема 6)

Схема 6

Экспериментально были определены детонационные параметры соединения **4.** Скорость детонации этого соединения при плотности запрессовки 1.97 г/см³, которая при экстраполяции до плотности монокристалла 2.002 г/см³, полученной методом РСА, достигает 10.0 км/с, что превышает скорость детонации известных энергоемких соединений - октогена и гексанитробензола (таблица 1).

Таблица 1. Сравнительные характеристики соединения 4,

Derrie erre	Плотность,	Скорость	Теплота	Давление
Вещество	г/см ³	дегонации, <i>км/с</i>	взрыва, кДж/моль	дегонации, ГПа
			, ,	
4	2.002	10.0	515	47
Октоген	1.9	9.15	70	40
Гексанитробензол	2.0	9.45	75	44

октогена и гексанитробензола [18].

Для окисления аминогрупп в 4,4'-диамино-3,3'-бифуроксане **6a** в работе [24], была использована 50% H_2O_2 в конц. H_2SO_4 в присутствии (NH₄)₂S₂O₈ в качестве катализатора. 4,4'-Динитро-3,3'-бифуроксан **7** в этих условиях образовался только в незначительных количествах. Исходный диамин **6a** в этой работе был получен термической изомеризацией 3,3'-диамино-4,4'-бифуроксана **6b**, синтезированного, в свою очередь, окислением тетраоксима **8** бромом в соляной кислоте (схему 7).

Схема 7

Окислению могут подвергаться не только сами аминогруппы в аминофуроксанах, но и их ацетильные производные, которые в кислых средах подвергаются гидролизу до аминогрупп. Так обе ацетиламиногруппы в 4-ацетиламино-3-(5-ацетиламино-4-нитро-1,2,3-триазол-2-ил)фуроксане 9 были окислены до нитрогрупп смесью конц. H₂O₂ и H₂SO₄ при температуре 20-22 °C с образованием смеси изомерных 4- и 3-нитрофуроксанов **10а,b** в соотношении 7:1 (схема 8) [25].

Кроме прямого окисления 4-амино- или 4-ацетиламинофуроксанов для окислительного превращения аминогруппы был использован еще один подход – предварительный перевод аминогруппы в соединениях **1а,і** в сульфилиминогруппу с образованием сульфилиминопроизводных **11а,і**. Последние окислялись перекисными окислителями в мягких условиях, причем при действии трифторнадуксусной кислоты образовывались 4-нитрофуроксаны **2а,і**, а окисление *м*-хлорнадбензойной кислотой (*m*СРВА) приводило к соответствующим 4-нитрозопроизводным **12а,і** (схема 9) [26].

Окисление 4-аминофуроксанов было использовано для получения еще одного представителя высокоэнергетических нитрофуроксанов – 3,4-бис(4-нитрофуроксан-3-ил)фуроксана 13. Исходный 3,4-бис(4-аминофуроксан-3-ил)фуроксан 14 был синтезирован исходя из 4-амино-3-гидроксиминоилфуроксана 15. Аминогруппа в этом соединении была защищена диметиламинометилиденовой защитной группой при взаимодействии с диметилацеталем диметилформамида. Полученный защищенный продукт 16 был трансформирован в хлороксиминофуроксан 17 взаимодействием с NaNO2 в HCl по стандартной методике. Хлоргидроксиминопроизводное 17 в мягких условиях подвергалось дегидрохлорированию и образовавшийся *in situ* нитрилоксид 18 димеризовался в терфуроксан 19. Защитные группы в этом соединении легко снимались действием разбавленной соляной кислоты с образованием диамина 14 (схема 10) [27].

Схема 10

Для окисления диамина 14 с целью получения динитропроизводного 13 были использованы различные окислители. Окисление трихлоризоциануратом привело к образованию макроциклической структуры 20, в которой трифуроксанильная система связана внутримолекулярным азомостиком. Применение 50%-ной H₂O₂ в H₂SO₄ как в

присутствии $(NH_4)_2S_2O_{8}$, так и без катализатора в различных условиях оказалось неэффективным. Искомое динитропроизводное удалось получить только при использовании НОF в CH₃CN (схема 11).

Схема 11

Экспериментально была определена скорость детонации соединения **13** при плотности 1,91 г/см³, которая достигает 9,5 км/с при давлении детонации 41 ГПа, что превышает аналогичные характеристиками октогена, но несколько ниже характеристик CL-20 (таблица 2).

Таблица 2. Сравнительные детонационные характеристики соединения 13, октогена
гексанитробензола и CL-20.

Вещество	Плотность, <i>г/см³</i>	Скорость детонации, <i>км/с</i>	Теплота взрыва, <i>кДж/моль</i>	Давление детонации, <i>Гпа</i>
13	1.91	9.50	579	41
Октоген	1.9	9.15	70	40
Гексанитробензол	2.0	9.45	75	44
CL-20	2.0	9.70	403	45

Дегидратация первичных нитросоединений весьма распространенный способ получения нитрилоксидов, которые склонны к циклодимеризации с образованием фуроксанов с одинаковыми заместителями.

Для генерации нитроформонитрилоксида 21 с целью получения динитрофуроксана 22 было разработано два подхода – дегидратация динитрометана и нитрование 2-метил-1нитропропена. Оба эти подхода достаточно детально описаны в обзоре [28]. Однако дегидратация динитрометана реакция достаточно удивительная, поскольку *аци*-форма динитрометана в литературе не описана. Поэтому получение динитрофуроксана **22** по этой реакции было включено в настоящий обзор.

Для генерации нитроформонитрилоксида **21** дегидратацией динитрометана натриевую соль динитрометана **23** добавляли порциями в конц. H_2SO_4 или в раствор N_2O_5 в HNO₃. Оптимальными условиями получения динитрофуроксана **22** оказалось прибавление исходной соли **23** к 95%-ной H_2SO_4 , нагретой до 100 °C. Вероятно, при нейтрализации соли **23** частично сохранялась *аци*-форма динитрометана, которая при протонировании и последующей дегидратацией генерировала нитрилоксид **21**. Выход динитрофуроксана **22** в этих условиях составил 34% (схема 12) [29].

Схема 12

Динитрофуроксан 22 представляет собой сильный окислитель с положительным кислородным балансом (C₂N₄O₆, T_{пл} = 14 °C, ρ = 1,71 г/см³), но его низкая термическая стабильность препятствует возможному применению в энергоемких составах. Однако он послужил исходным соединением для получения других энергоемких и функциональных производных фуроксана. Исследование взаимодействия динитрофуроксана 22 с нуклеофилами показало, что нуклеофильному замещению может подвергаться только 4-нитрогруппа. В мягких условиях были получены 4-азидо(алкиламино-, алкокси)-3-нитрофуроксаны 24-26. Замещение 4-нитрогруппы на аминогруппу при действии аммиака также проходило успешно, но образовавшийся 4-амино-3-нитрофуроксан 27а и 27b (схема 13).

Удивительным свойством динитрофуроксана 22 является его способность к циклореверсии. В растворе галогенсодержащих растворителей он находится в равновесии с его предшественником нитроформонитрилоксидом 21, хотя равновесие почти полностью сдвинуто в сторону циклической формы. Циклореверсия ускоряется при катализе ионными жидкостями, причем процесс протекает уже при комнатной температуре в растворе CCl₄ [30]. Это свойство динитрофуроксана было использовано для получения различных нитрогетероциклов 28 - 31 посредством [3+2]-циклоприсоединения образующегося в условиях циклореверсии нитроформонитрилоксида 21 к различным диполярофилам (олефины, ацетилены, трихлоацетонитрил, гексафторацетон). Низкие выходы конечных продуктов можно объяснить частичным разложением динитрофуроксана 22 в условиях реакции (схема 14).

[bmim]ВF₄ - ионная жидкость - тетрафторборат 1-бутил-3-метилимидазолия.

1.1.3. Синтез нитрофуроксанов окислением нитроглиоксимов.

Динитрофуроксан 22 также был получен окислением динитроглиоксима 32, который, в свою очередь, синтезировали нитрованием глиоксима 33 разбавленной азотной кислотой. Окисление динитроглиоксима 32 в динитрофуроксан 22 проводили в мягких условиях действием N₂O₄ (схема 15) [31].

Монозамещенные глиоксимы **34а-с** при взаимодействии с N₂O₄ могут образовывать мононитрофуроксаны. Так, хлорнитрофуроксан образуется в виде изомерной смеси соединений **35а,b** в соотношении 3-Cl : 4-Cl = 7:3 при взаимодействии *амфи*-

хлорглиоксима **36a** с N₂O₄ в эфире [32,33]. По-видимому, реакция протекает через образование промежуточного нитрохлорглиоксима **34a**. В близких условиях удалось окислить и нитроцианоглиоксим **34b** до 4-нитро-3-цианофуроксана **37a**. Исходный глиоксим **34b** был получен нитрованием цианоглиоксима **36b** азотной кислотой в эфире (схема 16) [34].

Через окисление соответствующего нитроглиоксима **34c** можно представить образование 3-нитро-4-фенилфуроксана **38a** при взаимодействии фенилацетилена **39** с NaNO₂ в AcOH. Очевидно, на первом этапе реакции образуется 4-фенилфуроксан **40**, который размыкается до 2-гидроксимино-2-фенилацетонитрилоксида **41**. Роль основания в этом случае могли сыграть NaNO₂ или AcONa. Затем к нитрилоксидному фрагменту присоединяется HNO₂ с образованием *амфи*-формы фенилнитроглиоксима **34c**, которая и окисляется в конечный нитрофуроксан **38a** с небольшим выходом (схема 17).

Схема 17

Возможность промежуточного образования производных нитроглиоксима предположена и при получении нитрофуроксанов из непредельных соединений [35,36]. В частности, оказалось, что реакция 2-алкил- **42а-h** и 2-арилакриловых кислот **43а-d** с избытком NaNO₂ в AcOH при комнатной температуре протекает полностью региоселективно с образованием только 3-R-4-нитрофуроксанов **2а,i-t** с умеренными и высокими выходами [37]. Важными преимуществами разработанного способа являются простое выделение 4-нитрофуроксанов и отсутствие примесей. Выделение конечных продуктов проводят либо выливанием реакционной массы в воду с последующим

фильтрованием или экстракцией CH₂Cl₂ с последующим упариванием растворителя (схема 18).

Схема 18

Эта реакция протекает как домино процесс и включает четыре последовательных этапа. На первом этапе образуется псевдонитрозит 44 через присоединение N_2O_3 , образующегося из NaNO₂ в AcOH, к двойной связи акриловых кислот 42 или 43. Затем метиленовая группа в псевдонитрозитах 44 нитрозируется действием N_2O_3 , приводя к динитрозопроизводным 45. Последние подвергается декарбоксилированию с одновременной изомеризацией обеих нитрозогрупп в оксимные с образованием глиоксимов 46, которые окисляются до 4-нитрофуроксанов действием тех же оксидов азота (схема 19).

Схема 19

1.1.4. Синтез нитрофуроксанов на основе домино-реакций алкенов с нитрозирующими реагентами.

Несколько подходов к синтезу производных нитрофуроксана было основано на домино-реакциях алкенов с различными нитрозирующими реагентами. Реакция стирола **47a** с тетрафторборатом нитрозония NOBF₄ в пиридине приводит к 4-нитро-3фенилфуроксану **2a** в качестве единственного продукта. Предполагаемый 4фенилфуроксан **40** в этих условиях не образовывался (схема 20). Кроме того, было показано, что β -нитростирол **48a** не является промежуточным звеном при получения нитрофуроксана **2a** в этих условиях, поскольку β -нитростирол при воздействии NOBF₄ не подвергается трансформации в пиридине (схема 20) [38].

В случае замещенных стиролов **47а-g** [39] при действии нитрита натрия в кислой среде региоселективно образуются 3-арил-4-нитрофуроксаны **2а,u-аа**. Этот процесс протекает через генерацию N₂O₃, который присоединяется к двойной связи исходных стиролов, образуя псевдонитрозиты **49**. Нитрозирование псевдонитрозитов приводит к динитрозопроизводным **50**, после изомеризации которых образуются глиоксимы **46**. Последние подвергаются окислительной циклизации в целевые 4-нитрофуроксаны **2а,u-аа** (схема 21).

1.1.5. Дегидратация α-нитрооксимов.

Дегидратация α -нитрооксимов широко используется в качестве метода получения дизамещенных фуроксанов, таких как алкил(арил)-, диалкил- и циклоалкилзамещенных фуроксанов. Данный подход был успешно использован для синтеза 3-арил-4нитрофуроксанов 2. При взаимодействии β -нитростиролов **48a-f** с NaNO₂ в AcOH образуются псевдонитрозиты **51**, изомеризующиеся в условиях реакции в α -нитрооксимы **52** и их *аци*-формы **53**. Последние уже при 20-25°C подвергаются дегидратации с образованием 3-арил-4-нитрофуроксанов **2а,u,аb-аe**. Реакция протекает довольно медленно (несколько суток) и с невысокими выходами (схема 22) [35].

1.1.6. Нитрозирование солей 2-замещенных 2-гидроксимино-1,1-динитроэтанов.

Изомерные α-нитрооксимы в виде дикалиевых солей **54**, содержащие в качестве заместителя у атома углерода, связанного с *аци*-нитрогруппой, вторую нитрогруппу, были синтезированы взаимодействием хлорангидридов арилгидроксамовых кислот **55** с натриевой солью динитрометана с последующей трансформацией образовавшихся α-нитрооксимов **56**, **57** в дикалиевые соли **54**. Однако осуществить дегидратацию **54** до нитрофуроксанов действием концентрированной серной кислоты не удается, вероятнее всего, из-за нестабильности необходимой для дегидратации *аци*-формы нитрогруппы (схема 23) [40].

Схема 23

Дикалиевые соли **54а-f** удалось трансформировать в 4-арил-3-нитрофуроксаны **38а-f** действием NaNO₂ в AcOH [41]. В этом случае процесс протекает, по-видимому, через нитрозирование аниона динитрометильного фрагмента в солях **54а-f** с последующей атакой аниона оксимной группы на атом азота нитрозогруппы. Процесс завершается циклизацией интермедиатов **58** в 3-нитрофуроксаны **38а-f** с выделением NO₂-аниона. При нагревании в кипящем толуоле в течение 3 часов 3-нитрофуроксаны **38a-f** нацело изомеризуются в термодинамически более предпочтительные 4-нитроизомеры **2a**, **2u**, **2ab-ae** (схема 24).

Данная реакция представляет собой новый метод формирования фуроксанового цикла. В работе [42] представленный выше механизм был экспериментально подтвержден двумя различными методами. Первый метод заключался в определении констант ионизации динитрометильного и оксимного фрагментов в исходных солях (на примере дикалиевой соли **54f**, Ar = 4-MeO-3,5-(NO₂)₂-C₆H₂). Из полученных данных следовало, что нитрозирование идет именно по аниону динитрометильного фрагмента.

Второй метод был основан на синтезе изомерных 4(3)-(4-бромфенил)-3(4)нитрофуроксанов **38e** и **2ad** с ¹⁵N-мечеными атомами азота N(5) или N(2), соответственно, и 3,4-бис(4-бромфенил)фуроксана **59** с ¹⁵N-мечеными обоими циклическими атомами азота и исследовании их ¹H, ¹³C, ¹⁴N, ¹⁵N *ЯМР-* и масс-спектров. Метка вводилась на стадии получения хлороксимов **55** с использованием ¹⁵N-меченого гидроксиламина. Сравнение полученных спектральных характеристик свидетельствовало о том, что метка полностью перешла в синтезированные нитрофуроксаны (рис.1).

Рис.1 ¹⁵N-Меченые нитрофуроксаны **38е, 2аd, 59.**

Этот подход к получению изомерных 3- и 4-нитрофуроксанов в дальнейшем был исследован достаточно широко. В частности, в реакцию были введены хлорангидриды гидроксамовых кислот не только с ароматическими заместителями, но и с функциональными заместителями, например, с MeCO- и EtO₂C-группами [43]. В этих случаях в качестве нитрозирующего реагента использовали N₂O₄.

Кроме того, эта реакция была успешно использована для получения изомерных 1,3и 1,4-бис(нитрофуроксанил)бензолов. Для выхода к этим соединениям бисхлорангидриды

60а-с вводились в реакцию с натриевой солью динитрометана в ДМФА, а образовавшиеся 1,3- и 1,4-бис(1-гидроксимино-2,2-динитроэтил)бензолы 61а-с трансформировали в тетракалиевые соли 62а-с, которые нитрозировали NaNO₂ в AcOH в присутствии AcOK. Искомые 1,3- и 1,4-бис(3-нитрофуроксан-4-ил)бензолы 63а-с были получены с хорошими выходами. З-Нитроизомеры 63а-с были термически изомеризованы в соответствующие термодинамически более предпочтительные 4-нитроизомеры 64а-с с высокими выходами (схема 25) [41,44].

a 1,3-isomer (R =H); **b** 1,4-isomer (R = H); **c** 1,3-isomer (R = 5-Me).

Позже [45] эта методология была расширена на опе-рот получение хлорангидридов 60 действием *N*-хлорсукцинимида на исходные оксимы.

1.1.7. Другие методы синтеза нитрофуроксанов

Необычным методом формирования 3-нитрогруппы у фуроксанового цикла (синтез 3-нитро-4-цианофуроксана **37b**) оказалась трансформация 3-фуроксаннитроловой кислоты **65а** при действии избытка N₂O₄ в апротонном органическом растворителе при 60 °C [34]. Этот процесс протекает, по-видимому, путем деструктивного (или заместительного) нитрования 3-фуроксанкарбоновой кислоты 66. Карбоксильная группа могла возникнуть в результате окислительного дезоксимирования, как это описано на примере алканнитроловых кислот [41]. Аналогичная трансформация одного из элементов нитроловой кислоты происходит и при взаимодействии фуроксандинитроловой кислоты с N₂O₄ в близких условиях. 65b В этом случае образуются два изомера нитроцианофуроксана **37a** и **37b** в зависимости от температурных условий: 3-NO₂ – при 45 °С и 4-NO₂ – при 70 °С (схема 26) [34].

1.2.Методы синтеза азо- и азоксифуроксанов.

Методы синтеза азо- и азоксифуроксанов включают окисление аминофуроксанов различными окислителями, диазотирование аминофуроксанов с последующим азосочетанием, а также специфические подходы, включающие трансформации цианоксима, полученного из производного фуразана.

1.2.1.Методы синтеза азофуроксанов

1.2.1.1.Окисление 3(4)-аминофуроксанов перманганатом калия.

Как 4-амино-, так и 3-аминофуроксаны **1а,b,e,i-t** и **67а,b** вступают в окислительную конденсацию с образованием соответствующих азофуроксанов **68а,b,e,i-t** и **69а,b** при действии КМпO₄ в смеси соляной кислоты и апротонных органических растворителей, смешивающихся с водой (например, ацетона), причем результат реакции не зависит существенно от электронного влияния второго заместителя у фуроксанового цикла [13,21,25,46-48] (схема 27). Азофуроксан **68а** позже был получен с выходом 95% окислением аминофуроксана **1а** действием дибромизоцианурата (DBI) в CH₂Cl₂ [49].

Схема 27

Окисление в аналогичных условиях диаминофуразанилфуроксана **70**, в котором аминогруппа находится у C(3)-атома углерода фуроксанового цикла, протекает региоспецифично с участием только аминогруппы, связанной с фуроксановым циклом и образованием азопроизводного **71**, При действии DBI диамин **70** окисляется до макроцикла **72**. Изомерный диамин **73**, содержащий аминогруппу в положении 4 фуроксанового цикла, при действии KMnO₄ ни в воде, ни в ее смеси с различными органическими растворителями азопроизводных не образовывал. Окисление диамина **73** действием DBI в ацетонитриле привело к получению макроциклического соединения **74**, однако однозначно приписать синтезированному макроциклу **74** одну из двух возможных изомерных структур **74а** или **74b** (циклизация двух исходных молекул «голова к которе» или «голова к хвосту») на основании спектральных характеристик не представляется возможным.

При окислении азогрупп до азоксипроизводных в полученных макроциклах **72**, **74** успеха удалось добиться только для макроцикла **72** при действии 85% H₂O₂ в 20% олеуме в присутствии Na₂WO₄·2H₂O. В реакцию вступила только азогруппа, связанная с фуразановыми циклами, с образованием макроцикла **75** с незначительным выходом (схема 28) [50].

1.2.1.2 Диазотирование аминофуроксанов с последующим азосочетанием с ароматическими соединениями.

Получить азофуроксаны можно и через образование промежуточных диазониевых солей. В этом случае к азогруппе наряду с фуроксановым циклом могут быть введены различные активированные ароматические соединения. В качестве исходного аминофуроксана для получения серии азофуроксанов был использован 3-азидокарбонил-4-аминофуроксан 1d. Диазониевая соль 76а была получена по разработанной ранее методике диазотированием NaNO₂ в смеси конц. H₂SO₄ и H₃PO₄ при 0-2 °C [51]. В дальнейшем эта соль без выделения была введена в реакцию азосочетания с подходящими ароматическими соединениями при добавлении 7 эквивалентов пиридина. Азидокарбонильная группа в полученных продуктах азосочетания **77а-е** была преобразована в аминогруппу с помощью перегруппировки Курциуса при нагревании в смеси диоксан-вода. Одновременно происходит термическая изомеризация фуроксанового цикла и конечными продуктами оказались 4-амино-3-арилазофуроксаны 79b,d. В случае соединений 77а,с образовывалась смесь продуктов 78а,с и 79а,с, которую без выделения промежуточных интермедиатов 78а,с изомеризовали при кипячении в толуоле в конечные продукты **79а,с** (схема 29).

Ar = 4-MeO-C₆H₄(**a**), 4-OEt-C₆H₄(**b**), 2,3,5-Me₃-C₆H₂(**c**), 2,4-Me₂-C₆H₃(**d**),Naphtalen-2-ol-1-yl (**e**)

Перегруппировка азидокарбонильной группы в производном **77e** в соответствующий амин в данных условиях не имела места, а при повышении температуры

до 110°С (кипячение в толуоле) азосоединение претерпевало почти полное разложение без образования аминопроизводного.

На примере 4-аминофуроксанов **1а,і** было показано, что в качестве реакционной среды для получения диазониевых солей можно использовать кислые ионные жидкости [(bmim][HSO₄]) или ([bmpyrr][CF₃SO₃]) [52], с использованием 40%-ного раствора нитрозилсерной кислоты в H₂SO₄ в качестве нитрозирующего агента. Образующиеся диазониевые соли **76b,с** успешно вступали в реакцию азосочетания с анизолом с образованием азофуроксанов **78d,е** (схема 30).

Схема 30

R = Ph (1a, 76b,78d),Me (1i, 76c,78e)

[(bmim][HSO₄]) –ионная жидкость - гидросульфат 1-бутил-3-метилимидазолия. [bmpyrr][CF₃SO₃] – ионная жидкость - трифлат 1-бутил-1-метилпирролидиния.

1.2.2. Методы синтеза азоксифуроксанов.

1.2.2.1.Окислительная трансформация амино- и азофуроксанов

Впервые азоксифуроксаны **80а,b** [26] были получены при окислении *м*-хлорнадбензойной кислотой (*m*CPBA) фосфиниминофуроксанов, синтезированных действием бис(трифлата)триоктилфосфина на 4-аминофуроксаны **81а,b** (схема 31).

Схема 31

Прямое окисление 4-аминофуроксанов **1d,g,i** до азоксипроизводных **80b-d** действием перекисных окислителей удалось осуществить только для аминофуроксанов с электронодонорными заместителями **1g,i**, причем одновременно образовывались и нитрофуроксаны **2d,g,i**. Соотношение азокси- и нитропроизводных зависит от характера

второго заместителя у C(3)-атома углерода фуроксанового цикла – с увеличением электроноакцепторных свойств заместителя увеличивается доля нитропроизводного. Встречный синтез азоксипроизводного **80a** окислением азофуроксана оказался возможным только для 3,3'-дифенил-4,4'-азофуроксана **68a** (схема 32) [48].

Схема 32

1.2.2.2. Реакция Ковачича аминофуроксанов с псевдонитролами.

Обычно *NNO*-азоксигруппу конструируют взаимодействием нитрозогруппы с различными аминами с электроноакцепторными заместителями. Эта реакция получила название реакции Ковачича. Синтез первых (нитроалкил-*NNO*-азокси)производных фуроксана был осуществлен конденсацией 4-амино-3-метилфуроксана **1i** с псевдонитролами **82-84** при действии дибромоизоцианурата (DBI) в CH₂Cl₂ [53]. Однако, выходы (нитроалкил-*NNO*-азокси)производных **85-87** оказались невысокими из-за очень низкой стабильности образующихся на первой стадии реакции монобром- и дибромаминопроизводных 4-амино-3-метилфуроксана **88а,b**. Одновременно с более высоким выходом образовался 3,3'-диметил-4,4'-азофуроксан **68i** (схема 33).

Схема 33

Более высокий выход (нитроалкил-*NNO*-азокси)фуроксанов был получен при замене метильного заместителя в исходном аминофуроксане на электроноакцепторную цианогруппу [54]. Реакция Ковачича 4-амино-3-цианофуроксана **1k** с псевдонитролами

82-84 при участии DBI в качестве конденсирующего агента в CH₂Cl₂ при комнатной температуре приводила к образованию искомых соединений **88-90** с умеренными выходами (31-41%). Одновременно образуется азосоединение **68k** с незначительным выходом (схема 34).

С помощью реакции Ковачича аминофуроксан **1k** был введен в конденсацию с мало стабильным 3-нитро-2-нитрозоэтоксипропионатом **91** и с 1,1-динитро-1нитрозоэтаном **92** в тех же условиях. В этих случаях азоксипроизводные **93,94** образовывались с хорошими выходами (42-69%), а азофуроксан **68k** вообще не обнаруживался в продуктах реакции (схема 35).

Однако, реакция Ковачича обычно не используется для получения производных азоксифуроксанов, поскольку аминонитрозофуроксаны в отличие от нитрозофуразанов являются мало доступными соединениями. Поэтому для получения азоксифуроксанов **95а,b** используется другая последовательность реакций. Вначале получают 3-амино-4-(*трет*-бутил-*NNO*-азокси)фуразан **96** (схема 36). Затем при действии NaNO₂ в смеси AcOH-Et₂O (2:1) на это соединение происходит размыкание фуразанового цикла с образованием цианоксима **97**, который при взаимодействии с NH₂OH·HCl в метаноле в присутствии NaHCO₃ трансформируется в глиоксим **98**. Заключительным этапом является окислительная циклизация глиоксимного фрагмента в соединении **98** действием брома в соляной кислоте с образованием смеси азоксифуроксанов **95а,b** с преобладанием изомера **95а** (схема 36) [55].

1.3. Методы синтеза фуроксанов с эксплозофорными ОNO₂, N₃ и CN – группами.

1.3.1. Методы синтеза фуроксанов с ОNO₂-заместителем.

Производные фуроксанов с нитроксигруппой, связанной непосредственно с фуроксановым циклом в литературе не описаны. Известны только нитроксиалкилфуроксаны. Синтез нитроксиалкилфуроксанов **99а,b**, основанный на обработке алкилфуроксанов **100а,b** смесью конц. HNO₃ и H₂SO₄ в CHCl₃, был описан в работе [56] (схема 37).

Положение нитроксиметильного фрагмента при C(3) атоме углерода фуроксанового цикла в соединении 99а, полученного из диметилфуроксана 100а, было установлено на основании данных HMBC{¹H,¹³C} ЯМР-спектроскопии. Как оказалось, в реакцию с соединением 100а вступала только С(3)-метильная группа. Для нитрования соединения 100b потребовался больший избыток кислот (30-45 экв. HNO₃:H₂SO₄) по сравнению с соединением 100а, для трансформации которого соотношение кислот составило 17-19 экв. Реакция с другими соотношениями нитрующих агентов не приводила к полной конверсии исходных соединений. Нитрозирующие реагенты (N₂O₄ и NOBF₄) приводили к деструкции фуроксанового цикла. Замена CHCl₃ на CCl₄ приводила к снижению выходов конечных продуктов. Найденные условия позволили получить различные 3-нитроксиалкильные производные фуроксана 101а-е 3.4-ИЗ диалкилфуроксанов 102а-е с умеренными выходами (схема 38).

Предполагаемый механизм этой реакции представлен на схеме 39. По мнению авторов реакция протекает через присоединение катиона нитрония к N-оксидному атому кислорода фуроксанового цикла с образованием соли **103** и изомеризацией фуроксанового цикла в C(3)-метиленовую структуру **104**. Превращение изомерной формы **104a** в динитрозопроизводное **105** протекает, очевидно, через фрагментацию Гроба с расщеплением внутренней связи N-O фуроксанового цикла и образованием новой связи CH₂O [57,58]. Дальнейшее окислительное замыкание кольца, вероятно, происходит настолько быстро, что перегруппировка фуроксанового цикла не имеет места. Финальное замещение или окисление O-N=O группы в соединении **106** до O-NO₂ группы с образованием 3-нитроксиалкилфуроксанов **99** легко протекает при действии катиона нитрония или HNO₃ (схема 39).

Схема 39

Нитрование 3,3'-бис(гидроксиметил)-4,4'-азофуроксана **68u** дымящей HNO₃ в уксусном ангидриде приводит к образованию соответствующего бис(нитроксиметил) производного **68v** с небольшим выходом (схема 40) [6].

Схема 40

Введение нитроксиметильного фрагмента к фуроксановому циклу можно также осуществить нуклеофильным замещением хорошо уходящей группы, например, брома, на нитрат-анион [59]. Нуклеофильное замещение брома в бромметильной группе на нитроксиметильную для обоих изомеров бис(бромметил)трифуроксанила **107а,b** при действии AgNO₃ эффективно протекает в ацетонитриле с образованием ожидаемых соединений **108а,b** с высокими выходами (схема 41).

Схема 41

1.3.2. Методы синтеза азидофуроксанов.

Получение азидофуроксанов **109а-е** основано на двух основных подходах диазотирование аминофуроксанов с последующим азосочетанием образовавшейся диазониевой соли с NaN₃ и нуклеофильное замещение нитрогруппы на азидную в доступных 4-нитрофуроксанах. Диазотирование аминофуроксанов **1а,d,i** проводится при действии нитрита натрия в смеси H₂SO₄ и H₃PO₄ при пониженной температуре. Азосочетание с азид-анионом проводят в опе-роt варианте без выделения диазониевой соли **76а-с**. С использованием меченых атомов азота было показано, что реакция проходит через промежуточное образование пентазена, который теряет два концевых атома азота (схема 42) [60].

Схема 42

R= Me(1i, 76c, 109a),Ph(1a, 76b, 109b), CON₃(1d, 76a, 109c)

Прямое нуклеофильное замещение нитрогруппы в 4-нитрофуроксанах **2а, k, w** на азид-ион проводят при действии азида натрия в ДМСО (схема 43) [61]. Во всех полученных 4-азидофуроксанах **109b, d, e** азидная группа расположена у C(4) атома углерода фуроксанового цикла. 3-Азидофуроксаны пока получены не были.

R= Ph (**2a,109b**),nPr(**2k,109d**),4-MeO-C₆H₄ (**2w,109e**)

1.3.3. Методы синтеза цианофуроксанов.

Известно два общих метода получения цианофуроксанов - недавно разработанная реакция дегидратации доступных амидов фуроксанкарбоновых кислот действием трифторуксусного пиридином ангидрида с [62] дегидратация В смеси И гидроксиминофуроксанов при действии SOCl₂. Дегидратация амидов 110a-k c использованием первого подхода позволила получить серию цианофуроксанов 111а-к с высокими выходами. Реакция протекает в мягких условиях и демонстрирует высокую толерантность ко второму заместителю у фуроксанового цикла, причем она эффективна независимо от расположения амидной группы у С(3) или С(4) атомов углерода фуроксанового цикла (схема 44).

Второй метод синтеза цианофуроксанов, основанный на дегидратации гидроксиминофуроксанов **112a-ad** действием SOCl₂ использовался, главным образом, для получения 3-цианофуроксанов с ароматическими заместителями у C(4) атома углерода фуроксанового цикла **113a-ad** [63]. Реакцию проводят в ДМФА при 0°C в течение 2-4 часов. Этот подход оказался эффективным не только для арил(гидроксимино)фуроксанов, но и для структур с гетероциклическими заместителями (фуран, фуроксан, тиофен). С помощью этой методики удалось получить большую серию цианофуроксанов **113a-ad**

(схема 45). Более широкому использованию этой реакции препятствует недостаточная доступность исходных гидроксиминофуроксанов.

Схема 45

В ранних работах по химии фуроксанов этот подход был использован и для синтеза дицианофуроксана **111b**, который широко используется в качестве предшественника различных функциональных производных этого гетероцикла [64]. При кратковременном (5 мин) кипячении бис(гидроксимино)фуроксана **114** в SOCl₂ дицианофуроксан **111b** образуется с выходом около 40% (схема 46).

Схема 46

Позже было опубликовано несколько примеров получения дицианофуроксана 111b через генерацию *in situ* цианформонитрилоксида. Так, реакция 4-аминофуразан-3-карбоновой кислоты 115 при действии нитрита натрия в смеси H₂SO₄ и AcOH при небольшом нагревании приводит к образованию дицианофуроксана **111b** с выходом 22%. Более высокий выход (72%) дицианофуроксана **111b** был получен при диазотировании аминонитрозофуразана 116 в тех же условиях. Более того, когда эту реакцию проводят в способного экстрагировать присутствии растворителя, продукт 111b, но не растворяющего исходное соединение 116, например CH₂Cl₂ – пентан, выход целевого соединения возрастает до 91% [65] (схема 47).

Предполагаемый механизм образования дицианофуразана **111b** при нитрозировании аминофуразанов **115** и **116** представлен на схеме 48. Реакция начинается с элиминирования азота от катиона диазония **117** с образованием лабильного катиона фуразана **118**. Затем происходит разрыв связи N-O в этом катионе, приводя к ациклическому катиону **119**. И, наконец, катион **119** стабилизируется посредством элиминирования различных частиц (CO₂ из соединения **115** или NO⁺ из соединения **116**) с образованием цианоформонитрилоксида **120**, циклодимеризация которого приводит к получению дицианофуроксана **111b**.

Схема 48

Более эффективный способ получения дицианофуроксана **111b** через промежуточную генерацию цианоформонитрилоксида **120** опубликован в работе [66]. Метод основан на нитровании цианоуксусной кислоты **121** смесью трифторуксусной и азотной кислот (схема 49).

Схема 49

R= 4-Me-C₆H₄(111I,113g),Naphtalen-2-yl (111w,113w),Pyridin-2-yl (111x,113aa)
Помимо существующих методов получения цианофуроксанов в работе [67] недавно был предложен метод синтеза 4-цианофуроксанов нуклеофильным замещением нитрогруппы в доступных 3-арил-4-нитрофуроксанах **2а,s,u-z,ah-аm** цианид-ионом взаимодействием с NaCN в THF при пониженной температуре. Добавление каталитических количеств тетрабутиламмоний бромида (TBAB) в реакционную смесь ускоряло реакцию, приводя к образованию 4-цианофуроксанов **127а-о** с различными ароматическими заместителями у C(3) атома углерода фуроксанового цикла (схема 50). Использование цианида калия не обеспечивало полной конверсии нитрофуроксанов.

В работе [67] исследована термическая и фотохимическая изомеризация 4-цианофуроксанов **111**. Термическую изомеризацию проводили, как и для нитро- или аминофуроксанов, кипячением в толуоле при 110°С в течение нескольких часов. Фотохимическая изомеризация 4-цианофуроксанов протекает при облучении образца светом с длиной волны 300 - 400 нм в дейтеробензоле. Равновесное соотношение изомеров при термической и фотохимической изомеризации в бензоле представлены в таблице 1. При обоих условиях изомеризации 3-цианофуроксаны были получены в качестве основных продуктов реакции. Однако, для 3-пиридил-4-цианофуроксана **111х** фотоизомеризация была эффективнее термической (схема 51).

Схема 51

R= 4-Me-C₆H₄(111I,113g),Naphtalen-2-yl (111w,113w),Pyridin-2-yl (111x,113aa)

Таблица 3. Термическая и фотохимическая изомеризация 4-цианофуроксанов **1111, w, x** в 3-цианофуроксаны **113g, w, aa**

	Соотношение (111:113)			
	Термическая изомеризация Фотоизомеризация			
1111:113g	35:65	3:97		
111w:113w	38:62	11:89		
111x:113aa	55:45	7:93		

1.4. Методы синтеза аннелированных производных фуроксана.

К структурам этого типа относятся многочисленные производные бензофуроксана, а также азинофуроксаны (пиридазино- и пиразинофуроксаны).

1.4.1. Методы синтеза бензофуроксанов.

Ряд производных бензофуроксана и нитробензофуроксана привлекли внимание исследователей как высокоэнергетические материалы в начале 1980-х годов, когда на их основе были синтезированы представители инициирующих взрывчатых веществ. Например, были получены калиевая и [68] и гидроксиламмониевая [69] соли 4,6-динитробензофуроксана (DNBF) и гидроксинитробензодифуроксана [70]), а также ряд менее чувствительных нитрозамещенных бензофуроксанов, например, 4-амино-5,7-динитробензофуроксан 122, 4,6-диамино-5,7-динитробензофуроксан 123 (CL-14), 4-амино-5,6,7-тринитробензофуроксан 124 (CL-17) и 5-амино-4-нитробензодифуроксан 125 (CL-18) (рис.2)

Рис.2 Нитрозамещенные бензофуроксаны.

Основным подходом к получению бензофуроксанов является формирование фуроксанового цикла исходя из коммерчески доступных *о*-галогеннитробензолов **126а-р.** В этих соединениях вначале галоген замещается на азид в результате S_NAr реакции с NaN₃, а затем проводится термолиз образовавшихся *о*-азидонитробензолов, приводя к образованию бензофуроксанового каркаса. Этим методом недавно [71] была получена целая серия различных бензофуроксанов **127а-р**. Реакцию проводят в *one-pot* варианте при кипячении реагентов в смеси ДМФА-H₂O в течение нескольких минут, а в некоторых

случаях используют межфазный катализатор – тетрафторборат тетраэтиламмония (TEATFB). В обоих вариантах реакция более эффективна, когда исходные соединения **126а-р** либо не содержат других заместителей, либо заместители в *пара*-положении к уходящей группе имеют электроноакцепторный характер (NO₂, CN, CHO, COOH, COCH₃). В тех случаях, когда заместители представляет собой Hal (F или Cl) или электронодонорные группы (OR или NH₂), выход конечного продукта умеренный (схема 52).

X= F (a) R = CHO , R = H. X = F(g)X= CI (**b**) NO_2 R = H . R = CHO, X = CI(h) $NaN_3 DMF, H_2O, \Delta$ $R = NO_2$, X= F (**c**) R = COOH, X = F(i)TEATFB, DMF $R = NO_2$, X = CI(d)R = COOH, X = CI(j)X= F (e) R = CN, $R = COCH_3$, $X = F(\mathbf{k})$ R = CN, X = CI(f) $R = COCH_3$, X = CI(I)126a-p 127a-p (57-81 %)

Схема 52

При получении энергоёмкого 4,6-динитробензофуроксана **128** был использован тот же подход, основанный на термолизе в АсОН *о*-азидонитропроизводного **129**, синтезированного нуклеофильным замещением хлора в 2,4,6-тринитро-1-хлор-бензоле **130** на азидную группу в смеси метанол-вода (схема 53) [72].

Для расширения серии соединений на основе 4,6-динитробензофуроксана был приготовлен 7-хлор-4,6-динитробензофуроксан 131. Его синтез осуществляли из стифниновой кислоты 132 [73], которую трансформировали в дихлорпроизводное 133 действием POCl₃ в пиридине. Нуклеофильное замещение одного из атомов хлора в этом соединении на азидную группу в ДМФА и последующий термолиз образовавшегося азидотринитрохлорпроизводного 134 в АсОН привели к образованию искомого 7-хлор-4,6-динитробензофуроксана 131 (схема 54).

При взаимодействии соединения **131** с различными нитроанилинами в кипящем метаноле были получены продукты нуклеофильного замещения хлора – соответствующие динитробензофуроксаны **135-137**, содержащие в качестве заместителей фрагменты моно-, ди- и тринитроанилина, с очень хорошими выходами (схема 55).

Бензофуроксан **138**, содержащий нитрогруппы в положениях 5,6 также получают термолизом соответствующего 2,4,5-тринитро-1-азидобензола **139** в АсОН. Синтез соединения **139** осуществляют, в свою очередь, диазотированием 3-нитроанилина **140**, трансформацией образовавшейся диазониевой соли в 1-азидо-3-нитробензол **141** взаимодействием с NaN₃ и последующим нитрованием азида **141** серно-азотной смесью [74] (схема 56).

Термолиз *о*-азидонитробензолов был использован и для получения бензотрифуроксана **142** [75]. Исходным соединением послужил 4,6-динитро-5,7дихлорбензофуроксан **143**. Его взаимодействие с двумя эквивалентами азида натрия в ДМФА приводит к 4,6-динитро-5,7-диазидофуроксану **144**, который без выделения при комнатной температуре циклизуется в бензотрифуроксан **142** (схема 57).

Термолиз *о*-азидонитробензолов **145а-q** в среде ионных жидкостей, которые в последние годы широко используются в качестве замены обычных органических растворителей [76], позволил осуществить этот процесс в более мягких условиях. Скрининг подходящих ионных жидкостей и возможных добавок выявил, что наиболее эффективной средой для получения бензофуроксанов обработкой *о*-галогеннитробензолов азидом натрия является система, включающая наряду с ионной жидкостью [empyrr]BF4 катализатор межфазного переноса Bu₄NBr и небольшое количество воды. В этой системе удалось получить серию бензофуроксанов **146а-q**, включая бензотрифуроксан **146q**, с высокими выходами при температуре 55-60 °C, причем реакция проводится в опе-рот варианте без выделения опасных азидонитропроизводных. [77] (схема 58)

Схема 58

[empyrr]BF₄ – ионная жидкость – тетрафторборат 1-метил-1-этилпирролидиния

В работе [78] были синтезированы трициклические структуры - фуроксаноаннелированные бензо[1,2,3,4]тетразин-1,3-диоксиды (BTDO) 147. В качестве исходных соединений для их синтеза использовали производные бензо[1,2,3,4]тетразин-1,3диоксида, а фуроксановый цикл формировали с использованием описанного выше термолиза о-азидонитропроизводных бензольного фрагмента этих соединений. Так, о-148a был нитроазид бензотетразиндиоксида получен нитрованием моноазидопроизводного 149 серно-азотной смесью при пониженной температуре. Термолиз соединения 148а в АсОН при 90 °С привел к искомой трициклической системе 147а.а' в виде смеси изомеров по фуроксановому циклу в соотношении 1:1. Аналогично была синтезирована смесь изомеров бромпроизводного 147b,b' (соотношение изомеров 147b:147b' = 9:1) из бромсодержащего исходного соединения 150, которое, в свою очередь, было получено нитрованием дибромпроизводного 151 с последующим нуклеофильным замещением одного из атомов брома на азидный фрагмент. В этом случае для термолиза потребовалась более высокая температура (125 °C) и процесс проводили без растворителя (схема 59).

В следующей работе этих авторов [79] была предпринята попытка синтеза региоизомеров фуроксаноаннелированного бензотетразиндиоксида **152.** Однако, оказалось, что нагревание 6-азидо-7-нитробензотетразиндиоксида **148с** в различных условиях (в AcOH, в толуоле или без растворителя) приводило только к осмолению реакционной массы (схема 60).

Схема 60

Попытка синтеза бензотетразиндиоксида **153**, аннелированного двумя фуроксановыми кольцами также потерпела неудачу. Нагревание 5,7-диазидо-6,8-динитро бензотетразиндиоксида **148d** при различных температурах и в разных растворителях также привело только к осмолению реакционной массы (схема 61).

Применение микроволнового облучения в качестве нетрадиционного источника энергии в последние годы широко используется в различных химических процессах [80]. Научной группой [81] был разработан метод синтеза бензофуроксанов **154а-і** микроволновым пиролизом *о*-азидонитробензолов **155а–і.** Наиболее эффективными условиями для этого процесса оказалось облучение раствора соединений **155а-і** в среде ДМСО-H₂O (v/v = 5:1) в микроволновом реакторе Discover CEM при 120 °C и мощности 100 W (схема 62).

Схема 62

Этой же научной группой была исследована возможность получения бензофуроксанов 154а-ј фотолизом о-азидонитробензолов 155а-ј (схема 63). Процесс проводится облучением светом с длиной волны 385 нм исходного соединения без растворителя при комнатной температуре в фотореакторе "Southern New England Rayonet" течение 168 часов. Высокие выходы бензофуроксанов получены только с В кристаллическими *о*-азидонитробензолами с температурой плавления выше 50°С. При фотолизе более низкоплавких соединений 161 в качестве примесей образуются полимерные продукты. Интересно, что выходы бензофуроксанов, полученных при фотолизе (82-91%), сопоставимы с выходами, полученными при микроволновом пиролизе идентичных *о*-азидонитробензолов (60-90%). Однако, выходы для 154a,f оказались низкими (30%) из-за низких температур плавления исходных соединений [82].

Кроме пиролиза о-азидонитробензолов бензофуроксаны могут быть получены окислением вицинальных бензоглиоксимов. Так, при действии MnO₂ в MeCN на триоксим 156 образуется бензофуроксан 157, который был трансформирован В 2.4динитрофенилгидразон **158** [83]. Его окисление MnO₂ в ацетонитриле приводит к структуре 159, в которой к бензофуроксановому каркасу аннелирован 1,2,3-триазол-1оксидный цикл. Соединение 159 представляет собой смесь двух изомеров 159а и 159b в соотношении 2.9:1, которые отличаются друг от друга положением *N*-оксидного атома кислорода в фуроксановом цикле (схема 64).

Обработка соединения **159b** метилатом натрия в метаноле приводит к отщеплению ароматического заместителя и образованию смеси изомерных бензофуроксанов **160a** и **160b**, аннелированных гидрокситриазольным циклом. Судя по данным ¹Н ЯМР соотношение изомеров **160a:160b** составило 6:1 (схема 65).

1.4.2. Методы синтеза гетероаннелированных производных фуроксана

1.4.2.1. Методы синтеза аннелированных пиридазинофуроксанов.

Синтез аннелированных пиридазинофуроксанов 161 и 162 основан на селективной трансформации 3-цианогруппы в дицианофуроксане 111b в моноамидразон 163 взаимодействием с эквимольным количеством гидразин-гидрата. Соединение 163 при обработке AcOH 4,7-диаминопиридазино[4,5-с]фуроксана 161, дает диацетат нейтрализация карбонатом свободному 4,7которого натрия приводит к диаминопиридазино[4,5-*c*]фуроксану **162** (схема 66) [84].

Трансформация аминогрупп в соединении **162** на нитрогруппы могла бы привести к значительному увеличении плотности и детонационных характеристик полученного соединения. Для окисления этих аминогрупп были использованы два окислителя - фторноватистая кислота (HOF) и смесь 50% H_2O_2 с трифторуксусным ангидридом. При действии HOF был получен 3-(*N*-нитрокарбимидоил) 4-цианофуроксан **164** [85]. При использовании смеси 50% H_2O_2 и трифторуксусного ангидрида были получены с небольшими выходами две новые конденсированные гетероциклические структуры - 6-амино-7-нитро[1,2,5]оксадиазоло[3,4-*c*]пиридазин **165**, и его N(4)-оксидное производное **166**. Образование этих соединений могло быть результатом окислительной трансформации с сопутствующей перестройкой фуроксанового кольца [86]. Основным продуктом в этих условиях оказался трифторацетат 4,7-диаминопиридазино[4,5-*c*]фуроксана **167** (схема 67)

1.4.2.2. Синтез фуроксано[3,4-b]пиразинов

Первый пример получения фуроксано[3,4-*b*]пиразинового каркаса был описан в 1981 году, причем пиразиновый цикл был дополнительно сконденсирован с бензольным кольцом с образованием фуроксано[3,4-*b*]хиноксалинов **168** [87]. Бициклические фуроксано[3,4-*b*]пиразины были известны только как гидрированные производные фуроксано[3,4-*b*]пиперазина **169** (рис. 3) [88].

Рис.3. Производные фуроксано[3,4-*b*]пиразинов.

Для получения производных фуроксано[3,4-*b*]пиразина и его нитропроизводных были выбраны в качестве исходных соединений *o*-хлорнитропиразины **170а-с**, которые предполагалось трансформировать в азидонитропиразины **171а-с** нагреванием с NaN₃ в MeCN при 50-60 °C в течение 1 часа. Однако оказалось, что в этих достаточно мягких условиях происходит каскад опе-роt трансформаций. Он включает первоначальное образование азидонитропиразинов **171а-с**, их термолиз до фуроксано[3,4-*b*]пиразинов **172а-с**, изомеризацию фуроксанового цикла в этих соединениях, приводящую к фуроксано[3,4-*b*]пиразинам **172'а-с**. Гидролиз нитрогруппы до гидроксигруппы в полученных изомерах приводит к образованию фуроксано[3,4-*b*]пиразинов **173а-с** [89] (схема 68). Единственными интермедиатами, которые удалось выделить в этих реакциях, оказались соединения **172'а-с**, которые действительно являются нестабильными и легко гидролизуются до гидроксипроизводных.

Более энергетически выгодные производные фуроксано[3,4-*b*]пиразинов, аннелированные с тетразольным циклом, были получены авторами работы [90]. Известно, что азидозамещенные азины склонны к азидотетразольной таутомерии. В этой работе было обнаружено, что 2,6-диазидо-3,5-динитропиразин **174** в растворе ацетона-d₆ или

MeCN-d₃ по данным ЯМР существует в азидо-форме в течение 15–20 минут, а затем трансформируется в пиразинотетразол **175.** В дальнейшем при стоянии соединения **175** при комнатной температуре в течение 20-30 минут происходит формирование фуроксанового цикла с образованием трициклической структуры **176** (схема 69).

Схема 69

1.5. Методы синтеза гибридных структур содержащих фуроксановый и другие энергоемкие азотсодержащие гетероциклы.

Наряду с аннелированными структурами в последние годы важным направлением исследований, направленных на синтез и исследование высокоэнергетических материалов, является синтез гибридных структур, объединяющих в молекуле различные энергоемкие гетероциклы. В данной главе литературного обзора будут рассмотрены подходы к образованию полигетероциклических соединений, в которых фуроксановый цикл связан С-С связью с различными азотсодержащими гетероциклами.

1.5.1. Методы синтеза гибридных структур, содержащих фуроксановый и фуразановый гетероциклы.

В первую очередь целесообразно рассмотреть синтез высокоэнергетических соединений, в которых фуроксановый цикл связан с фуразановым С-С-связью. Недавно, в работе [91] был разработан метод синтеза изомерных динитроби-1,2,5-оксадиазольных структур, состоящих из нитрофуразановых и нитрофуроксановых субъединиц 177а, b. Для получения натриевую соль динитрометана ацилировали хлорангидридом их нитрофуразанилгидроксамовой кислоты 178 в условиях, разработанных ранее для 4-арил-3-нитрофуроксанов, затем нитрозировали образовавшийся получения а интермедиат системой NaNO₂/AcOH/AcONa. В результате этой реакции образуется 3нитро-4-(4-нитрофуразан-3-ил)фуроксан 177a, который подвергают термической изомеризации в 4-нитро-3-(4-нитрофуразан-3-ил)фуроксан 177b при кипячении в CCl4 (схема 70).

Структуры 177а, в являются высокоплотными соединениями (плотность 177а = 1,92 г/см³, а 177b - 1,934 г/см³) с высокой энтальпией образования (417,5 кДж/моль), достаточно высокой термической стабильностью (температура начала разложения (THP) = 146 и 140 °C, соответственно) и высокими скоростями детонации (9.18 и 9.23 км/сек, соответственно). Их чувствительность к удару и трению близка к соответствующим характеристикам энергетических нитроэфиров.

Из других соединений, содержащих фуразановый и фуроксановый циклы, связанные С-С связью, наиболее перспективной и широко изученной структурой является 3,4-бис(3нитрофуразан-4-ил)фуроксан (BNFF) и соединения, полученные на его основе. Синтез BNFF был впервые описан более 30 лет назад в Санкт-Петербургском Технологическом Институте (СКТБ «Технолог»). С тех пор интерес к этому соединению постоянно растет. Это связано с уникальными характеристиками BNFF ($\rho = 1.937$ г/см³, T_{пл} = 108-109 °C, $\Delta H_{f}^{0} = -706.1 \text{ кДж/моль}^{-1}, D = 9.25 \text{ км/сек, чувствительность к удару} = 94\%$ (10 кг, 25 см), чувствительность к трению % = 1000/1; 2000/6; 3000/20 кг/см²). В первую очередь, BNFF представляет интерес в качестве возможного заменителя тротила (THT) в плавких взрывчатых составах, в частности были приготовлены его эвтектические смеси с другими плавкими энергоемкими соединениями (с ТНТ, 37.86 моль% BNFF [92], Т_{пл}. 58 °C; с РЕТИ, 68.2 моль% BNFF Тпл. 95.7 °C [93]; с TNAZ Тпл. 78.9 °C; 40.49 моль% BNFF [94], а также тройные смеси [95] TNT/TNAZ/BNFF (Т_{пл}.76.5-76.7 °C; 52.3/27.3/20.4 моль%), TNAZ/BNFF/RDX (Тпл. 47-50 °C; 54.9/39.6/5.5 моль%). И, кроме того, на основе достаточно простых превращений (реакции с нуклеофильными реагентами) получены новые энергоемкие структуры.

Синтез BNFF основан на использовании в качестве исходного соединения малононитрила **179**, который вначале в результате one-pot процесса трансформируется в 4-аминофуразан-3-карбоксамидоксим **180** через последовательное образование монооксима **181**, триоксима **182** и нагревания последнего с неорганическим основанием. Затем амидоксим **180** под действием NaNO₂ в соляной кислоте трансформируется в

хлорангидрид аминофуразанилгидроксамовой кислоты **183**. На последней стадии при действии основания на соединение **183** происходит генерация нитрилоксида **184**, димеризация которого без выделения приводит к 3,4-бис(аминофуразанил)фуроксану **185** (BAFF). Целевое соединение **186** получают с выходом 51% окислением диаминопроизводного 60% H₂O₂ в трифторуксусном ангидриде [96] (схема 71).

Неожиданный вариант получения соединения **186**, исходя из аминометилфуразана **187**, был предложен в работе [97]. Силилирование аминофуразана **187** действием гексаметилдисилазана приводит к моно(триметилсилил)производному **188**, введение которого в тандемный процесс литиирования-силилирования позволяет получить продукт *С*,*N*,*N*-силилирования - трис(триметилсилил)производное **189**. Дальнейшая обработка соединения **189** действием N₂O₅ в присутствии каталитического количества NaF приводит к образованию нитроловой кислоты **190**, термолиз которой с элиминированием HNO₂ генерирует нитрилоксид **191**, димеризующийся в соединение **186** с выходом 23% (схема 72).

Нуклеофильное замещение нитрогрупп в соединении **186** на самые различные нуклеофилы позволило получить серию новых структур, содержащих 3,4бис(фуразанил)фуроксановый каркас. В частности, с высокими выходами синтезированы диаминопроизводные **192-196** посредством реакции со вторичными аминами, а высокоэнергетический бис(азидофуразанил)фуроксан (DAZTF) **204** получен в результате замены нитрогрупп на азидные группы (схема 73) [98].

Низкая температура плавления 51-52°С, хорошая термическая стабильность, и высокая скорость и давление детонации (9.94 км/с и 43.6 ГПа) позволяет рассматривать 3,4-бис(4-азидофуразано-3-ил)фуроксан **198** в качестве потенциального кандидата для использования в качестве плавкого компонента в плавких энергоемких составах.

Структурная особенность молекулы **186**, в которой оба фуразановые цикла повернуты друг к другу [97,99], позволила синтезировать на его основе не только линейные структуры **192-197**, но и ранее неизвестные 7-членные гетероциклические системы, в которых трис(1,2,5-оксадиазольный)каркас связан по концевым атомам углерода фрагментом двухвалентного нуклеофила. Так, взаимодействие BNFF с нуклеофилами, содержащими первичные аминогруппы (амины, аммиак и гидразин), приводит к 7R-замещенным 7*H*-трис[1,2,5]оксадиазоло[3,4-*b*:3',4'-*d*:3",4"-*f*]азепин-1-оксидам **199-220** (схема 74).

Медленное добавление этилендиамина к раствору соединения **186** в MeCN позволяет обеим аминогруппам участвовать в нуклеофильном замещении и приводит к образованию 1,2-бис[[1-оксидо-7*H*-трис[1,2,5]оксадиазоло[3,4-*b*:3',4'-*d*:3",4"-*f*]азепин]-7-ил]]этана **205**. При смешении реагентов в обратном порядке, когда BNFF медленно

добавляют к избытку раствора этилендиамина в MeCN, образуется только 7-(2-аминоэтил-7*H*-трис[1,2,5]оксадиазоло[3,4-*b*:3,4'-*d*:3",4"-*f*]азепин-1-оксид **206** (схема 75).

Схема 75

Незамещенный по атому азота азепин **199** при нитровании образует 7-нитро-7*H*-трис[1,2,5]оксадиазоло[3,4-*b*:3',4'-*d*:3",4"-*f*]азепин-1-оксид **207**, который можно рассматривать как структурный изомер бензотрифуроксана (BTF) **142** (схема 76) [100].

Нитрование *N*-аминоазепина 200 в различных нитрующих системах сопровождалось окислительным элиминированием *N*-аминогруппы и образованием азепина 199, который в зависимости от используемой системы нитрования, либо оставался неизменным (HNO₃, 10°C; NH₄NO₃/Ac₂O, 70°C) либо «димеризовался» до бисазепина 208 (HNO₃/Ac₂O, 0-5°C; HNO₃/TFAA, -10°C). Некоторые из попыток окисления Nаминогруппы в нитрамине 200 также привели к дезаминированию. В отличие от азепинов 199 и 200, соединение 208 слабо растворяется в азотной, трифторуксусной и уксусной кислотах, а также в спирте и хлорбензоле даже при повышенных температурах, но растворимо в диэтилкарбонате и диметилформамиде (ДМФА). Нагревание растворов димера 208 в ДМФА выше 100 °C сопровождается расщеплением связей N-N и образованием азепина 199 с небольшим выходом (схема 77). Несмотря на высокую термическую стабильность, соединение 208 является довольно чувствительным к механическим воздействиям [101].

Незамещенный по атому азота азепин **199** склонен к реакциям алкилирования алкилгалогенидами или диметилсульфатом с образованием структур **201, 203, 209**. При алкилировании 1,9-дихлор-2,4,6,8-тетранитро-2,4,6,8-тетраазанонаном **210** был получен термически стабильный димер **211** (THP > 300 °C), связанный по атомам азота полинитраминометиленовым спейсером (схема 78).

Результат реакции BNFF 186 со слабыми основаниями зависит от выбора растворителя. Реакция BNFF с водными растворами карбонатов щелочных металлов приводит к полному разрушению молекулы. Однако проведение подобных реакций в безводных спиртах позволяет получить соответствующие терминальные диалкильные производные 3,4-бис(4-R-фуразан-3-ил)фуроксана 212 и 213. При действии K₂CO₃ на соединение 186 в ацетонитриле наблюдалось образование циклического эфира 214. В последнем случае реакция сопровождается выделением оксидов азота NO и NO₂ (схема 79). По мнению авторов, реакция инициируется образующимся в этих условиях карбанионом ацетонитрила, который способствует тому, что одна из нитрогрупп внутримолекулярной нитро-нитритной подвергается перегруппировке [102]. Образующийся эфир 215 теряет NO и вступает во внутримолекулярное нуклеофильное замещение второй нитрогруппы с образованием циклического эфира 214.

В работе [103] была экспериментально определена плотность и рассчитаны энтальпия образования, кислородный баланс и детонационные параметры (давление и скорость детонации) BNFF и полученных на его основе энергоемких структур (Таблица 2).

Таблица 2. Рассчитанные величины энтальпии образования, плотности, кислородного баланса, скорости и давления детонации BNFF и его производных.

Соединение	ΔH _f °, кал/г	OB	р, кг/см ³	Р, ГПа	D, км/с
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	1608.6	23.00	1.87	45.7	9.57
$N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} N_{0}^{N} 198$	3459.3	44.59	1.78	43.6	9.94
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array}\\ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c} \end{array} $ $ \end{array} $	2453.5	61.02	1.90	39.0	9.23
$ \begin{array}{c} $	2760.4	60.56	1.87	41.3	9.54

Несмотря на высокие детонационные параметры ряда приведенных в таблице структур, в целом по совокупности энергетических и физико-химических свойств (THP, чувствительность к механическим воздействиям) 3,4-бис(4-нитрофуразан-3-ил)фуроксан (BNFF) является наиболее привлекательной структурой по сравнению с соединениями, полученными на его основе.

1.5.2. Методы синтеза гибридных структур, содержащих фуроксановый и другие азотсодержащие гетероциклы, связанные С-С связью.

Для получения бис(азолил)замещенных фуроксанов используется два основных подхода. Первый подход основан на циклодимеризации азолилкарбонитрилоксидов. Эта методология применима к синтезу бис(азолил)- и бис(нитроазолил)производных фуроксана с такими азолами, как имидазол и 1,2,4-триазол. Второй подход к получению азолилфуроксанов основан на построении азолов посредством трансформации соответствующих функциональных производных фуроксана. По этой методологии были синтезированы 1,2,3-триазолил- и тетразолилфуроксаны.

1.5.2.1. Методы синтеза имидазолилфуроксанов.

3,4-Бис(имидазолил)фуроксан **216** был синтезирован циклодимеризацией имидазолилкарбонитрилоксида **217**, полученного дегидрохлорированием соответствующего имидазолилхлороксима **218**, синтезированного, в свою очередь хлорированием оксима **219** *N*-хлорсукцинимидом (NCS). Нитрование соединения **216** безводной HNO₃ позволяет получить бис(динитроимидазол-2-ил)фуроксан **220** в качестве

основного продукта, а в качестве минорного продукта образуется бис(моноимидазол-2ил)фуроксан **221** [104] (схема 80).

1.5.2.2. Методы синтеза 1,2,4-триазолилфуроксанов.

3,4-Бис(1,2,4-триазол-3-ил)фуроксан 222 синтезировали на основе 3-циано-1,2,4триазола 223, который последовательно трансформировали в амидоксим 224 и хлороксим 225. Последний при обработке поташом в результате дегидрохлорирования генерировал нитрилоксид 226, который без выделения циклодимеризовался в трициклическое соединение 222. Его нитрование смесью HNO₃ и AcOH позволяет ввести нитрогруппу к N(2) атому азота триазольного цикла с образованием 3,4-бис(1-нитро-1,2,4-триазол-3ил)фуроксана 227 (схема 81). Соединение 227 имеет низкую температуру плавления (99,2 °C) и более высокие детонационные свойства, чем тринитротолуол (THT), поэтому его можно рекомендовать в качестве замены THT в будущем.[105]

1.5.2.3. Методы синтеза (1,2,3-триазол-1-ил)фуроксанов.

1,2,3-Триазолилфуроксаны были получены с помощью реакции [3+2]циклоприсоединения азидофуроксанов к терминальным или интернальным ацетиленам. В качестве исходных субстратов были выбраны 4-азидо-3-фенилфуроксан **109b** и 4-азидо-3пропилфуроксан **109d**. Их синтез основан на нуклеофильном замещении нитрогруппы в доступных 4-нитрофуроксанах **2а,k** при действии NaN₃ в ДМСО при комнатной температуре (см. схему 43).

азидофуроксанов 109b.d Однако трансформацию В (1,2,3-триазол-1ил)фуроксаны на основе реакции [3+2]-циклоприсоединения к терминальным или интернальным ацетиленам удалось осуществить только в среде ионных жидкостей при температуре (80) °C). Обработка 109b.d повышенной азидофуроксанов диэтилацетилендикарбоксилатом 228a (DEAD) и 1,4-бутиндиолом 228b позволила получить серию триазолилфуроксанов 229a-d с хорошими и умеренными выходами. Реакция с 4-азидо-3-пропилфуроксаном 109d проходила медленнее (~ 30 ч), чем с 4-азидо-3-фенилфуроксаном **109b** (~ 20 ч) (схема 82).

Схема 82

[bmim]BF₄ - тетрафторборат 1-бутил-3-метилимидазолия

Циклоприсоединение азидофуроксанов 109b,d к терминальным ацетиленам 230ad протекало аналогично, причем взаимодействие азидофуроксана 113d с ацетиленами 230a-d также протекало медленнее, чем азидофуроксана 109b (схема 84). Все реакции проходили региоселективно и давали смесь двух региоизомеров 231e-1 и 231'e-1 с выходами 24–57% и преобладанием региоизомеров 231e-1. Соотношение изомеров 231el:231'e-l (3:1-6:1) определяли по соотношению интегральных интенсивностей CH-групп триазольных циклов в спектрах ¹H ЯМР (схема 83) [61].

1.5.2.4. Методы синтеза тетразолилфуроксанов.

Для получения фуроксанов, связанных С-С связью с тетразольными циклами, использовали реакцию [3+2]-циклоприсоединения цианогрупп в 3,4-дицианофуроксане **111b** к азид-аниону. Реакцию дицианофуроксана **111b** с NaN₃ проводят в ДМФА при нагревании в присутствии хлорида аммония. 3,4-Бис(1*H*-тетразол-5-ил)фуроксан **232** образуется с хорошим выходом (схема 84) [106].

3,4-Бис(гидрокситетразолил)фуроксан 233, в котором фуроксановый цикл связан С-С связями с двумя гидрокситетразольными фрагментами, был также синтезирован из дицианофуроксана **111b**. Вначале В результате реакции соединения 111b с получают бис(амидоксим) 234. 234 гидроксиламином Затем бис(амидоксим) трансформируют в бис(хлороксим) 235 путем диазотирования NaNO₂ в 15% HCl, и далее в бис(азидооксим) 236 взаимодействием образовавшегося бис(хлороксима) 235 с NaN₃. Насыщение раствора соединения 236 газообразным HCl при 0°C с последующим перемешиванием течение 24 часов приводит К образованию В искомого бис(гидрокситетразолил)фуроксана 233 (схема 85) [107].

1.6. Методы синтеза высокоэнергетических солей различных производных фуроксана.

1.6.1. Высокоэнергетические соли тетразолилфуроксанов.

Энергетические соли высокоэнтальпийных азотсодержащих гетероциклов с высокоазотными катионами в последнее десятилетие привлекают значительное внимание благодаря своей экологичности, высокой энтальпии образования и плотности, пониженной чувствительности к механическим воздействиям и положительному влиянию на детонационные параметры [108]. В результате разложения таких солей выделяется большой объем экологически безопасного N₂, что делает их очень перспективными кандидатами для применения в энергоемких составах, к которым предъявляют повышенные требования по экологической чистоте и термической стабильности.

Как упоминалось ранее, 3,4-дицианофуроксан **111b** является важным структурным блоком для конструирования тетразольного кольца, в частности, на основе соединения **111b** был получен 3,4-бистетразолилфуроксан (H₂BTF). H₂BTF представляет собой двухосновную кислоту, и поэтому можно было ожидать получения как моно-, так и дианионных солей с ее участием.

Реакция H₂BTF как с одним, так и с двумя эквивалентами гидразина в MeOH привела к смеси моно- и дианионной солей. Моноанионная соль **232** была получена кристаллизацией из MeOH. Однако взаимодействие H₂BTF с эквимольным количеством менее основных соединений приводит только к моноанионным солям **237-244** с хорошими выходами [108] (схема 86).

Прямая реакция H₂BTF **232** с избытком аммиака приводит к образованию диаммониевой соли **245**. Дианионные соли H₂BTF **246–250** получают реакцией метатезиса предварительно синтезированной бариевой соли **251** с сульфатами соответствующих оснований, а энергетические соли **252–254** были получены реакцией метатезиса бариевых солей с соответствующими сульфатными солями, полученными при обработке иодидов или хлоридов сульфатом серебра Ag₂SO₄ [106] (схема 87).

4-Нитро-3-(тетразол-5-ил)фуроксан (HTNF) **255** был синтезирован окислением 4амино-3-(тетразол-5-ил)фуроксана (HTNF) **256**, который был в свою очередь изготовлен из 4-амино-3-цианофуроксана **257** [109]. Синтетические пути к новым энергетическим солям HTNF **258**, **259-261** представлены на схеме 88. Они были получены нейтрализацией HTNF **255** аммиаком, 3-амино-1,2,4-триазолом, 3,5-диамино-1,2,4-триазолом, и 3,4,5триамино-1,2,4-триазолом, соответственно [110]. А соли HTNF **255** с производными гуанидина **262-266** получали реакцией метатезиса бариевой соли Ba(HTNF)₂ **267** с сульфатами соответствующих оснований *in situ* (схема 88).

Схема 88

Опе-роt вариант получения аммониевых солей тетразолилфуроксанов **268а-ј** был предложен в работе [62]. Этот способ основан на взаимодействии цианофуроксанов **111а,с,d,h-n** с 2.5 экв. триметилсилилазида (TMSN₃) и 1 экв. NH₄F в MeCN. Выходы искомых солей составляют 69-97% независимо от положения цианогруппы у C(3) или C(4) углерода фуроксанового цикла, причем для бис(тетразолил)фуроксана **268g** и бис(тетразолил)азофуроксана **268h** были получены бисаммониевые соли. Исключение составлял 4-нитро-3-цианофуроксан **1f**, нитрогруппа которого в условиях реакции нуклеофильно замещалась на азид-ион. Увеличение количества TMSN₃ в реакции с фуроксаном **1f** привело как к замене нитрогруппы на азидную, так и к формированию тетразольного цикла и аммониевая соль азидотетразолилфуроксана **268d** была получена с

выходом 97%. Свободные (1*H*-тетразол-5-ил)фуроксаны **269а-ј** получают нейтрализацией аммониевых солей 10%-ной HCl с почти количественными выходами (схема 89)

1.6.2. Высокоэнергетические соли нитроамино- и динитрометил-фуроксанов.

Нитраминогруппа является важным эксплозофорным фрагментом, который присутствует во многих энергетических соединениях. Замена нитрогруппы на нитраминогруппу в производных энергоемких бисфуразанов увеличивает плотность и теплоту образования, а также детонационные характеристики этих соединений [111]. Поэтому нитраминопроизводные фуроксанов представляют большой интерес как возможные компоненты энергетических материалов.

Наиболее энергетически эффективные нитраминофуроксаны и их соли с высокоазотными катионами были получены на основе диаминопроизводных, содержащих два фуроксановых цикла или комбинацию фуроксанового и фуразанового циклов. Так, в работе [112] были синтезированы изомерные бис(нитроамино)бифуроксаны 270 и 271 с различным расположением *N*-оксидных атомов кислорода и их соли с высокоазотными катионами 272а-с и 273а-с. Методы синтеза исходных диаминов 274 и 275 описаны в работе [24]. Для нитрования диаминов 274 и 275 использовали 100%-ную HNO₃ при охлаждении. Энергетические соли 272, 273 синтезированных бис(нитраминов) 270,271 получали либо взаимодействием с соответствующими основаниями (аммониевые, гидроксиламмониевые и гидразиниевые), либо реакцией метатезиса предварительно синтезированной ди-серебряной соли 272а с гидрохлоридами гуанидиния, ди- и триаминогуанидиния (схема 90).

Детонационные характеристики как нитроаминов 270 и 271, так и их гидроксиламмониевых (272b и 273b) и гидразиниевых (272c и 273c) солей являются либо сопоставимыми, либо превосходят аналогичные характеристики НМХ. Однако применение большинства из них ограничено из-за низкой температуры разложения. Определенную перспективу использования в будущих энергетических материала имеют соли 272a-d и 272f, термическая стабильность которых выше (Таблица 3)

	Т _{разл,}	d,	D,	IS,	FS,
	°C	г • см ⁻³	м • с ⁻¹	Дж	Н
270	74	1.91	9381	3	20
271	91	1.94	9472	2	20
272a	148	1.81	9066	30	160
272b	160	1.86	9485	12	120
272c	143	1.81	9355	15	120
272d	168	1.73	8573	8	160
272e	113	1.64	8577	5	120

Таблица 3. Физико-химические свойства бис(динитроамино)фуроксанов и их солей.

272f	137	1.64	8738	5	120
273a	113	1.78	8957	12	120
273b	100	1.96	9845	13	120
273c	86	1.88	9870	5	20
HMX	287	1.91	9144	7.4	120

d – плотность образца; IS- чувствительность к удару

D- скорость детонации; FS-чувствительность к трению

Аналогичным образом были синтезированы энергетические соли 4-нитраминофуразанил-3-нитраминофуроксана 276 с небольшими катионами (аммоний 277а, гидразиний 277b). Нитрование аминогрупп в 4-аминофуразанил-3-аминофуроксане 278 проводили 100% HNO₃ при пониженной температуре, а соли получали взаимодействием биснитрамина 276 с эквимольными количествами соответствующих оснований [113] (схема 91). Исходный диаминофуразанилфуроксан 278 был синтезирован в работе [50]

Гидразиниевая соль **277b** имеет высокую скорость детонации 9351 м/сек при давлении детонации 38,3 ГПа, что лишь немного ниже, чем у октогена (HMX), но намного выше, чем у гексогена (RDX). К сожалению, соединение **277b** характеризуется высокой чувствительностью к механическим воздействиям (чувствительностью к удару 6 Дж, чувствительность к трению 120 H).

1.6.3. Энергетические соли динитрометилфуроксанов.

Нитрометильные производные фуроксанов являются также могут образовывать энергетические соли. Одной из таких структур является дикалиевая соль 3,4бис(динитрометил)фуроксана **279**, полученная из дицианофуроксана **111b**, который трансформируют в бис(хлороксим) **280** в соответствии с ранее описанными методами [107,114]. Нитрование бис(хлороксима) **280** смесью 100% HNO₃ и трифторуксусного ангидрида (TFAA) приводит к образованию 3,4-бис(динитрохлорметил)фуроксана **281**, который представляет собой бесцветное масло, медленно разлагающееся при стоянии. При его обработке КІ в метаноле выпадает в осадок дикалиевая соль **279**, которая нечувствительна к свету и стабильна при хранении при комнатной температуре. Она не растворима в спиртах, однако растворима в воде, диметилсульфоксиде (ДМСО) и диметилформамиде (ДМФА) (схема 92).

В работе [115] для нитрования бис(хлороксима) **280** вместо HNO₃ был взят N₂O₅. Реакция проходит аналогично, полученная дикалиевая соль **279** была подкислена H₂SO₄ до свободного 3,4-бис(динитрометил)фуроксана **282**, который, в свою очередь, был обработан двумя эквивалентами гидразингидрата с образованием дигидразиниевой соли **283** в виде моногидрата (схема 93).

Схема 93

Таким образом, из представленного литературного обзора следует, что на основе фуроксана синтезирован широкий спектр высокоэнергетических производных. В первую очередь обращает на себя внимание большой объем исследований по синтезу и исследованию реакционной способности нитрофуроксанов, которые как сами обладают высокими энергетическими характеристиками, так и используются для получения новых энергоемких структур за счет замены нитрогруппы на другие эксплозофорные группировки (N₃, CN). Белым пятном в ряду синтеза нитрофуроксанов остается синтез нитробифуроксанильных структур. К настоящему времени удалось синтезировать только динитробифуроксанил, но, к сожалению, в следовых количествах. Кроме того, как видно из обзора, в последние годы большое внимание уделяется синтезу энергоемких солей различных функциональных производных фуроксана с высокоазотными катионами, поскольку они обладают высокой энтальпией образования, высокой термической

стабильностью и высоким содержанием азота, а простые реакции метатезиса, позволяющие менять катионы, оказывают существенное влияние на характеристики полученных соединений. Поэтому разработка эффективных методов синтеза нитробифуроксанильных структур и энергоемких солей на основе фуроксана, включены в планы исследований настоящей диссертационной работы.

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ¹

В соответствии с целью и задачами работы проведенные исследования можно разделить на две основные группы: синтез фармакологически ориентированных гетарилфуроксанов и синтез энергоемких производных фуроксана. На завершающем этапе работы были исследованы прикладные свойства синтезированных соединений.

2.1. Синтез фармакологически ориентированных гетарилфуроксанов.

В последние годы в нашей лаборатории были разработаны методы синтеза новых фармакологически ориентированных гибридных структур, объединяющих фуроксановый цикл – потенциальный NO-донор, с различными фармакофорными гетероциклами (1,2,3и 1,2,4-триазолами, 1,2,4- и 1,3,4 -оксадиазолами, тетразолами и др) [61,62,116-119]. Для выхода к новым фармакологически ориентированным гетарилфуроксанам в настоящей диссертационной работе разработаны эффективные способы получения нескольких типов структур, содержащих в одной молекуле фуроксановый цикл и другие фармакофорные гетероциклические фрагменты: (1,2,4-триазин-3-ил)-, пиридил-, терпиридил-, инденопиридил-, изоксазолил-, изоксазолинил- и 1,2,4-оксадиазолилфуроксаны. Кроме разработан новый метод синтеза 1,2,3-триазолилфуроксанов. того, Исследована цитотоксическая активность ряда синтезированных соединений, выявлены наиболее эффективные структуры и оценена их NO-донорная способность.

2.1.1. Разработка методов синтеза производных (1,2,4-триазин-3-ил)- и пиридилфуроксанов.

Пиридины относятся к особенно привлекательным фармакофорным гетероциклам что связано с широким спектром их применения. Пиридинсодержащие соединения используются в разработке лекарственных средств, таких как эзомепразол, лоратадин, кризотиниб и эмоксипин [120-122], агрохимии [123], фотофизике [124], OLEDтехнологиях [125] и т. д. Однако наиболее многочисленные сведения о применении производных пиридина относятся к построению фармакологически активных соединений, что обеспечивает высокую актуальность синтеза гетероциклических систем с участием пиридинового фрагмента [126-132]. Одним из мощных инструментов в синтезе биологически активных молекул И природных соединений. включающих гетероароматический фрагмент, в частности, пиридин, является реакция Дильса-Алдера [133, 134]. Для выхода к пиридилфуроксанам мы выбрали последовательность реакций гетеро-Дильса-Альдера с обращенными электронными требованиями/ретро Дильса-Альдера (ihDA/rDA) [124,135-149]. В этих реакциях применяется ряд диенофилов с электроноакцепторными заместителями, а азины являются наиболее используемыми азадиенами. Для решения поставленной задачи мы решили синтезировать (1,2,4-триазин-3-ил)фуроксаны 1 и ввести их в реакцию ihDA/rDA с подходящими диенофилами.

В качестве наиболее удобного подхода к синтезу исходных (1,2,4-триазин-3-ил) ϕ уроксанов 1 мы выбрали циклоконденсацию α -дикарбонильных соединений 2 с фуроксаниламидразонами 3. Эффективный синтез последних был недавно разработан в нашей лаборатории на основе реакции доступных цианофуроксанов 4 с гидразин-3-Метил-4-циано- (**4a**), 4-фенил-3-циано- (**4b**) и 4-амино-3гидратом [150]. (4c) цианофуроксаны были использованы для приготовления исходных фуроксаниламидразонов За-с. Выбор субстратов 3 с различным расположением *N*оксидного фрагмента по отношению к цианогруппе был связан с особенностью структуры фуроксанового цикла. Известно, что С(3) атом углерода фуроксанового цикла обладает более высокой электронной плотностью, чем С(4) из-за резонансного влияния *N*-оксидного атома кислорода [151]. Более высокая плотность электронов на С(3) атоме может привести к различной реакционной способности исходных амидразонов **3a** и **3b,c** по отношению к α -дикарбонильным соединениям **2**.

Для изучения реакционной способности амидразонов **3а-с** в синтезе (1,2,4триазин-3-ил)фуроксанов **1**, мы выбрали четыре представителя *а*-дикарбонильных соединений с различными заместителями - глиоксаль **2a**, дифенилглиоксаль **2b**, дипиридилглиоксаль **2c** и нингидрин **2d**. Было установлено, что циклоконденсация амидразонов **3** с *а*-дикарбонильными соединениями **2** протекает легко с образованием целевых (1,2,4-триазин-3-ил)фуроксанов **9a-l** с хорошими или отличными выходами во всех случаях, независимо от положения *N*-оксидного атома кислорода и присутствия в фуроксане алкильной, арильной или аминогрупп. Между тем, заместители в *а*-дикарбонильных соединениях **2** влияют на продолжительность реакции. Так было обнаружено, что их реакционная способность падает в следующем ряду: **2a**>**2b**,**c**>**2d**. Следует отметить, что реакция не требовала основного катализа. Более того, реакция амидразона **3с** с *а*-дикарбонильными соединениями **2** была хемоселективной и в реакцию не вступала аминогруппа, непосредственно связанная с фуроксановым циклом, по-видимому, из-за очень низкой нуклеофильности аминофуроксанов (схема 1).

Имея широкий набор (1,2,4-триазин-3-ил)фуроксанов **1а-1**, мы исследовали возможность синтеза новых гибридных гетероциклических структур с пиридилфуроксановым ядром посредством [4+2]-циклоприсоединения субстратов **1** к двум диенофилам разного типа: енамину (1-(пирролидин-1ил)циклогексену) **5** и 2,5-норборнадиену. Исследования были начаты с реакции триазинов **1** с енамином **5**. Для оптимизации условий реакции триазин **1а** вводили в реакцию со стехиометрическим количеством енамина **5** при различных температурах и продолжительности процесса в различных растворителях (схема 2, Таблица 1).

Таблица 1. Оптимизация условий [4+2]-циклоприсоединения 3-метил-4-(1,2,4-триазин-3ил)фуроксана 1а к 1-(1-циклогексен-1-ил)пирролидину 5.

	Растворитель	T, °C	Время, ч	Выход ба , %
1	CH ₂ Cl ₂	20	40	51
2	CH ₂ Cl ₂	40	26	43
3	CHCl ₃	20	4	81
4	CHCl ₃	60	4	66
5	DCE	20	48	следы
6	DCE	80	30	следы
7	Диоксан	100	24	22
8	PhH	80	24	следы
9	PhMe	110	24	-
10	MeCN	20	56	-
11	MeCN	80	20	-
12	ДМФА	100	6	-

Было установлено, что циклоприсоединение протекает успешно как в CH₂Cl₂, так и в CHCl₃ при комнатной температуре (таблица 1, строки 1-4). При более высоких температурах выходы продукта **6a** уменьшаются (таблица 1, строки 2, 4). Замена CHCl₃ или CH₂Cl₂ на дихлорэтан или диоксан была неэффективной даже при температурах кипения с обратным холодильником (таблица 1, строки 5-7). Использование бензола, толуола или MeCN не приводило к образованию целевых продуктов (таблица 1, строки 8-11), а нагревание в ДМФА приводило к разложению исходного 1,2,4-триазина **1a** (таблица 1, строка 12). Оптимальными условиями получения соединения **6a** оказалось перемешивание реакционной массы в CHCl₃ в течение 4 ч при 20 °C (таблица 1, строка 3).

Циклоприсоединение было полностью региоселективным и приводило к получению гексагидроизохинолинового производного **6a** с хорошим выходом. Однако *in situ* ароматизация соединения **6a** не проходила. Наличие мультиплетности сигнала мостикового протона в гексагидроизохинолиновом фрагменте в ¹Н ЯМР-спектре соединения **6a** доказывает региоселективность циклоприсоединения. Протон α -CH группы дигидропиридина **6a** проявляется в виде дублета, в то время как протон β -CH группы образует триплет благодаря спин-спиновым взаимодействиям с двумя соседними C-H фрагментами. Этот протон в противоположном региоизомере должен был бы проявиться в

виде дублета. Наблюдаемая региоселективность циклоприсоединения подтверждается литературными данными о сильном предпочтении нуклеофильного атома углерода электронообогащенного диенофила присоединяться к C(3) атому углерода 1,2,4триазинового цикла, особенно если этот атом имеет сильный электроноакцепторный заместитель (фуроксановое кольцо) [136]. Кроме того, известно, что спонтанная ароматизация таких региоизомеров маловероятна и требует использования окислителя [138]. Поэтому мы предприняли поиск окислителя для ароматизации гексагидроизохинолина **6a** (схема 3, таблица 2).

Попытки провести окисление с использованием кислорода воздуха были безуспешными. Стехиометрическое количество *мета*-хлорнадбензойной кислоты (*m*CPBA) также было неэффективно (таблица 2, строка 3), однако постепенное увеличение молярного избытка *m*CPBA приводило к образованию тетрагидроизохинолина **7a** (таблица 2, строки 4-7). Реакция с 4-кратным избытком окислителя обеспечивала наибольший выход целевого продукта **7a** (таблица 2, строка 6). Однако, при повышении температуры наблюдалась тенденция к уменьшению общего выхода предполагаемого продукта реакции (таблица 2, строка 8). Использование DDQ было неэффективно независимо от его количества и температуры реакции (таблица 2, строка 8). В СНСІз при 20 °C в течение 8 часов было оптимальным вариантом формирования тетрагидроизохинолина **7a** с высоким выходом (таблица 2, строка 6).

Схема 3

Таблица 2. Оптимизация условий окислительной ароматизации гексагидроизохинолинилфуроксана **6а** в тетрагидроизохинолинилфуроксан **7а**.

	Окислитель (экв.)	T, °C	Время, ч	Выход 7а , %
1	О2 воздуха	20	24	-
2	О2 воздуха	60	24	-
3	<i>m</i> CPBA (1)	20	48	следы
4	<i>m</i> CPBA (2)	20	48	следы
5	<i>m</i> CPBA (3)	20	48	26
6	mCPBA(4)	20	8	91
7	mCPBA(5)	20	8	73
8	mCPBA(4)	60	6	76

9	DDQ (1)	20	72	-
10	DDQ (4)	20	72	-
11	DDQ (1)	60	4	-

Поскольку гетеро-Дильса-Альдера/ретро-Дильса-Альдера реакции И окислительной ароматизации протекают в аналогичных условиях, мы решили провести эти процессы в one-pot варианте. Оказалось, что one-pot подход к получению тетрагидроизохинолина 7а с помощью каскада реакций гетеро-Дильса-Альдера/ретро-Дильса-Альдера и окислительной ароматизации был успешным и привел к получению продукта 7а с 80%. Для дальнейшего расширения целевого выходом ряда синтезированных (тетрагидроизохинолинил) фуроксанов в этот *one-pot* каскадный процесс были введены другие 1,2,4-триазинилфуроксаны 1. Было установлено, что соединения 1d,e,h могут эффективно взаимодействовать с енамином 5, а полученные таким образом (гексагидроизохинолинил)фуроксаны (ТСХ-контроль) легко подвергались дальнейшей окислительной ароматизации *in situ* при действие *m*CPBA (схема 4)

Схема 4

Для введения в упомянутый каскад реакций триазинилфуроксанов 1b,c,f,g, содержащих фенильные И пиридиновые заместители В триазиновом кольце, потребовалось кипячение в CHCl₃ Соответствующие полициклические тетрагидроизохинолины 7b,c,f,g были получены с хорошими выходами. Особенно важно,
что расположение триазинового цикла при C(3) или C(4) атоме углерода фуроксанового цикла не влияет на итоговый результат реакции. Однако, триазинилфуроксаны **1i-1**, содержащие аминогруппу при фуроксановом кольце разлагались под действием енамина **5.** Это связано с тем, что большинство фуроксанов нестабильны в присутствие сильных C-, N- и O-нуклеофилов и могут подвергаться раскрытию цикла с последующим разложением или образованием других продуктов [152,153]. Все синтезированные (тетрагидроизохинолинил)фуроксаны были охарактеризованы спектральными и аналитическими методами. Структура соединения **7h** была дополнительно подтверждена рентгено-структурным анализом монокристалла (рис. 1).

Рис.1 Общий вид молекулы 7h по данным РСА

Для введения 4-амино-3-(1,2,4-триазин-3-ил)фуроксанов **1i-l** в реакции гетеро-Дильса-Альдера/ретро-Дильса-Альдера и для расширения серии гибридных гетероциклических систем, содержащих ядро пиридинилфуроксана, мы перешли ко второму подходу: применениюе 2,5-норборнадиена **8** в качестве диенофила (схема 5). Поскольку 2,5-норборнадиен **8** представляет собой простой олефин без нуклеофильных свойств, можно было ожидать, что все (1,2,4-триазин-3-ил)фуроксаны, включая соединения **1i-1** с амино заместителями, будут более стабильными при действии этого диенофила. Для оптимизации условий реакции с 2,5-норборнадиеном **8** был выбран триазинилфуроксан **1а.** Варьировали соотношения реагентов, температуру проведения процесса и используемые растворители.

Толуол и *о*-ксилол оказались неэффективными даже с 5-кратным мольным избытком диенофила (таблица 3, строки 1-6). Однако при использовании в качестве растворителя хлорбензола циклоприсоединение проходило даже со стехиометрическими количествами реагентов (таблица 3, строка 7). Увеличение мольного избытка диенофила привело к более высокому выходу пиридинилфуроксана **9** (таблица 3, строки 8-10).

Оптимальными условиями реакции оказалось кипячение смеси реагентов в хлорбензоле с трехкратным мольным избытком диенофила **8** в течение 9 часов при 130 °C (строка 9).

Таблица 3. Оптимизация условий [4+2]-циклоприсоединения 3-метил-4-(1,2,4-триазин-3-ил)фуроксана **1а** к 2,5-норборнадиену **8**.

	Экв. норборнадиена 8	Растворитель	T, °C	Время, ч	Выход(9а + 9'а), %
1	2	Толуол	110	48	-
2	3	Толуол	110	48	-
3	5	Толуол	110	48	-
4	2	<i>о</i> -Ксилол	140	36	-
5	3	<i>о</i> -Ксилол	140	36	-
6	5	<i>о</i> -Ксилол	140	36	-
7	1	Хлобензол	130	15	следы
8	2	Хлобензол	130	11	53
9	3	Хлобензол	130	9	97
10	4	Хлобензол	130	9	92

Следует отметить, что целевое производное пиридинилфуроксана было получено в виде смеси двух изомеров **9a** и **9'a** в соотношении 2:1 (схема 5). Образование двух изомеров обусловлено уникальной способностью фуроксанов к термической изомеризации с переносом экзоциклического атома кислорода от одного атома азота к другому. Этот процесс является равновесным и происходит через промежуточное образование производного динитрозоэтилена **10** [154,155] (схема 6).

С учетом оптимизированных условий в реакцию [4+2]-циклоприсоединения 2,5норборнадиена **8** были введены остальные (1,2,4-триазин-3-ил)фуроксаны **1b-l**. Полученные результаты представлены в таблице 3. Целевые пиридинилфуроксаны **9** были получены во всех случаях с высокими выходами в виде смесей изомеров 9b-l и 9'b-l. Изомеры 9а и 9а' были разделены; остальные соединения 9 были охарактеризованы как смеси изомеров. Соотношение соединений 9а и 9'а определяли на основании их ¹Н ЯМР спектров. Хорошо известно, что химические сдвиги протонов алкильных групп, связанных с С(3) атомом фуроксанового цикла расположены в более сильном поле, чем аналогичные сигналы протонов алкильных групп, связанных с С(4) атомом фуроксанового цикла [37,41] Так химический сдвиг метильной группы, связанной С(3) атомом фуроксанового цикла (изомер 9а), проявляется в более сильном поле и составляет 2.55 м.д., в то время как химический сдвиг метильной группы, связанной с С(4) атомом изомера 9'а составляет 2.75 м.д. ($\Delta \delta = 0.2$ м.д.). Значительная разница между химическими сдвигами была также найдена для сигналов протонов пиридиновых СНфрагментов, соседних с фуроксановым циклом (5-СН). Для соединения 9'а этот сигнал находится в более сильном поле, чем аналогичный сигнал пиридинового СН-фрагмента в 3-метилфуроксане 9a ($\Delta \delta = 0.3$ м.д.). С учетом этих результатов мы ожидали, что аналогичная тенденция будет иметь место для ¹Н ЯМР спектров других пар изомеров 9 и 9'. Действительно, химические сдвиги различались для метильных групп (фуроксаны 9a-d и 9'a-d), аминогрупп (фуроксаны 9i-1 и 9'i-l) и пиридиновых СН-фрагментов, ближайших к фуроксановому циклу (фуроксаны 9е-h и 9'е-h). Соотношение интегральных интенсивностей изомеров 9 и 9' были найдены в диапазоне 2:1–1:1.5 (схема 7).

 $\mathbf{y}_{a}^{N} = \frac{1}{12} + \frac{1}{$

Схема 7

Вероятный механизм реакции гетеро-Дильса-Альдера/ретро-Дильса-Альдера (1,2,4-триазин-3-ил)фуроксанов 1 с енамином 5 представлен на примере соединения 1а на схеме 8. Первоначальное [4+2]-циклоприсоединение диенофила 5 к триазину 1а (гетеро-Дильс-Альдер) протекает регио- и стереоселективно, приводя к полициклической структуре 11. Промежуточное соединение 11 *in situ* выделяет молекулу азота в результате реакции ретро-Дильса-Альдера, и полученный гексагидроизохинолин 6а окисляется действием *м*-хлорпербензойной кислоты (*m*СРВА) до N-оксида 12. Наконец, образовавшийся *N*-оксид 12 подвергается элиминированию *N*-гидроксипирролидина по Коупу, образуя целевой (тетрагидроизохинолинил)фуроксан 7а.

Схема 8

Реакция 1,2,4-триазинов 1 с норборнадиеном 8 является более сложной с точки зрения механизма, так как при высоких температурах фуроксаны имеют тенденцию подвергаться быстрому взаимопревращению двух *N*-оксидных форм. Поэтому, наиболее вероятно, что нагревание триазина 1а в PhCl приводит вначале к равновесной смеси изомерных триазинилфуроксанов 1а и 1'а. Оба изомера легко подвергаются [4+2]циклоприсоединению к диенофилу 8 с последующей ретро-реакцией Дильса-Альдера

промежуточных соединений **13/13'** с образованием трициклических соединений **14/14'**. Затем отщепление циклопентадиена приводит к ароматизации пиридинового кольца и образованию целевых пиридинилфуроксанов **9a** и **9'a** (схема 9)

В целом, в результате проведенных в этом разделе исследований разработано два простых, высокоэффективных и диастереоселективных *one-pot* метода синтеза ранее неизвестных гибридных полигетероциклических фармакологически ориентированных структур, содержащих до четырех гетероароматических фрагментов в одной молекуле (NO-донорный фуроксановый, 1,2,4-триазиновый, пиридиновый, терпиридиновый, инденопиридиновый) с хорошими и высокими выходами.

2.1.2. Синтез гибридных гетероциклических структур, объединяющих фуроксановый цикл с изоксазольным-, изоксазолиновым- и 1,2,4-оксадиазольным структурными фрагментами.

На следующем этапе исследований был проведен поиск удобных подходов к синтезу гибридных гетероциклических структур, объединяющих фуроксановый цикл с другими фармакофорными гетероциклами - изоксазольным-, изоксазолиновым- и 1,2,4оксадиазольным, поскольку производные этих гетероциклов также проявляют широкий спектр фармакологической активности. Так, изоксазолы являются структурными фрагментами многих биологически активных веществ [156-159] и лекарственных средств, таких как флуклоксациллин, вальдекоксиб и диклоксациллин. Изоксазолиновый фрагмент также найден во многих биологически активных соединениях [160-163], а 1,2,4оксадиазол является важной субъединицей в структуре различных биоактивных молекул [164-168]. Эффективным подходом к дизайну всех этих структур могла бы быть реакция [3+2]-циклоприсоединения фуроксанилкарбонитрилоксидов к алкинам, олефинам и активированным нитрилам.

Поэтому первая задача, которую следовало решить, состояла в разработке эффективного метода генерации фуроксанилкарбонитрилоксидов. Существует несколько методов генерации нитрилоксидов, которые могли быть пригодными для решения этой задачи: дегидрохлорирование хлорангидридов гидроксамовых кислот при действии оснований [169], окисление альдоксимов [170], дегидратация первичных нитроалканов. В ряду фуроксанов нитрилоксиды могут быть получены посредством термической циклореверсии фуроксанов, которые являются димерами нитрилоксидов [171, 172]. В последние годы были разработаны новые методы получения нитрилоксидов. В частности существует метод, когда вода выполняет вспомогательную функцию в генерации нитрилоксидов из хлоргидроксиминометил производных в слабокислых условиях при рН = 4-5. Окислительно-восстановительный катализ также использовался для генерации нитрилоксидов из гидроксииминокислот при облучении видимым светом [173]. При обработке замещенных альдоксимов алкилнитритами при температуре 65° C также промежуточно образуются нитрилоксиды. Кроме того, Гаско и соавторы предложили оперот метод получения фуроксанилкарбонитрилоксидов термолизом фуроксанилнитроловых кислот, приводящий к терфуроксану [59, 174]. Эта исследовательская группа также синтезировала первый и единственный пример получения изоксазолилфуроксана путем термолиза фенилфуроксанилнитроловой кислоты в присутствии фенилацетилена.

На первом этапе исследования мы обратились к методу генерации нитрилоксидов дегидрохлорированием (хлоргидроксиминометил)фуроксанов **15**, поскольку ранее в нашей лаборатории был разработан общий метод получения этих соединений из легкодоступных цианофуроксанов **4**. Последние вначале трансформировались в фуроксаниламидоксимы **16** взаимодействием с гидроксиламином, а затем нитрозированием NaNO₂ в присутствии избытка HCl в искомые хлорангидриды фуроксанилгидроксамовых кислот **15** (схема 10).

Схема 10

Для поиска оптимальных условий получения нитрилоксидов дегидрохлорированием (хлоргидроксиминометил)фуроксанов был проведен детальный скрининг условий получения изоксазолилфуроксана 17а действием оснований,

77

обеспечивающий получение нитрилоксида **18а** из модельных структур - хлорангидрида **15а** и диэтилацетилендикарбоксилата (DEAD) **19** (схема 11, таблица 4).

Схема 11

Таблица 4. Оптимизация условий получения изоксазолилфуроксана 17а

дегидрохлорированием (хлоргидроксиминометил)фуроксана **15а** в присутствии DEAD.

	Экв. DEAD 19	Основание	Растворитель	T °C	Время ч	Выход 17а %	Выход 20 %
1	1.0	Et ₃ N	MeCN	20	1	-	-
2	1.0	DBU	MeCN	20	1	-	-
3	1.0	K ₂ CO ₃	Et ₂ O	20	96	12	следы
4	1.0	K ₂ CO ₃	THF	20	96	10	следы
5	1.0	K ₂ CO ₃	MeCN	20	24	-	-
6	1.0	K ₂ CO ₃	Et ₂ O-H ₂ O (3:1)	20	120	следы	44
7	1.0	Cs ₂ CO ₃	THF	20	24	15	следы
8	1.0	KHCO ₃	THF	20	144	7	5
9	1.0	AcONa	THF	20	144	-	-
10	2.0	K ₂ CO ₃	Et ₂ O	20	72	36	8
11	3.0	K ₂ CO ₃	Et ₂ O	20	72	40	10
12	4.0	K ₂ CO ₃	Et ₂ O	20	72	39	14
13	3.0	K ₂ CO ₃	DME	20	24	15	9
14	3.0	Rb ₂ CO ₃	Et ₂ O	20	48	14	40
15	3.0	Cs ₂ CO ₃	Et ₂ O	20	48	10	54
16	3.0	CsF ^f	Et ₂ O	20	96	-	-
17	3.0	CsF ^f	THF	20	96	следы	следы
18	3.0	CsF ^f	EtOAc	20	96	следы	следы
19	4.0	CsF ^f	Et ₂ O	20	96	-	-
20	5.0	CsF ^f	Et ₂ O	20	96	-	-
21	3.0	K ₂ CO ₃	Et ₂ O/ [bmim]BF ₄ (40 mol.%)	20	96	следы	16
22	3.0	K ₂ CO ₃	Et ₂ O/ [bmim]BF ₄ (40 mol.%)	60	48	следы	23
23	3.0	Cs ₂ CO ₃	Et ₂ O/ [bmim]BF ₄ (40 mol.%)	20	28	следы	56
24	3.0	-	AcOH-H ₂ O (10:1)	20	168	-	-
25	3.0	-	HCl-H ₂ O	20	336	13	13

		(pH 4)		
_				

[bmim]ВF₄- ионная жидкость тетрафтборат 1-бутил-3-метилимидазолия.

Как видно из таблицы 4, для решения поставленной задачи использовались как органические (DBU, TEA), так и неорганические (K_2CO_3 , Cs_2CO_3 , Rb_2CO_3 , CsF, AcONa) основания в различных растворителях (MeCN, THF, Et₂O, смесь Et₂O с водой и ионные жидкости [bmim]BF₄) и при различных температурах. Варьировались также количество DEAD и время проведения реакции. Кроме того, также была проведена реакция в отсутствие оснований при pH = 4, предложенная в недавней работе [175] (Таблица 4). К сожалению, все подходы к генерации (3-метилфуроксанил)карбонитрилоксида **18a** и продукта его конденсации с DEAD **19** оказались неэффективными. Использование K₂CO₃ в Et₂O в присутствии 3-4 эквивалентов DEAD **19** при комнатной температуре давало наиболее хорошие результаты (таблица 4, строки 11, 12), однако, побочный терфуроксан **20** – продукт циклоконденсации нитрилоксида **18a**, всегда образовывался в заметных количествах.

Поэтому мы решили изучить возможность синтеза изоксазолилфуроксанов 17 через генерацию нитрилоксидов 18 на основе термолиза фуроксанилнитроловых кислот 21 в присутствии подходящего диполярофила. Известно, [59, 174] что нитроловые кислоты элиминируют HNO₂ с образованием нитрилоксидов при повышенных температурах, причем циклоприсоединение нитрилоксидов к диполярофилам обычно ускоряется в таких Поэтому можно условиях [170-172]. было ожидать, ЧТО удастся избежать циклодимеризации нитрилоксидов с образованием терфуроксанов. Для проведения исследования мы синтезировали серию оксимов фуроксанилкарбальдегидов 22а-с. В качестве модельных субстратов для оптимизации условий реакции были выбраны оксим 22а и диэтилацетилендикарбоксилат 19 (схема 12).

Варьировались количество N_2O_4 , необходимое для нитрования оксима до нитроловой кислоты, количество эквивалентов диполярофила **19**, растворитель, температура и время реакции. Нитрование исходного оксима **22a** 3–5-мольным избытком N_2O_4 в бензоле или хлороформе при 0 °C с последующим выдерживанием при 20 °C в присутствии DEAD не приводит к образованию искомого продукта **17a** (таблица 5, строки 1,2). Кипячение образовавшейся нитроловой кислоты **21a** с обратным холодильником в бензоле в присутствии диполярофила **19** способствует генерации нитрилоксида **18a**, но искомый изоксазол **17a** образуется с умеренным выходом (таблица 5, строки 3-5). Замена бензола на хлороформ и проведение реакции при 60 °C привело к получению изоксазола

17а, а варьирование количества N_2O_4 выявило необходимость использования избытка N_2O_4 (таблица 5, строки 6-10). Увеличение избытка диполярофила лишь незначительно изменило выход конечного продукта. Самый высокий выход изоксазола 17а был достигнут при кипячение полученной при пониженной температуре нитроловой кислоты с 1 эквивалентом диполярофила 19 в течение 2 часов. Увеличение продолжительности реакции немного уменьшало выход конечного продукта. Таким образом, оптимальными условиями получения изоксазола 17а оказалось нитрование оксима 22а действием 5 эквивалентов N_2O_4 при 0 °C с последующим кипячением в хлороформе в течение 2 часов в присутствии 1 эквивалента диполярофила 19 (таблица 5, строка 9).

Схема 12

Таблица 5. Оптимизация условий получения 3-метил-4-(4,5-

	Экв. N ₂ O ₄	Экв. DEAD 19	Растворитель	T, °C	Время, ч	Выход 17а , %
1	5	3	Хлороформ	20	24	-
2	5	3	Бензол	20	24	-
3	3	1	Бензол	80	1	30
4	5	1	Бензол	80	2	20
5	5	3	Бензол	80	1	33
6	1	1	Хлороформ	60	3	15
7	3	1	Хлороформ	60	2	22
8	5	1	Хлороформ	60	1	52
9	5	2	Хлороформ	60	2	55
10	5	3	Хлороформ	60	2	45

бис(этоксикарбонилизоксазол-3-ил)фуроксана 17а.

В найденных оптимальных условиях образовавшийся нитрилоксид **18a** был введен в реакцию [3+2]-циклоприсоединения с различными C=C, C=C и C=N диполярофилами, что привело к получению соответствующих изоксазолилфуроксанов **17а-с**, изоксазолинилфуроксанов **23а-с** и (1,2,4-оксадиазолил)фуроксанов **24** с хорошими выходами. Реакция с терминальными олефинами и ацетиленами протекала с высокой региоселективностью - были получены только единственные региоизомеры (соединения **17b,с** и **23**) (схема 13).

Схема 13

Высокая региоселективность образования соединений **17а-с, 23а-с** и **24а** дизамещенных изоксазолов и изоксазолинов была установлена на основании литературных данных [176, 177]. В спектрах ¹Н ЯМР изоксазольных фрагментов соединений **17b,с** были обнаружены характеристичные синглеты при 7.66 и 7.48 м.д., которые соответствуют сигналу протона изоксазольного цикла (C⁴-H). В то время как для соединения **23а** изоксазолиновый протон проявлялся в виде триплета при 5.26 м.д. (C⁵-H) и мультиплета при 3.72-3.76 м.д. (CH₂). Диастереоселективность образования соединений **23b,с** обеспечивалась геометрией исходных олефинов.

Термолиз нитроловой кислоты **21b** и последующее циклоприсоединение образовавшегося нитрилоксида **18b** с теми же диполярофилами были более успешными при кипячении в бензоле, и привело к целевым 3-гетарилфуроксанам с хорошими выходами. Все реакции протекали с высокой региоселективностью; только в реакции с метилпропропиолатом образовывался и второй региоизомер **17e**' в соотношении **17e**: **17e**' = 3.5:1. Регилизомеры были разделены хроматографически в индивидуальном сосотоянии и полностью охарактеризованы (схема 14). Высокая региоселективность образования соединений **17d,e** и **23d**, а также диастереоселективность соединения **23e,f** подтверждаются данными ¹H, ¹³C ЯМР спектроскопии.

Схема 14

Биснитроловая кислота **21с** описана в литературе в виде взрывоопасного комплекса с диоксаном [34]. Поэтому эта нитроловая кислота была синтезирована *in situ* аналогичным нитрованием оксима **22с** при действии N_2O_4 . Кипячение в хлороформе оказалось наилучшим вариантом *in situ* получения биснитнитрилоксида **18с.** Его циклоприсоединение к тем же диполярофилам протекало легко, и целевые продукты были выделены с хорошими выходами (схема 15). Во всех случаях циклоприсоединение проходило полностью региоселективно по обоим нитрилоксидным фрагментам, продукты циклоприсоединения по одной нитрилоксидной группе выделены не были. О соотношении диастереомеров в соединениях **23h,i** судить трудно, поскольку соответствующие сигналы в ¹Н ЯМР спектрах перекрываются.

Схема 15

Из полученных результатов следует, что реакционная способность как нитроловой кислоты, так и нитрилоксида в условиях термолиза не зависит от их положения при фуроксановом цикле. Все синтезированные изоксазолы 17, изоксазолины 23 и 1,2,4- оксадиазолы 24 были охарактеризованы методами ¹H, ¹³C ЯМР и ИК спектроскопии и масс-спектрометрии высокого разрешения (HRMS). Структура соединения 17с была дополнительно подтверждена рентгеноструктурным анализом монокристалла (рис. 2).

Рис 2. Общий вид молекулы 3-метил-4-(5-метоксикарбонилизоксазол-3-ил)фуроксана 17с по данным РСА.

В целом, в результате этого раздела исследований разработан регио- и диастереоселективный метод синтеза фармакологически ориентированных гибридных структур, объединяющих в одной молекуле фуроксановый цикл с изоксазольным, изоксазолиновым или 1,2,4-оксадиазольным гетероциклическими фрагментами, причем результат реакции не зависит от положения оксимного фрагмента у С³ или С⁴ атомов фуроксанового цикла. Метод носит общий характер и может быть использован для аналогичной трансформации других альдоксимов фуроксанового ряда.

2.1.3. Разработка методов синтеза производных 1,2,3-триазолилфуроксанов.

Для синтеза производных 4-(1,2,3-триазол-1-ил)фуроксанов **25** был применен подход, основанный на превращениях хлорметильной и этоксикарбонильной групп в 1,2,3-триазолах **26а-с** под действием различных нуклеофилов. Исходные соединения **26а-с**

были синтезированы путем [3+2]-циклоприсоединения 4-азидо-3-арилфуроксанов **27а,b** к бензоилуксусному **28a** и хлорацетоуксусному **28b** эфирам при катализе триэтиламином (TEA) (схема 16). Этот подход ранее использовался для синтеза аналогичных (1,2,3-триазол-1-ил)фуразанов, которые, как было показано, обладают цитотоксической активностью [178]. Исходные 4-азидо-3-арилфуроксаны **27а,b** были получены нуклеофильным замещением нитрогруппы в 3-арил-4-нитрофуроксанах **29а,с** действием NaN₃ в описанных ранее условиях [61].

Нуклеофильное замещение хлора в соединениях **26b,с** под действием циклоалифатических аминов и гетероциклических тиолов или гидроксигетероциклов привело к аминопроизводным **30а-с** и (1,2,3-триазол-1-ил)фуроксанам **25а-f** с высокими выходами (схема 17).

Этоксикарбонильные производные **30а-с** были последовательно преобразованы в гидразиды **31а-с**, азидокарбонильные производные **32а,b** и целевые (1,2,3-триазол-1ил)фуроксаны **33g** и **33m**. Азидокарбонильная группа в азидокарбонилфуроксане **32c** была гидролизована до соответствующей кислоты **33m** в щелочной среде с последующим подкислением. Гидразид **31a** послужил исходным соединением для синтеза гидразона **33h**, а амиды **33i,j,l** были получены из соответствующих азидокарбонильных производных **32a,b** при взаимодействии с алифатическими и циклоалифатическими аминами.. Гидролиз сложноэфирной группы удалось осуществить только для соединения **26a** с образованием карбокситриазолилфуроксана **34**. Декарбоксилирование этого соединения нагреванием в уксусной кислоте при 100 °C, а также кислоты **33g** привело к образованию (1,2,3-триазол-1-ил)фуроксанов **33k** и **33n** (схема 18).

Схема 18

Все синтезированные промежуточные продукты **26-32** и целевые (1,2,3-триазол-1ил)фуроксаны **33а-п** были охарактеризованы спектральными (ИК, ¹H, ¹³C ЯМР и массспектрами) и аналитическими методами. Кроме того, структура (1,2,3-триазол-1ил)фуроксана **33k** была подтверждена методом рентгеноструктурно-структурного анализа монокристалла (рис. 3).

Рис. 3 Общий вид молекулы 3-метил-4-(5-морфолинометил-1H-1,2,3-триазол-1-ил) фуроксана **33k** по данным PCA.

Таким образом, в результате этого раздела исследований разработан метод получения (1,2,3-триазол-1-ил)фуроксанов, основанный на [3+2]-циклоприсоединении 4-азидо-3арилфуроксанов к бензоилуксусному и хлорацетоуксусному эфирам при катализе TEA с последующей химической трансформацией хлорметильной и сложноэфирной групп.

В целом, в результате выполнения исследований по разделам **2.1.1-2.1.3** разработаны эффективные способы получения нескольких типов фармакологически ориентированных гетарилфуроксанов, содержащих в одной молекуле фуроксановый цикл – NO-донор и другие фармакофорные гетероциклические фрагменты: (1,2,4-триазин-3-ил)-, пиридил-,

терпиридил-, инденопиридил-, изоксазолил-, изоксазолинил-, 1,2,4-оксадиазолил- и (1,2,3триазол-1-ил)фуроксаны. Образцы синтезированных соединений были направлены в Институт физиологически активных веществ (ИФАВ) РАН (г. Черноголовка) для исследования цитотоксической активности.

2.2. Синтез энергоемких производных гетарилфуроксанов.

Второй раздел диссертационной работы посвящен синтезу энергоемких производных фуроксана, поскольку как уже упоминалось, эти соединения обладают положительной энтальпией образования, что наряду с высокой плотностью и низкой летучестью синтезировать азот-кислородные позволяет на ИХ основе высокоэнергетические структуры. Опираясь на выводы из литературного обзора, основное внимание было направлено на разработку подходов к синтезу бифуроксанильных систем, содержащих в качестве заместителей эксплозофорные группы. Кроме того, в работе синтезирован динитраминоазофуроксан и разработан метод получения солей азидо- и азотетразолилфуроксанов с высокоазотными катионами.

2.2.1. Синтез бифуроксанильных структур, содержащих 3-нитрофуроксанильный фрагмент.

На первом этапе исследования, посвященного синтезу энергоемких производных фуроксана, был разработан метод получения бифуроксанильных структур, содержащих 3-нитрофуроксанильный фрагмент. Бифуроксанильные структуры, включающие 3-нитрофуроксанильный фрагмент, до наших исследований были неизвестны. Для решения этой задачи мы воспользовались разработанным ранее в нашей лаборатории методом синтеза 4-арил-3-нитрофуроксанов 35, включающим нитрозирование дикалиевых солей 2-арил-2-гидроксиимино-1,1-динитроэтанов **36** действием NaNO₂ в AcOH в присутствии АсОК [41] Исходные соли 36 получали ацилированием натриевой соли динитрометана хлорангидридами арилгидроксамовых кислот с последующей многоступенчатой очисткой. При использовании N₂O₄ в качестве нитрозирующего агента образуются два изомера арилнитрофуроксанов 35 и 35' в соотношении 1:1 (схема 19).

Схема 19

Основным недостатком этого способа является необходимость выделения дикалиевых солей **36**, которые являются взрывоопасными соединениями. Поэтому мы решили разработать *one-pot* подход к конструированию 3-нитробифуроксанильного

87

фрагмента на основе аналогичных трансформаций с использованием хлорангидридов фуроксанилгидроксамовых кислот **16** без выделения промежуточных соединений. Исходные соединения **16** были синтезированы в две стадии из цианофуроксанов **4** с использованием недавно разработанного метода взаимодействием с гидроксиламином (схема 20) [62]. Реакция цианофуроксанов **4a,b,d-i** с гидроксиламином привела к получению фуроксаниламидоксимов **15a,b,d-i** с высокими выходами, которые легко превращаются в соответствующие хлорангидриды **16a,b,d-i** нитрозированием NaNO₂ в среде HCl (схема 19).

R = 3-Me (a), 4-Ph (b), 4-MesN=N (d), 4-PMPN=N (e), 4-PhS (f), 4-BnS (g), 4-MeO (h), 4-N₃ (i)

Цианофуроксаны **4a,b,d,e** являются известными соединениями, в то время как цианофуроксаны **4f-h** были синтезированы дегидратацией соответствующих амидов трифторуксусным ангидридом в пиридине. Амиды **37а-с,** в свою очередь, были получены нуклеофильным замещением нитрогруппы в амиде нитрофуроксанкарбоновой кислоты **38** при обработке соответствующими нуклеофилами (схема 21).

Схема 21

4-Нитро-3-хлоргидроксиминофуроксан 16j получали нуклеофильным замещением нитрогруппы в (4-нитрофуроксан-3-ил)нитроловой кислоте **39** действием концентрированной соляной кислоты (схема 22) [34].

Схема 22

Исследование началось с оптимизации условий ацилирования Na соли динитрометана NaCH(NO₂)₂ (DNMNa) (хлоргидроксимино)фуроксанами [179]. 4-Фенил-3хлоргидроксиминофуроксан **16b** был выбран в качестве модельного субстрата (схема 23). Первый этап (ацилирование DNMNa) проводили в сухом ДМФА при 0-5 °C в течение 72 часов. Чтобы сформировать анион динитрометильного фрагмента для последующего нитрозирования, в реакцию вводили два эквивалента DNMNa. В качестве реагентов для нитрозирования промежуточного соединения **40b** были исследованы NaNO₂/AcOH, N₂O₄, NOBF₄ и 'BuONO/AcONa. Вначале была использована смесь NaNO₂/AcOH в качестве нитрозирующего реагента. Пять эквивалентов NaNO₂ и 4,5 эквивалента AcONa первоначально вводились для нитрозирования **40b** и превращения динитрометана, который выделяется в качестве побочного продукта в реакционной смеси после ацилирования (таблица 6, строка 1). Варьировались также молярные соотношения **16b** : DNMNa и **16b** : NaNO₂.

Увеличение молярного отношения 16b : DNMNa до 1:2.2 приводило к более высокому выходу соединения 41b (таблица 6, строка 2), тогда как выход 41b уменьшился при молярном соотношении 16b : DNMNa 1:3 (таблица 6, строка 3). Молярное соотношение **16b** : NaNO₂ 1:5 оказалось недостаточным, тогда как наилучшее молярное соотношение **16b** : NaNO₂ составляло 1:6 (таблица 6, строка 4). Увеличение молярного соотношения **16b**: NaNO₂ 1:7 приводило к аналогичному выходу соединения **41b**. Во всех случаях реакция была полностью региоселективна и протекала с образованием 3-нитро-4-(4-фенифуроксан-3-ил)фуроксана **41b**. Использование N₂O₄ в качестве нитрозирующего реагента также обеспечивало региоселективное образование соединения 41b, вопреки реакции на схеме 2, но с более низким выходом (таблица 6, строки 6-8). Смесь 3- и 4нитроизомерных структур была получена при нитрозировании промежуточного соединения **40b** действием NOBF₄ (таблица 6, строка 9). ^{*и*}BuONO оказался неэффективным для приготовления целевого продукта (таблица 6, строка 10). Таким образом, оптимальными условиями получения интермедиата 40b оказались ацилирование DNMNa (2.2 экв.) хлороксиминофуроксаном 16b в ДМФА при 0-5 °C в течение 24 часов, нитрозирование образовавшегося интермедиата **40b** 5 эквививалентами NaNO₂ при пониженной температуре с предварительным добавлением 5 экв. AcONa и выдерживание реакционной массы при 20 °С в течение 4 часов.

89

Таблица 6. Оптимизация условий получения 3-нитро-4-(4-фенилфуроксан-3-

DNMNa	Нитрозирующая	Нитрозирующий реагент	Выход 41b
(экв.)	система	(экв.)	(%)
2.0	NaNO ₂ /AcOH	5.0	20
2.2	NaNO ₂ /AcOH	5.0	27
3.0	NaNO ₂ /AcOH	5.0	14
2.2	NaNO ₂ /AcOH	6.0	40

7.0

9.0

5.0

6.0

6.0

5.0

1

2

3

4

5

6

7

8

9

10

2.2

2.2

2.2

2.2

2.2

2.2

NaNO₂/AcOH

NaNO₂/AcOH

N₂O₄/CCl₄

 N_2O_4/CCl_4

NOBF₄

^tBuONO

ил)фуроксана 41b.

38

27

30

31

24

следы

В найденных оптимальных условиях в реакцию были введены остальные хлоргидроксиминофуроксаны. Искомые бифуроксанильные системы, включающие 3нитрофуроксанильный фрагмент **41а,b,d-k** были получены с умеренными и хорошими выходами (схема 24). Особенно важно отметить, что все реакции проходили успешно, независимо от положения хлоргидроксимино группы при С(3) или С(4) атоме углерода фуроксанового цикла и характера второго заместителя.

Вероятный механизм региоселективного one-pot формирования бифуроксанильных систем **41** показан на схеме 25. Он включает в себя каскад следующих one-pot реакций: ацилирование DNMNa (хлоргидроксимино)фуроксаном **16**, приводящее к образованию натриевой соли 2-гидроксимино-1,1-динитро-2-фуроксанилэтана **40**, нитрозирование динитрометильного аниона до динитронитрозопроизводного **42** и формирование фуроксанового цикла за счет внутримолекулярной атаки аниона оксимного фрагмента на атом азота нитрозогруппы с выделением аниона NO₂.

Схема 25

Все синтезированные производные 3-нитробифуроксанила **41а,b,d-k** были охарактеризованы спектральными (¹H, ¹³C, ¹⁴N ЯМР-спектроскопией, масс- и ИКспектрометрией) и аналитическими методами. Расположение нитрогруппы у атома углерода C(3) фуроксанового цикла определяли методом ¹⁴N ЯМР. Сигнал 3-нитрогруппы смещался в область слабого поля на 3.7-4.7 м.д. относительно сигнала 4-нитрогруппы [106]. Кроме того, строение бифуроксанильных структур **41** было подтверждено методом рентгеноструктурного анализа для соединений **41a** и **41b** (рис. 4).

91

Рис. 4 Общий вид молекулы 3-метил-3'-нитро-4,4'-бифуроксана **41a** и 4-фенил-3'-нитро-4,4'-бифуроксана **41b** по данным РСА.

Таким образом, в этом разделе исследований разработан, простой, общий и эффективный метод синтеза ранее неизвестных бифуроксанильных систем, содержащий 3-нитрофуроксанильный фрагмент. Целевые соединения образуются полностью региоселективно с умеренными и хорошими выходами, независимо от положения хлороксимино группы у C(3) или C(4) углерода атом фуроксанового цикла и природы второго заместителя.

Среди синтезированных 3-нитробифуроксанильных структур можно выделить три соединения, которые наряду с 3-нитробифуроксанильным каркасом содержали эксплозофорные группы у второго фуроксанового кольца: (**41i** -N₃, **41j** -NO₂ и **41k** -CN) (рис. 5). Эти структуры обладают высокой энтальпией образования, хорошим кислородным балансом, но недостаточной термической стабильностью. Поэтому мы продолжили поиск новых энергоемких производных фуроксанов.

Рис 5. Наиболее энергетически эффективные синтезированные 3-нитробифуроксанилы.

2.2.2. Синтез 4,4'-динитроамино-3,3'-диазенофуроксана.

В последние годы значительное внимание уделяется синтезу солей энергоемких структур с высокоазотными катионами, что связано с их пониженной чувствительностью к механическим воздействиям, высокой плотностью, положительной энтальпией образования и высоким содержанием азота. Поскольку сами фуроксаны не содержат подвижных атомов водорода, необходимо было синтезировать соответствующие функциональные производные. В литературе описаны соли некоторых нитраминофуроксанов и динитрометилфуроксанов. Нитроамино группа является важным эксплозофорным фрагментом, который присутствует во многих энергетических соединениях. Введение этой группы в производные фуроксана повышает плотность и теплоту образования, а также увеличивает детонационные параметры [112].

В качестве исходного амина для получения нитраминофуроксанов мы выбрали синтезированный ранее 4.4'-диамино-3,3'-диазенофуроксан 42 [21]. Для его нитрования были использованы дымящая HNO₃ и ее смеси с уксусным и трифторуксусным ангидридами. Варьировали соотношение реагентов, температуру нитрования и добавки органических растворителей. Большой избыток азотной кислоты (мольное соотношение 42: HNO₃= 1:145) не приводил к образованию целевого продукта 43, наблюдалось только разложение исходного соединения (таблица 7, строка 1). Отрицательный результат был получен и при нитровании диамина 42 большим избытком смеси HNO₃ и (CF₃CO)₂O (мольное отношение 42:HNO₃:(CF₃CO)₂O = 1:72:22) при -10 °C (таблица 7, строка 2). Небольшой выход соединения 43 был достигнут при уменьшении мольного соотношения реагентов (42 : HNO₃ : Ac₂O = 1:15:3) и добавлении CCl₄ при 0 °C с последующим повышением температуры до 20 °C (таблица 7, строка 3). Выход соединения 43 возрос при мольном соотношении 42 : HNO₃: (CF₃CO)₂O = 1:15:2.2) (таблица 7, строка 4). Лучший результат был достигнут при мольном соотношении реагентов 42 : HNO₃ : (CF₃CO)₂O = 1:15:3 при -5 °C в CCl₄ в течение 0.5 часа (таблица 7, строка 5, схема 26)

Таблица 7. Оптимизация условий нитрования 4.4'-диамино-3,3'-диазенофуроксана
42 до 4.4'-динитроамино-3,3'-диазенофуроксана 43.

N⁰	Нитрующий реагент	Добавка	Растворитель	Температура, °С	Время, ч	Выход 43, %
1	HNO ₃ 100% (145 мол.)	-	-	0	1	-
2	HNO ₃ 100% (72 мол.)	(CF ₃ CO) ₂ O (22 мол)	-	-10	1	-
3	HNO ₃ 100% (15 мол.)	Ас ₂ О (3 мол.)	CCl ₄	$0 \rightarrow 20$	2	28
4	HNO ₃ 100% (15 мол.)	(CF ₃ CO) ₂ O (2.2 мол.)	CCl ₄	0	1	57
5	HNO ₃ 100% (15 мол.)	(CF ₃ CO) ₂ O (3 мол.)	CCl ₄	-5	0.5	80

Схема 26

Строение бис(нитрамина) **43** было подтверждено методами ¹H, ¹³C, ¹⁴N ЯМР и ИКспектроскопии и масс-спектрами высокого разрешения (HRMS). Однако, как оказалось, все попытки получения солей нитроамина **43** взаимодействием с основаниями (аммиак, гидроксиламин, гидразин, гуанидин) приводили только к его разложению. Соединение **43** оказалось нестабильным даже в большинстве органических растворителей (MeCN, MeOH, THF, EtOAc). Поэтому были предприняты попытки синтезировать энергоемкие соли других более доступных производных фуроксана – тетразолилфуроксанов.

2.2.3. Синтез солей азидо- и азотетразолилфуроксанов с высокоазотными анионами.

Комбинация двух высокоэнтальпийных гетероциклов - фуроксанового и тетразольного в одной молекуле представляет собой перспективный анионный компонент энергоемких соединений. Мы выбрали в качестве исходных анионных компонентов 4-азидо-3-тетразолилфуроксан и 3,3'-бис(тетразолил)-4,4'-азофуроксан с анионом на тетразольном цикле, которые были синтезированы в виде амммонийных солей 44a и 44b по разработанной ранее в нашей лаборатории методике. Исходным соединением для их получения послужил 4-аминофуроксан-3-карбоксамид 45, легко получаемый по известной методике [13]. Диазотирование аминофуроксана 45 с последующим азосочетанием с азидом натрия приводит к азидопроизводному 46a, а окислительное N-N-сочетание – к азопроизводному 46b. При дегидратации соединений 46a и 46b образуются соответствующие нитрилы 4i и 4j, [3+2]-циклоприсоединение которых к азиду аммония, генерируемому из триметилсилилазида и фторида аммония, приводит к аммонийным солям 44a и 44b [62].

Хотя аммонийные соли **44a,b** ранее были описаны, их полные физико-химические и детонационные свойства не были изучены. Для расширения ряда энергетических солей, включающих анион тетразолилфуроксана, мы решили использовать двухступенчатый метатезис катионов: вначале катион аммония меняли на катион серебра взаимодействием с AgNO₃ с последующим обменом катиона серебра в полученных серебряных солях **47a,b** на различные катионы взаимодействием с гидрохлоридами различных аминов, обогащенных азотом. Серебряные соли **47a,b** были легко получены из аммонийных солей

94

взаимодействием с нитратом серебра в воде в течение 5 часов при комнатной температуре (схемы 27 и 30)

Для оптимизации условий метатезиса катиона серебра на катион соответствующих аминов в качестве модельных субстратов были выбраны серебряная соль 4-азидо-3тетразолилфуроксана **47a** и гидрохлорид гуанидина. Варьировались растворитель, температура и время проведения реакции. Оптимальными условиями получения гуанидиниевой соли **48** оказалось нагревание реагентов в воде в течение 5 часов при 60 °C (Схема 28, Таблица 8).

Схема 28

Таблица 8. Оптимизация условий получения гуанидиниевой соли азидотетразолилфуроксана **48**.

	Растворитель	Температура (t)	Время	Выход 48 ,%
1	H ₂ O	20°C	5 ч	23
2	MeOH	20°C	5 ч	34
3	H ₂ O	60°C	5ч	92
4	MeOH	60°C	5ч	55
5	MeOH-H ₂ O	60°C	5ч	64
	(1:1)			
6	H ₂ O	95°C	5ч	46

7 H ₂ O 70°C 5 ч 70	
--------------------------------	--

В найденных оптимальных условиях в реакцию с серебряной солью 47а были введены гидрохлориды остальных аминов, обогащенных азотом, что позволило получить серию солей азидотетразолилфуроксанов 48-52 с высокими выходами (схема 29).

Схема 29

Однако реакция метатезиса дисеребряной соли азотетразолилфуроксана **47b** с гидрохлоридами аминов, обогащенных азотом, была успешной только в случае гидрохлорида гуанидиния (соль **53**) (схема 30). Во всех остальных случаях наблюдалось разложение исходного субстрата, что связано, по всей вероятности, с повышенной чувствительностью электроноакцепторных азофуроксанов к нуклеофильным гидрохлоридам оснований.

Схема 30

Все соединения были полностью охарактеризованы методами и ¹H, ¹³C, ¹⁴N ЯМР и ИК-спектроскопии и элементного анализа. Поскольку синтезированные энергетические соли имеют высокое содержание азота, несколько представителей, а именно соли **48** и **51**, были дополнительно охарактеризованы с помощью ¹⁵N ЯМР-спектроскопии (рис. 6). Сигналы на рисунке 6 были обозначены на основании литературных значений резонансных пиков в аналогичных соединениях [180-182]. Из-за симметрии тетразольного аниона были обнаружены только два сигнала атомов азота тетразольного кольца. Интересно, что один из атомов азота азидной группы, ближайший к фуроксановому циклу, имеет значительно больший химический сдвиг, проявляющийся в сильном поле (-294.0 м.д.) по сравнению с атомами N4 и N5. Для всех аминогрупп гуанидиния и 3,6,7-триамино-7H-[1,2,4]триазоло[4,3-b][1,2,4]триазол-2-ильного катиона были обнаружены триплетные сигналы, возникающие из-за связи между атомами азота и водорода.

Рис. 6 ¹⁵N ЯМР спектр для соединений **48** и **51** в DMSO-d₆.

Кроме спектральных и аналитических характеристик структура соли **51** была дополнительно подтверждена рентгеноструктурным исследованием его моногидрата, (рис. 7, 8). Структуры компонентов соли очень похожи на ранее опубликованные результаты [110]. Известные межмолекулярные взаимодействия в кристаллогидрате **51**•H₂O представляют собой водородные связи и стекинг-взаимодействия, которые обеспечивают упаковку слоя (рис. 7), что согласно CSD, [183] является общим свойством солей тетразолилфуроксанов с плоскими катионами. Более того, расположение сольватных молекул воды также предсказуемо из-за ее способности образовывать водородные связи. Согласно CSD, сольватные молекулы воды часто образуют водородные связи с формально анионным тетразолиевым фрагментом в аналогичных солях [184].

Рис. 7 Симметрия независимой части элементарной ячейки соединения 51·H₂O.

Рис. 8 Фрагмент кристаллической упаковки слоя для соединения 51·H₂O.

Для всех синтезированных солей были экспериментально определены физикохимические характеристики, такие как термическая стабильность, плотность, чувствительности к удару и трению, и рассчитаны энтальпия образования и детонационные характеристики. Эти исследования были проведены в Институте химической физики РАН. Результаты объединены в таблице 9. Термическая стабильность была изучена методами дифференциальной сканирующей калориметрии (ДСК) и термогравиметрического анализа (ТГА). Большинство исследованных солей имеют невысокие температуры разложения, находящиеся в интервале температур 120-190 °C (таблица 9). Среди изученных солей аммониевая соль 4-азидо-3-(тетразол-5-ил)фуроксана 44а выделяется необычайно высокой скоростью тепловыделения, которая даже при загрузке всего лишь 0.2 мг обнаруживает тепловой взрыв в ячейке (то есть проявляется эффект самонагревания). Интересно, что единственная соль 51, термолиз которой начинается с эндотермического процесса, представляет собой производное катиона 3,6,7триамино-7*H*-[1,2,4]-триазоло[4,3-*b*][1,2,4]триазолия, что, возможно, вызвано его разложением. Энергетические соли 44b, 53 показывают сложные профили разложения при линейном нагреве до 600 °C (изображен участок до 400 °C) (рис. 9b). Соль аммония 44b обнаруживает экзотермическое поведение с началом около 153 °C и пиком тепловыделения с плечом, означающим более чем одностадийный процесс. Соответствующая этому пиковая потеря массы составляет около 45%. Соль гуанидиния 53 обнаруживает одинаковую начальную температуру для выделения тепла и потери массы (151°С). В отличие от соли аммония 43b, кривая ДСК показывает влияние эндотермического превращения после 160 °C. Первая стадия потери массы длится намного дольше, до 300 °C, по сравнению с 210 °C для соли аммония.

Рис. 9. Результаты ДСК и ТГА солей **44а**, **48-52** (а) и **44b**,**53** (b) при скорости нагрева 5 К•мин⁻¹.

Экспериментальные плотности всех синтезированных энергетических солей измеряли газовым пикнометром при температуре окружающей среды. Обнаружено, что плотности находятся в пределах 1.57-1.71 г/см³, за исключением соединения **53** (его плотность была 1,46 г/см³). Кислородный баланс является важным параметром для потенциального взрывчатого вещества, который указывает степень, до которой соединение может быть окислено. Все синтезированные энергетические соли обладают отрицательным кислородным балансом из-за отсутствия атомов кислорода в обогащенных

азотом катионных компонентах. Эти значения находятся в диапазоне от -22.6% до -35.4% (при окислении всех атомов углерода до CO) и от -45.3% до -63.7% (при окислении всех атомов углерода до CO₂). Однако такой кислородный баланс сопоставим или превышает величины кислородного баланса TNT (-24,7% до CO; -74,0% до CO₂), TATB (от -18.6% до CO; -55.8% до CO₂) и HNS (от -17.8% до CO; -67.6% до CO₂). Более того, все синтезированные энергетические органические соли имеют очень высокое содержание азота (> 60%) по сравнению с TNT (18.5%), TATB (32.5%), HNS (18.7%), PETN (17.7%), что свидетельствует об их экологичности при использовании в качестве взрывчатого соединения.

Энтальпия образования ΔH^0_f является решающим параметром, обеспечивающим детонационные характеристики энергетических материалов. Все расчеты энтальпии были выполнены с помощью программного пакета Gaussian09 [185] на основе энергетического цикла Борна-Хабера по методу Дженкинса-Глассера [186]. Все синтезированные энергетические соли имеют очень высокие положительные энтальпии образования, которые значительно выше, чем у обычно используемых взрывчатых веществ (таблица 9). Энтальпии образования составляют от 818 кДж•моль⁻¹ (3,2 кДж•г⁻¹) для соединения **44a** до очень высокой 1363 кДж•моль⁻¹ (3,9 кДж•г⁻¹) для соединения **51**, и большинство из них имеют значения в диапазоне 850-1100 кДж•моль⁻¹.

Кроме того, были экспериментально оценены чувствительности к удару и трению для всех синтезированных энергетических солей. Соли 4-азидо-3-(тетразолил)фуроксана 44а, 48-52 в зависимости от их чувствительности к удару могут быть размещены в ряд: $44a \ge 50 > 52 \approx 51 > 49 > 48$. Ряд чувствительности к трению немного отличается: $44a \approx 50 > 52$ 52> 51 \approx 48> 49. Уровень чувствительности к ударам для наиболее чувствительных из исследованных солей 44a (IS = 2.2 Дж) и 50 (IS = 2.7 Дж) позволяет сравнить их с инициирующими взрывчатыми веществами, такими как азид свинца (~2Дж) и стифнат свинца (~3Дж). [121] В то же время, эти соединения обладают хорошей стабильностью и демонстрируют гораздо меньшую чувствительность к трению, чем азид свинца (FS = 0.3-0.5 Н) и стифнат свинца (1.5 Н). Испытания на чувствительность к механическим воздействиям для полученных солей показывают, что аммониевые соли более чувствительны, чем гуанидиниевые, как к удару, так и к трению. Соли аммония 44а и 44b обладают чувствительностью к удару на уровне инициирующих взрывчатых веществ, в то время как их чувствительность к трению находится на уровне RDX. Соли гуанидиния 53 гораздо менее чувствительны и их можно сравнить с тротилом (30 Дж > 360 H). В целом, диапазон значений чувствительности к удару и трению для исследованных солей

100

колеблется от инициирующих взрывчатых веществ до почти нечувствительных, близких к чувствительности тротила соединений.

С учетом расчетных данных по энтальпии образования и экспериментальных плотностей были рассчитаны скорости детонации (D) и давления детонации (P) с использованием метода Камлета-Якобса (таблица 9) [187]. Рассчитанные скорости и давления детонации энергетических солей лежат между 6.85 км•с⁻¹ для соединения 53 и 8.26 км•с⁻¹ для соединения 44а, и между 18.2 ГПа для соединения 53 и 29.3 ГПа для соединения 44а. Эти значения выше, чем у обычно используемых взрывчатых веществ ТNТ (6.88 км•с⁻¹, 19.5 ГПа) и HNS (7.63 км•с⁻¹, 24.5 ГПа) и сопоставимы с ТАТВ (8.11 $\kappa m \cdot c^{-1}$, 31.2 ГПа). Также важно отметить, что соли **44а** и **50**, которые можно рассматривать как инициирующие взрывчатые вещества, демонстрируют более высокую скорость детонации (D = 8.26 и 7.90 км•с⁻¹, соответственно), чем азид свинца (D = 5.88 км•с⁻¹). С другой стороны, гуанидиниевые соли 48 и 53 при высоких значениях энтальпии образования и удовлетворительной термической стабильности обладают низкой чувствительностью как к удару, так и к трению. Таким образом, сочетание хороших детонационных характеристик, экологичности и приемлемой чувствительности позволяет предположить, что недавно разработанные соли тетразолилфуроксановых анионов, обогащенные азотом, могут быть привлекательными кандидатами для применения в энергоемких составах.

Таблица 9. Физико-химические свойства и детонационные параметры солей тетразолилфуроксанов **44a,b,48-53**.

	T _d ⁰C	р г/см ³	$\Omega_{ m CO,}\left(\Omega_{ m CO2} ight)$ %	N %	ΔH ⁰ _{f,тв} кДж•моль ⁻¹ (кДж•г ⁻¹)	D км•с ⁻¹	Р ГПа	IS Дж	FS H
44a	168	1.71	-22.6 (-45.3)	66.0	857 (4.0)	8.26	29.3	2.2	49
44b	173	1.69	-26.1 (52.2)	60.8	1104 (3.0)	7.68	24.6	1.5	129
48	166	1.59	-31.5 (56.7)	66.1	818 (3.2)	7.54	23.4	29	240
49	129	1.56	-32.7 (56.5)	67.6	926 (3.4)	7.60	23.4	17	>360
50	133	1.57	-34.7 (56.2)	70.2	1141 (3.8)	7.90	25.4	2.7	43
51	115	1.67	-34.4 (61.9)	68.1	1363 (3.9)	7.76	25.5	5.4	251
52	139	1.70	-23.7 (47.4)	62.2	857 (3.2)	8.07	27.9	5.0	116
53	148	1.46	-35.4 (63.7)	61.9	1076 (2.4)	6.85	18.2	38	342
TNT	295	1.65	-24.7 (74.0)	18.5	-67 (-0.3)	6.88	19.5	30	>360
ТАТВ	360	1.93	-18.6 (55.8)	32.5	-138 (-0.5)	8.11	31.2	50	>360
HNS	318	1.75	-17.8 (67.6)	18.7	78 (0.2)	7.63	24.5	5	>360
PETN	165	1.78	15.2 (-10.1)	17.7	-561 (-1.8)	8.40	31.9	3.3	70
$Pb(N_3)_2$	315	4.80	-11.0 (11.0)	28.9	450 (1.6)	5.88	33.4	~2	0.3-0.5

2.3. Исследование цитотоксической активности синтезированных гетарилфуроксанов.

Ряд синтезированных в работе гетарилфуроксанов: производные (1,2,4триазинил)фуроксанов **1**, (1,2,3-триазолил)фуроксанов **33** и 3-нитробифуроксанильных структур **41**, представляющих собой комбинацию фуроксанового цикла (NO-донор) и фармакофорного азотсодержащего гетероцикла, были направлены для исследования их цитотоксической активности в Институт физиологически активных веществ (ИФАВ РАН) в г. Черноголовке (таблица 10).

Цитотоксическую активность выбранных соединений тестировали in vitro методом МТТ теста на пяти линиях клеток рака человека: А549 (аденокарцинома легкого), HCT116 (рак толстой кишки), HeLa (рак шейки матки), MCF7 (рак молочной железы), RD (рабдомиосаркома). Камптотецин использовали в качестве препарата сравнения. Жизнеспособность клеток оценивалась через 72 ч после обработки исследуемыми соединениями в концентрациях 100-1.56 мкМ (таблица 10). Проведенные исследования показали, что наибольшую цитотоксическую активность против всех исследованных линий раковых клеток человека. показали 3-(инденотриазин-3-ил)фуроксан 11 и нитробифуроксанилы 41a,a',b,i. Эти соединения могут рассматриваться как перспективные структурные фрагменты для поиска новых, более эффективных гетарилфуроксанов с цитоксической активностью.

Coorrespondence		Ι	С ₅₀ , мкмоль/л		
Соединение	A549	HCT116	HeLa	MCF7	RD
$ \begin{array}{c} $	>200	>200	>200	>200	>200
$ \begin{array}{c} & & & \\ & & & $	>200	>200	>200	>200	>200

Габлица 10. Результаты цитотоксичност	ги гетарилфуроксанов 1 , 33 , 41
---------------------------------------	---

$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	172.77±14.49	70.59±1.29	49.65±1.26	127.17±0.19	90.82±2.33
H_2N	115.90±3.53	24.80±2.72	>200	>200	>200
H_2N N N N N N N N N N	>200	>200	>200	>200	>200
$H_{2}N$ N N N N N N N N N	129.37±1.28	94.19±5.88	92.82±1.05	118.84±4.77	118.38±0.89
H_2N $N = N$	20.67±0.31	16.27±1.00	8.14±0.01	9.26±0.06	10.82±0.02
	>200	>200	>200	>200	185.95±9.20
	159.45±1.55	>200	>200	>200	119.47±1.83

⊖ ⊕// N ⊖ ⊕// N 33m	>200	>200	>200	>200	>200
⊖NN ⊖N 33n	>200	170.82±7.56	>200	>200	90.16±0.34
$\begin{array}{c} & \overset{N \xrightarrow{O} \\ N \xrightarrow{O} \\ W \xrightarrow{O} \\ & & $	10.67±3.86	12.77±1.11	1.97±0.40	7.81±0.08	0.53±0.00
$\begin{array}{c} \bigcirc & \oplus & O \\ O & N \\ & O \\ & & N \\ & & & \\ \oplus \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & &$	14.73±0.99	23.58±2.04	3.69±0.19	22.34±0.48	3.49±0.03
$\begin{array}{c} \begin{array}{c} & & \\ $	23.52±1.85	49.44±5.17	5.60±0.21	31.80±2.43	2.98±0.02
$\begin{array}{c} \begin{array}{c} N^{O} N^{O} \odot \\ BnS & N^{O} \odot \\ N & NO_{2} \\ N & NO_{2} \\ N & O \end{array} \\ \end{array}$	39.86±2.59	44.40±3.77	21.44±3.08	29.47±1.91	11.77±0.50
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	28.29±2.17	45.13±3.45	5.91±0.27	39.24±3.71	9.71±0.79
Камптотецин	3.32 ± 0.02	0.06 ± 0.00	0.33 ± 0.07	34.97±0.30	16.00 ± 0.22

2.3.1. Оценка NO-донорной способности гетарилфуроксанов с высокой цитотоксической активностью.

Известно, что фуроксаны способны генерировать оксид азота (NO) в присутствии тиол-кофакторов [5,188,189]. NO-Донорная способность гетарилфуроксанов, проявивших хорошую цитотоксическую активность (4-амино-3-инденотриазинилфуроксан 11 и нитробифуроксанилы 41а,а',b) была оценена спектрофотометрическим методом посредством измерения скорости образования нитрит-аниона, генерируемого из образовавшегося NO через реакцию Грисса.

Для количественной оценки NO-донорной способности был создан спектрофотометрический модуль, который позволяет определять количество выделяющегося NO как для гетероциклических *N*-оксидов, так и для нитратов спиртов (Puc. 10).

Рис. 10 Спектрофотометрический модуль.

Эта методика включает обработку соответствующего гетарилфуроксана цистеином, инкубирование полученного раствора в течение часа в физиологических условиях (pH 7.4, температура 37 °C), обработка реагентом Грисса (смесь 4-сульфамидоанилина и 2-(аминоэтиламино)нафталина) и регистрация полученного продукта азосочетания **54** в спектрофотометре (схема 31). Исследование NO-донорной способности было проведено для 4-амино-3-(инденотриазин-3-ил)фуроксана **11** и нитробифуроксанилов **41а,а',b.** Регистрацию проводили через 0.5 часа и затем через каждый час в течение 3 часов.

Схема 31

Нитробифуроксанилы показали высокий уровень образования NO₂-аниона (соединения **41b** и **41'a** выше 30 %), однако для соединения **41'a** это высокое значение может быть связано также с нуклеофильным замещением нитрогруппы в этом соединении под действием тиофена. Способность фуроксанов **41a** и **1l** генерировать NO была несколько ниже (рис. 11).

Рис.11 Способность соединений 11, 41a, 41'a, 41b высвобождать NO от времени.

2.3.2. Исследование апоптозиндуцирующей активности 4-амино-3-(инденотриазин-3-ил)фуроксана 11.

Высокая цитотоксическая активность соединений может быть связана как с их непосредственным воздействием на раковые клетки, так и с индуцированием апоптоза. Апоптоз является морфологически отличительной формой программируемой гибели клеток под действием противораковых агентов [190]. Поэтому мы решили исследовать апоптозиндуцирующую активность гетарилфуроксанов с наиболее высокой цитотоксической активностью. В качестве объекта исследования был выбран 4-амино-3-(инденотриазин-3-ил)фуроксан **11**, поскольку нитробифуроксанилы проявили заметную токсичность по отношению к нормальным клеткам.

Вначале мы изучили цитотоксическую активность соединения **11** в отношении клеток хронической миелоидной лейкемии K562, которая была определена с использованием натриевой соли резазурина в течение 24 часов концентрационнозависимым образом (диапазон концентраций 50-0.78 мкМ). Тест с ресазурином был выбран, поскольку резазурин может метаболизироваться более широким кругом энзимов, чем МТТ [191]. Величина IC₅₀ для соединения **11** составила 20.16±0.66 мкМ.

Поскольку не существует единого критерия определения механизма реализации апоптоза для конкретного типа клеток, была использована комбинация двух тестов: транслокация аннексина V и активация каспаз-3,-7. Рекомбинантный аннексин V был конъюгирован с красителем Alexa Fluor 488, который имеет высокую афинность к фосфатидилсерину, и с красителем SYTOX Blue, который легко проникает в клетки с поврежденной цитоплазматической мембраной. Хорошо известный апоптозиндуцирующий агент камптотецин (СРТ) был использован как положительный контроль. Отрицательным контролем являлись клетки K562 в отсутствие апоптоз-индуцирующего агента.

После экспозиции в течение 6 часов процент выживаемости клеток К562, обработанных камптотецином оставался на уровне 95-96%. В случае соединения **11** количество выживших клеток было несколько меньше (87.5%). Более длительная (24 часа) обработка линии клеток К562 камптотецином несколько уменьшила выживаемость клеток (84-86%), а действие фуроксана **11** привело к почти полной гибели клеток (осталось 6% выживших клеток) (Рис 12А). Популяция апоптотических клеток, обработанных камптотецином независимо от времени экспозиции невелика (2.2% после 6 часов и 10.7% после 24 часов). Интересно, что в случае фуроксана **11** уровень популяции апоптотических клеток был выше как после 6 ч, так и после 24 ч экспозиции (6.5 и 15.3% соответственно), чем в случае камптотецина (рис 12В).

B

Рис 12. Процент выживших (А) и апоптотических (В) клеток после обработки клеток К562 фуроксаном 11 (25 мкМ в течение 6 и 24 часов). Камптотецин был использован как положительный контроль.

Для оценки проявления фуроксаном **11** апоптотического эффекта через капсаззависимый путь была исследована активация каспаз-3 и -7. Тест на активацию каспаз был выполнен для определения процента популяции некротических и апоптотических клеток и полученные данные были сопоставлены с данными теста с аннексином V. По данным теста на активацию каспаз (рис. 13А) при обработке клеток К562 камптотецином в течение 6 ч процент популяции апоптотических клеток составил 2.2%, а при обработке фуроксаном **11** - 13.4%. По сравнению с тестом с аннексином V выживаемость клеток К562 для фуроксана **11** уменьшилась. Следует отметить, что выживаемость клеток была близка для камптотецина и соединения **11** в течение 6 часов.

A

Рис. 13 Процент апоптотических (**A**) и выживших (**B**) клеток после обработки клеток K562 25 мкМ фуроксана **11** в течение 6 и 24 часов для детектирования активации каспаз-3/7. Камптотецин (25 мкМ) был использован в качестве положительного контроля.

Как и ожидалось, увеличение продолжительности обработки клеток К562 камптотецином и фуроксаном **11** до 24 ч при детектировании активации каспаз-3 и -7 привело в целом к уменьшению выживаемости клеток и одновременно к увеличению процента апоптотической популяции. Популяции апоптотических клеток для фуроксана **11** (18.7%) была выше, чем для камптотецина (2.6%) (рис 13А). Процент выживших клеток, обработанных фуроксаном **11** был нижеменьше, чем при обработке камптотецином (82%) (Рис.13В). Из этих результатов следует, что уменьшение выживаемости клеток К562, обработанных фуроксаном **11**, обусловлено главным образом индуцированием апоптоза.

Таким образом, в результате проведенных исследований выявлена цитотоксическая активность ряда синтезированных гетарилфуроксанов в отношении пяти клеточных линий рака человека и оценена способность гетарилфуроксанов с наиболее высокой цитоксической активностью генерировать оксид азота (NO). В ходе исследования механизма цитотоксического действия установлено, что 4-амино-3-(инденотриазин-3-ил)фуроксан 11 является перспективным апоптоз-индуцирующим соединением. Важно отметить, что это первое исследование, которое продемонстрировало способность производных фуроксана запускать апоптотические механизмы в раковых клетках человека *in vitro*, включая путь через активацию каспаз. Возможное выявление этого эффекта соединения 11 в тестах *in vivo* следует исследовать в будущем.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ЯМР-спектры были зарегистрированы на спектрометрах "Bruker AC-200-31" при 200 МГц для ¹Н и 50.3 МГц для ¹³С спектров, "Bruker AM-300" при 300 МГц для ¹Н, 75.5 МГц для ¹³С и 21.7 МГц для ¹⁴N спектров в CDCl₃ или ДМСО-d₆. В качестве внутреннего стандарта для съемки ¹Н и ¹³С ЯМР спектров использовали сигналов остаточных протонов и химические сдвиги атомов углерода дейтерированного растворителя (CDCl₃: δ_H 7.27 м.д., δ_C 77.0 м.д.; ДМСО-d₆: δ_H 2.50 м.д., δ_C 39.5 м.д.). В качестве внешнего стандарта для съемки ¹⁴N и ¹⁵N ЯМР спектров применялся MeNO₂ ($\delta_{14N} = 0.0$ м.д.). Температуры плавления определяли на приборе "Sanyo Gallenkamp". ИК-спектры регистрировали на спектрометре Bruker "Alpha". Масс-спектры регистрировали на приборе Finnigan MAT INCOS-50 с прямым вводом образца в ионный источник при энергии ионизации электронов 70 эВ. Масс спектры высокого разрешения зарегистрированы на приборе "Bruker micrOTOF II" методом электрораспылительной ионизации (ESI). Измерения выполнены на положительных (напряжение на капилляре – 4500 V) или отрицательных (напряжение на капилляре – 3200 V) ионах. Диапазон сканирования масс – m/z 50 – 3000 Д, калибровка – внешняя или внутренняя (Electrospray Calibrant Solution, Fluka). Использовался шприцевой ввод вещества для растворов в МеСЛ, скорость потока – 3 мкл/мин. Газ-распылитель – азот (4 л/мин), температура интерфейса – 180 °C. Элементный анализ выполнен на приборах "Perkin – Elmer 2400" и "EuroVector EA". Контроль за ходом реакций осуществляли с помощью тонкослойной хроматографии на пластинах "Merck 60 F-254" (визуализация хроматограмм УФ облучением при 254 нм). Некоторые полученные соединения выделяли методом препаративной колоночной хроматографии на силикагеле 0.060-0.200 мм, 60А ("Acros Organics"). Оптические плотности, необходимые для определения количества высвободившего NO, были получены с помощью спектрофотометра "Multiskan GO" при длине волны 540 нм. Коммерчески доступные реагенты и растворители использовались без дополнительной очистки. Термический анализ веществ оценивают с помощью аппарата Netzsch STA449F3. Образцы (0.2–3 мг, в зависимости от скорости их тепловыделения) помещают в алюминиевые кастрюли с проколотыми крышками. Исследованные образцы нагревают до 600 °C с постоянной скоростью нагрева 5 км мин⁻¹. Испытания чувствительности к удару были выполнены с использованием машины BAM-типа согласно STANAG 4489 [192]. Полученные значения чувствительности к удару (IS) - это энергия капель, соответствующая 50% вероятности

110

взрыва, полученной с помощью анализа Брюстона. Чувствительность к трению оценивалась в соответствии со STANAG 4487 [193]. Значения чувствительности к трению (FS) - это сила трения, соответствующая 50% вероятности взрыва, полученная с помощью анализа Брюстона.

3.1. Синтез фармакологически ориентированных гетарилфуроксанов.

3.1.1. Синтез производных (1,2,4-триазин-3-ил)- и (2-пиридил)фуроксанов. Получение (1,2,4-триазин-3-ил)фуроксанов 1а-l (общая методика).

Смесь соответствующего фуроксаниламидразона **8а-с**(3 ммоль), полученного по [194]) и 1,2-дикарбонильного соединения **7а-d** (3 ммоль; глиоксаль 4 ммоль использовали в виде дигидрата тримера в присутствии каталитического количества K₂CO₃) в MeOH (15 мл), перемешивают при комнатной температуре в течение 3-24 часов (ТСХ мониторинг). Добавляют H₂O (40 мл) и образовавшийся осадок фильтруют, промывают водой и сушат на воздухе.

3-Метил-4-(1,2,4-триазин-3-ил)-1,2,5-оксадиазол 2-оксид **1а**. Зеленовато-желтый твердый продукт. Выход: 317 мг (59%). Т_{пл.} = 231-232 °C. R_f = 0.10 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3085, 3026, 2921, 2847,

^{1а} 1617, 1545, 1525, 1468, 1348, 1067, 1042, 856 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 2.50 (с, 3H, Me), 9.13 (с, 1H, H Het), 9.63 (с, 1H, H Het). ¹³С ЯМР (75.5 MHz, ДМСО-d₆, м.д.) δ_C: 9.7, 113.6, 150.6, 150.7, 154.9, 156.8. Элементный анализ: Найдено (%): C, 40.11; H, 2.96; N, 39.01. Вычислено (%) для C₆H₅N₅O₂. C, 40.23; H, 2.81; N, 39.10.

3-Метил-4-(5,6-дифенил-1,2,4-триазин-3-ил)-1,2,5-оксадиазол

2-оксид **1b**. Желтый твердый продукт. Выход: 923 мг (93%). Т_{пл}. = 198-200 °C. R_f = 0.60 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3057, 2988, 1616, 1602, 1489, 1462, 1439, 1360, 1121, 1101, 1032, 840, 766 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 2.56 (с, 3H, Me), 7.41-7.55 (м,

6H, H Ph), 7.60 (d, 4H, ³J = 7.3 Гц, H Ph). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 9.6, 113.4, 128.6, 129.4, 129.7, 130.1, 131.2, 134.7, 134.8, 154.0, 154.2, 156.2, 157.5. HRMS (ESI) *m*/*z* (M+H)⁺: Найдено 332.1142. Вычислено для C₁₈H₁₄N₅O₂, 332.1135. Элементный анализ: Найдено (%): C, 65.44; H, 4.08; N, 21.00. Вычислено для (%)

С₁₈H₁₃N₅O₂, 65.25; H, 3.95; N, 21.14. *3-Метил-4-[5,6-ди(пиридин-2-ил)-1,2,4-триазин-3-ил)]-1,2,5оксадиазол 2-оксид* **1с**. Желтый твердый продукт. Выход: 949 мг (95%). Т_{пл}. = 185-186 °C. R_f = 0.21 (CCl₄ : EtOAc = 2 : 1). ИК (КВг): 3055, 1603, 1585, 1508, 1465, 1368, 1135, 1082, 1038, 990, 846, 800, 778, 740 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) $\delta_{\rm H}$: 2.57 (с, 3H, Me), 7.48 (кв, 2H, ³*J* = 5.7 Гц, H Het), 8.04 (т, 2H, ³*J* = 7.7 Гц, H Het), 8.13-8.17 (м, 2H, H Het), 8.37 (т, 2H, ³*J* = 5.6 Гц, H Het). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) $\delta_{\rm C}$: 9.7, 113.8, 124.0, 124.4, 124.6, 125.4, 137.3, 137.6, 148.8, 148.9, 153.3, 153.6, 154.0, 154.7, 155.3, 156.6. HRMS (ESI) *m/z* (M+H)⁺: Найдено 334.1047. Вычислено для C₁₆H₁₂N₇O₂ 334.1042.

3-Метил-4-(9-оксо-9H-индено[1,2-е][1,2,4]триазин-3-ил)-1,2,5оксадиазол 2-оксид **1d**. Светло-желтый твердый продукт. Выход: 607 мг (72%). Т_{пл}. = 235-237 °C. R_f = 0.26 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3087, 3061, 1729, 1617, 1570, 1469, 1380, 1342, 1202, 1106, 1064, 1044, 913, 836, 784, 738 см⁻¹. ¹Н ЯМР

(300 МГц, ДМСО-d₆, м.д.) δ_H: 2.50 (с, 3H, Me), 7.94 (уш. с, 3H, H Ar), 8.14 (уш. с, 1H, H Ar). ¹³С ЯМР (75,5 МГц, ДМСО-d₆, м.д.) δ_C: 9.9, 113.6, 124.3, 124.8, 135.7, 135.9, 137.2, 137.6, 153.2, 154.1, 156.1, 163.2, 186.7. HRMS (ESI) *m/z* (M+H)⁺: Найдено 282.0622. Вычислено 282.0618 для C₁₃H₈N₅O₃.

3-(1,2,4-Триазин-3-ил)-4-фенил-1,2,5-оксадиазол 2-оксид 1е. Светложелтый твердый продукт. Выход: 470 мг (65%). Т_{пл}. = 128-129 °С. R_f = 0.23 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 1614, 1526, 1498, 1392, 1358, 1330, 1178, 1052, 1006, 987, 832, 774 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 7.47-7.65 (м, 5H, H Ph), 9.02 (с, 1H, H Het), 9.52

1e (с, 1H, H Het). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_C: 112.2, 126.2, 128.7, 131.1, 131.4, 149.9, 150.3, 155.6, 156.6. HRMS (ESI) *m/z* (M+H)⁺: Найдено 242.0673. Вычислено для C₁₁H₈N₅O₂. 242.0649. Элементный анализ: Найдено (%): C, 54.64; H, 3.10; N, 28.87. Вычислено для C₁₁H₇N₅O₂ (%): C, 54.77; H, 2.93; N, 29.03.

4-Фенил-3-(5,6-дифенил-1,2,4-триазин-3-ил)-1,2,5-оксадиазол 2оксид **1f**. Желтый твердый продукт. Выход: 1085 мг (92%). Т_{пл}. = 189-190 °C. R_f = 0.26 (CCl₄ : EtOAc = 2 : 1). ИК (KBr): 3067, 3000, 1676, 1662, 1599, 1485, 1445, 1361, 1302, 1289, 1212, 1185, 1066, 1012, 972, 872, 814, 769 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 7.33 (уш. с, 4H, H Ph), 7.44-7.46 (м, 3H, H Ph), 7.55-7.63 (м,

6H, H Ph), 7.78 (д, 2H, ${}^{3}J$ = 6.6 Гц, H Ph). 13 С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_{C} : 112.0, 126.5, 128.2, 128.3, 128.4, 128.5, 128.6, 129.0, 129.5, 129.7, 129.9, 130.0, 130.9, 131.1, 134.3, 134.7, 135.5, 152.8, 155.5, 156.5, 156.9. Элементный анализ: Найдено (%): С, 70.09; Н, 3.97; N, 17.67. Вычислено для С₂₃H₁₅N₅O₂ (%): С, 70.22; Н, 3.84; N, 17.80.

3-[5,6-Ди(пиридин-2-ил)-1,2,4-триазин-3-ил)]-4-фенил-1,2,5-

оксадиазол 2-оксид **1g**. Желтый твердый продукт. Выход: 1043 мг (88%). Т_{пл}. = 209-210 °С. R_f = 0.16 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3072, 3051, 1602, 1586, 1507, 1472, 1369, 1191, 1157, 1021,

1g 992, 971, 878, 812, 790, 773 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_{H} : 7.40-7.46 (м, 2H, H Ar), 7.53-7.68 (м, 4H, H Ar), 7.79 (д, 2H, ³J = 7.2 Гц, H Ar), 7.91 (т, 1H, ³J = 7.4 Гц, H Ar), 8.01 (т, 1H, ³J = 7.4 Гц, H Ar), 8.09 (д, 1H, ³J = 7.6 Гц, H Ar), 8.28 (уш. с, 1H, H Ar), 8.36 (уш. с, 1H, H Ar). ¹³С ЯМР (75.5 МГц, ДМСОd₆, м.д.) δ_{C} : 112.0, 123.9, 124.3, 125.3, 126.6, 128.6, 129.1, 130.9, 137.2, 148.7, 153.0, 153.4, 153.6, 154.5, 155.6, 156.9. HRMS (ESI) m/z (M+H)⁺: Найдено 396.1203, Вычислено для C₂₁H₁₄N₇O₂ 396.1192.

3-(9-Оксо-9*H*-индено[1,2-е][1,2,4]триазин-3-ил)-4-фенил-1,2,5оксадиазол 2-оксид **1h**. Желто-коричневый твердый продукт. Выход: 751 мг (73%). Т_{пл}. = 219-220 °C. R_f = 0.45 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3083, 3033, 1728, 1610, 1595, 1562, 1485, 1463, 1368, 1182, 1171, 1143, 1034, 908, 768 см⁻¹. ¹H ЯМР (300

МГц, ДМСО-d₆, м.д.) δ_{H} : 7.52 (т, 2H, ³J = 7.1 Гц, H Ar), 7.59-7.64 (м, 1H, H Ar), 7.71 (д, 2H, ³J = 7.4 Гц, H Ar), 7.89 (уш. с, 3H, H Ar), 7.98 (д, 1H, ³J = 6.9 Гц, H Ar). ¹³C ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_{C} : 112.4, 123.9, 124.8, 126.2, 128.6, 128.7, 128.8, 128.9, 131.1, 135.6, 135.7, 137.1, 137.6, 152.4, 155.0, 156.6, 162.7, 186.6. Элементный анализ: Найдено (%): C, 63.09; H, 2.55; N, 20.29. Вычислено для C₁₈H₉N₅O₃ (%): C, 62.98; H, 2.64; N, 20.40.

4-Амино-3-(1,2,4-триазин-3-ил)-1,2,5-оксадиазол 2-оксид **1i** Желтый твердый продукт. Выход: 399 мг (74%). Т_{пл}. = 200-202 °C. R_f = 0.10 (CCl₄ : EtOAc = 1 : 1). ИК (KBr): 3400, 3300, 2815, 1633, 1600, 1532, 1419, 1336, 1219, 1054, 1010, 963, 870, 858, 726 см⁻¹. ¹Н ЯМР (300 МГц,

ДМСО-d₆, м.д.) δ_H: 6.82 (c, 2H, NH₂), 9.02 (c, 1H, H Het), 9.48 (c, 1H, H Het). ¹³С ЯМР (75,5 МГц, ДМСО-d₆, м.д.) δ_C: 106.1, 149.1, 149.9, 155.3, 156.4. Элементный анализ: Найдено (%): C, 33.26; H, 2.35; N, 46.75. Вычислено для C₅H₄N₆O₂ (%): C, 33.34; H, 2.24; N, 46.66. Ph 4-Амино-3-(5,6-дифенил-1,2,4-триазин-3-ил)-1,2,5-оксадиазол 2н₂N, Ph оксид 1j. Желтый твердый продукт. Выход: 926 мг (93%). Т_{пл}. 220-221 °C. R_f = 0.62 (CCl₄ : EtOAc = 4 : 1). ИК (КВг): 3422, 3314, 3063, 1667, 1625, 1606, 1525, 1488, 1421, 1367, 1233, 1156, 1001, 974, 770, 719 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 6.03 (уш. с, 2H, NH₂), 7.43-7.51 (м, 3H, H Ph), 7.56-7.61 (м, 3H, H Ph), 7.82 (д, 4H, ³J = 7.3 Гц, H Ph). ¹³С ЯМР (75,5 МГц, ДМСО-d₆, м.д.) δ_C: 104.6, 125.4, 127.2, 128.6, 128.9, 129.4, 131.0, 132.8, 134.8, 149.4, 155.9, 156.5, 160.1. Элементный анализ: Найдено (%): С, 61.56; H, 3.71; N, 25.35. Вычислено для С₁₇H₁₂N₆O₂ (%): С, 61.44; H, 3.64; N, 25.29.

4-Амино-3-[5,6-ди(пиридин-2-ил)-1,2,4-триазин-3-ил]-1,2,5-

оксадиазол 2-оксид **1k**. Желтый твердый продукт. Выход: 982 мг (98%). Т_{пл}. = 180-182 °C. R_f = 0.25 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3394, 3280, 3054, 1621, 1591, 1516, 1476, 1432, 1379, 1293, 1219, 1120, 1054, 1026, 1002, 984, 792, 747 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) $\delta_{\rm H}$: 6.89 (с, 2H, NH₂), 7.47 (кв, 2H, ³J = 7.1

Гц, H Het), 8.03 (т, 2H, ${}^{3}J$ = 7.7 Гц, H Het), 8.13 (т, 2H, ${}^{3}J$ = 7.5 Гц, H Het), 8.37 (т, 2H, ${}^{3}J$ = 5.5 Гц, H Het). 13 С ЯМР (75,5 МГц, ДМСО-d₆, м.д.) $\delta_{\rm C}$: 106.1, 123.9, 124.3, 124.7, 125.3, 137.2, 137.4, 148.7, 148.8, 153.3, 153.7, 154.3, 154.7, 155.1, 156.5. HRMS (ESI) m/z (M+H)⁺: Найдено 335.0999. Вычислено для C₁₅H₁₁N₈O₂ 335.0995 Элементный анализ: Найдено (%): C, 54.06; H, 2.90; N, 33.68. Вычислено для C₁₅H₁₀N₈O₂ (%): C, 53.89; H, 3.02; N, 33.52.

4-Амино-3-(9-оксо-9Н-индено[1,2-е][1,2,4]триазин-3-ил)-1,2,5-

оксадиазол 2-оксид Красный твердый продукт. Выход: 711 мг (84%). Т_{пл}. = 258-259 °C. R_f = 0.13 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3397, 3315, 1727, 1683, 1628, 1600, 1540, 1509, 1454, 1434, 1412, 1344, 1251, 1233, 1165, 1130, 1119, 970, 919, 742 см⁻¹. ¹Н ЯМР (300

МГц, ДМСО-d₆, м.д.) δ_H: 7.48 (уш. с, 2H, NH₂), 7.94 (уш. с, 3H, H Ar), 8.95 (уш. с 1H, , H Ar). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 105.4, 123.0, 123.5, 124.5, 135.6, 140.3, 141.0, 146.9, 151.4, 156.6, 156.9, 186.5. Элементный анализ: Найдено (%): С, 50.98; H, 2.22; N, 29.89. Вычислено для C₁₂H₆N₆O₃ (%): C, 51.07; H, 2.14; N, 29.78. **Синтез 3-метил-4-[(4аR,8аS)-8а-(пирролидин-1-ил)-4а,5,6,7,8,8а-гексагидроизохинолин-1-ил]-1,2,5-оксадиазол 2-оксида ба.**

1-(Циклогекс-1-ен-1-ил)пирролидин **5** (1 ммоль, 151 мг) добавляют по каплям к суспензии 3-метил-4-(1,2,4-триазин-3-ил)-1,2,5-оксадиазол 2-оксида **1а** (1

ммоль, 179 мг) в CHCl₃ (5 мл) при комнатной температуре. Реакционную смесь перемешивают в течение 4 часов (TCX мониторинг, элюент – CCl₄:EtOAc = 4:1, R_f = 0.25), растворитель упаривают, а остаток очищают флэш-хроматографией (элюент – CCl₄:EtOAc = 4:1).

3-метил-4-[(4aR,8aS)-8a-(пирролидин-1-ил)-4a,5,6,7,8,8a-гексагидроизохинолин-1-ил]-1,2,5-оксадиазол 2-оксид **6a**. Желтое масло. Выход: 245 мг (81%). R_f = 0.25. ИК (тонкий слой с KBr): 2964, 2922, 2835, 1630, 1525, 1473, 1418, 1386, 1322, 1292, 1172, 1113, 1065, 890 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 1.47-1.70 (м, 8H,

2CH₂ циклогексанового цикла + 2CH₂ пирролидинового цикла), 1.81-1.89 (м, 2H, CH₂ пирролидинового цикла), 2.30 (с, 5H, Me + CH₂ пирролидинового цикла), 2.60 (уш. с, 2H, CH₂ циклогексанового цикла), 2.70 (уш. с, 2H, CH₂ циклогексанового цикла), 2.90-2.95 (м, 1H, CH₂CH), 5.79 (т, 1H, ³J = 6.3 Гц, NCHCH), 6.91 (д, 1H, ³J = 6.7 Гц, NCH). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 10.2, 23.0, 23.8, 24.0, 25.0, 27.0, 29.1, 38.8, 41.9, 48.1, 58.6, 113.3, 125.2, 132.5, 152.1, 156.2. Элементный анализ: Найдено (%): C, 63.64; H, 7.42; N, 18.41. Вычислено для C₁₆H₂₂N₄O₂ (%): C, 63.55; H, 7.33; N, 18.53.

Окисление 3-метил-4-[(4aR,8aS)-8а-(пирролидин-1-ил)-4а,5,6,7,8,8а-гексагидроизохинолин-1-ил]-1,2,5-оксадиазол 2-оксида ба.

Мета-хлорпербензойная кислота (*т*СРВА) (2 ммоль, 345 мг) медленно добавляют к раствору соединения **6a** (0.5 ммоль, 151 мг) в CHCl₃ (2 мл) при перемешивании при комнатной температуре. Реакционную массу перемешивают 8 часов. (ТСХ мониторинг, элюент – CCl₄: EtOAc = 4:1). Добавляют 10% раствор NaHCO₃, полученную смесь перемешивают 10 минут, органический слой отделяют, промывают водой и сушат над MgSO₄. Упаривание растворителя приводит к тетрагидроизохинолину **7a** с выходом 91%.

Синтез тетрагидроизохинолинов 7а-h. (общая методика).

1-(Циклогекс-1-ен-1-ил)пирролидин **5** (0.7 ммоль, 106 мг) добавляют по каплям к суспензии соответствующего 1,2,4-триазина **1** (0.7 ммоль) в CHCl₃ (4 мл) при комнатной температуре. Реакционную массу перемешивают в течение 4-12 часов. (ТСХ мониторинг, элюент – CCl₄: EtOAc). Для соединений **1а,d,e,h** реакцию проводят при комнатной температуре, в то время как для соединений **1b,c,f,g** реакцию проводят при кипячении. Затем реакционную массу охлаждают до комнатной температуры, добавляют *m*CPBA (2.8 ммоль, 483 мг) и образовавшуюся

суспензию перемешивают в течение 8 часов (для соединений 1a,d,e,h премешивание проводят при комнатной температуре, а для соединений **1b,c,f,g** при кипячении). После этого растворитель упаривают, и остаток очищают от примесей флэш-хроматографией (элюент – CCl4: EtOAc = 4:1). Полученный раствор промывают 10% раствором NaHCO₃, водой и сушат над MgSO₄. Упаривание расторителя приводит к получению тетрагидроизохинолинов 7а-h.

7a

3-Метил-4-(5,6,7,8-тетрагидроизохинолин-1-ил)-1,2,5-оксадиазол-2-оксид 7а. Светло-желтый твердый продукт. Выход: 129 мг (80%). Т_{пл}. = 92-93 °С (разл.). R_f = 0.75 (ССІ₄ : EtOAc = 2 : 1). ИК (KBr): 2938, 2867, 1606, 1469, 1421, 1371, 1327, 1239, 1103, 850 cm⁻ ¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 1.83 (уш. с, 4H, 2CH₂), 2.34 (с,

3H, Me), 2.85 (уш. с, 2H, CH₂), 2.99 (уш. с, 2H, CH₂), 7.11 (д, 1H, ³J = 4.9 Гц, H Het), 8.38 (д. 1H, ${}^{3}J$ = 4.9 Гц, H Het, м.д.). 13 С ЯМР (75.5 МГц, CDCl₃, м.д.) бс: 9.6, 21.8, 22.7, 26.7, 29.6, 113.8, 125.6, 134.3, 145.1, 146.1, 148.5, 156.5. HRMS (ESI) *m/z* (M+H)⁺: Найдено 232.1079. Вычислено для C₁₂H₁₄N₃O₂ 232.1081.

3-Метил-4-(3,4-дифенил-5,6,7,8-тетрагидроизохинолин-1-ил)-1,2,5-оксадиазол-2-оксид 7b. Желтый твердый продукт. Выход: 196 мг (73%). Тпл. = 191-192 °С. R_f = 0.79 (ССІ₄ : EtOAc = 2 : 1). ИК (КВг): 2924, 2880, 1612, 1545, 1462, 1410, 1372, 1115, 834,

770 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) б_н: 1.77-1.86 (м, 4Н, 2CH₂), 2.24 (T, 2H, ${}^{3}J$ = 6.2 Γ _{II}, CH₂), 2.70 (c, 3H, Me), 3.15 (T, 2H, ${}^{3}J$ = 6.2 Γ _{II}, CH₂), 7.37-7.53 (м, 6H, H Ph), 7.64-7.70 (м, 4H, H Ph). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 10.0, 22.2, 27.3, 28.2, 30.7, 113.0, 128.9, 129.0, 129.6, 129.7, 130.0, 130.5, 130.6, 131.7, 134.6, 134.7, 153.5, 154.7, 156.8, 157.8. Элементный анализ: Найдено (%): С, 75.04; Н, 5.66; N, 11.09. Вычислено для C₂₄H₂₁N₃O₂ (%): C, 75.18; H, 5.52; N, 10.96.

3-Метил-4-[3,4-ди(пиридин-2-ил)-5,6,7,8-тетрагидро-

изохинолин-1-ил]-1,2,5-оксадиазол-2-оксид 7с. Красный твердый продукт. Выход: 181 мг (67%). Т_{пл}. = 173-174 °С. R_f = 0.10 (ССІ₄ : EtOAc = 4 : 1). ИК (KBr): 2931, 2865, 1604, 1587, 1459, 1399, 1372, 1109, 833, 795, 745 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$:

1.77-1.83 (M, 4H, 2CH₂), 2.40 (c, 3H, Me), 2.63 (c, yiii. 2H, CH₂), 3.15 (T, 2H, ${}^{3}J = 6.2$ Гц, СН₂), 7.08-7.11 (м, 1Н, Н Неt), 7.17-7.24 (м, 2Н, Н Неt), 7.60-7.68 (м, 3Н, Н Неt), 8.26 (д, 1H, ${}^{3}J$ = 4.6 Гц, H Het), 8.62 (д, 1H, ${}^{3}J$ = 4.6 Гц, H Het). 13 C ЯМР (75.5 МГц, СDCl₃, м.д.) δ_C: 9.8, 22.1, 27.2, 28.3, 30.9, 113.8, 122.1, 122.4, 122.6, 124.1, 125.6, 134.1, 136.1, 136.4, 144.3, 148.3, 148.5, 148.7, 152.5, 156.3, 156.9, 157.1. Элементный анализ: Найдено (%): C, 68.44; H, 5.09; N, 18.33. Вычислено для C₂₂H₁₉N₅O₂ (%): C, 68.56; H, 4.97; N, 18.17.

3-Метил-4-(11-оксо-2,3,4,11-тетрагидро-1Н-индено[1,2-

с]изохинолин-5-ил)-1,2,5-оксадиазол 2-оксид **7d**. Желтый твердый продукт. Выход: 147 мг (63%). Т_{пл}. = 219-220 °C. R_f = 0.52 (CCl₄ : EtOAc = 8 : 1). ИК (KBr): 2964, 2930, 2871, 1715, 1622, 1459, 1424, 1400, 1280, 1105, 1044, 846 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-

d₆, м.д.) δ_H: 1.78 (4H, уш. с, 2CH₂), 2.51 (3H, с, Me), 2.89 (2H, уш. с, CH₂), 3.12 (2H, т, ³J = 6.2 Гц, CH₂), 7.90 (уш. с, 3H, H Ar), 8.10 (уш. с, 1H, H Ar). ¹³C ЯМР (75.5 МГц, ДМСО-d₆) δ_C: 10.0, 22.4, 27.4, 28.2, 31.0, 113.2, 124.0, 124.5, 135.1, 135.4, 137.0, 137.9, 144.5, 148.6, 153.8, 154.6, 156.7, 163.5, 186.8. Элементный анализ: Найдено (%): C, 68.63; H, 4.41; N, 12.39. Вычислено для C₁₉H₁₅N₃O₃ (%): C, 68.46; H, 4.54; N, 12.61.

3-(5,6,7,8-Тетрагидроизохинолин-1-ил)-4-фенил-1,2,5-оксадиазол-2-

оксид 7е. Светло-желтый твердый продукт. Выход: 152 мг (74%). Т_{пл.} Ph = 125-126 °C. $R_f = 0.46$ (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 2922, 2870, N $_{\odot}^{\oplus}$ ° 1614, 1515, 1472, 1372, 1095, 790 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) 7е $\delta_{\rm H}$: 1.73-1.91 (4H, м, 2CH₂), 2.34 (2H, т, ³J = 6.7 Гц, CH₂), 2.86 (2H, уш. с, CH₂), 7.18 (1H, д, ³J = 4.9 Гц, H Het), 7.34-7.52 (5H, м, H Ph), 8.41 (1H, д, ³J = 4.9 Гц, H Het). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) $\delta_{\rm C}$: 21.8, 22.1, 24.5, 29.2, 114.9, 126.1, 126.7, 127.5, 128.8, 131.0, 135.5, 142.8, 147.0, 148.7, 156.1. Элементный анализ: Найдено (%): C, 69.48; H, 5.36; N, 14.45. Вычислено для C₁₇H₁₅N₃O₂ (%): C, 69.61; H, 5.15; N, 14.33.

4-фенил-3-(3,4-дифенил-5,6,7,8-тетрагидроизохинолин-1-ил)-1,2,5оксадиазол-2-оксид 7**f**. Желтый твердый продукт. Выход: 206 мг (66%). Т_{пл}. = 169-170 °C (разл.). R_f = 0.70 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 2958, 2925, 2854, 1606, 1490, 1445, 1362, 765 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 1.61-1.79 (4H, м, 2CH₂), 2.25 (2H, т, ³J =

6.6 Гц, CH₂), 2.72 (2H, уш. с, CH₂), 7.29-7.56 (11H, м, H Ph), 7.63 (2H, д, ³J = 7.2 Гц, H Ph), 7.77 (2H, d, ³J = 7.0 Гц, H Ph). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 29.5, 31.1, 38.0, 59.4, 113.8, 126.5, 127.4, 128.2, 128.5, 128.6, 128.7, 129.2, 129.4, 129.8, 130.1, 130.4, 130.8, 131.1, 131.4, 134.1, 134.7, 155.6, 156.4. Элементный анализ: Найдено

(%): C, 78.33; H, 5.02; N, 9.54. Вычислено для C₂₉H₂₃N₃O₂ (%): C, 78.18; H, 5.20; N, 9.43.

3-[3,4-Ди(пиридин-2-ил)-5,6,7,8-тетрагидроизохинолин-1-ил]-4фенил-1,2,5-оксадиазол-2-оксид **7g**. Желтый твердый продукт. Выход: 263 мг (84%). Тпл. = 203-204 °C. R_f = 0.13 (CCl₄ : EtOAc = 4 :

^N₀, N[⊕]₀, N[⊕]₀
¹). ИК (KBr): 3072, 2924, 2853, 1602, 1586, 1507, 1472, 1369, 1157, 1021, 773 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 1.61-1.79 (4H, м, 2CH₂), 2.24 (2H, т, ³J = 6.8 Гц, CH₂), 2.72 (2H, уш. с, CH₂), 7.43 (1H, кв, ³J = 6.9 Гц, H Het), 7.51-7.71 (6H, м, H Ar), 7.78 (1H, д, ³J = 7.4 Гц, H Het), 7.91 (1H, т, ³J = 7.4 Гц, H Het), 8.01 (1H, т, ³J = 7.7 Гц, H Het), 8.10 (1H, д, ³J = 7.7 Гц, H Het), 8.29

(1H, д, ³*J* = 4.6 Гц, H Het), 8.36 (1H, д, ³*J* = 4.6 Гц, H Het). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 21.3, 24.3, 26.4, 27.2, 112.1, 123.8, 123.9, 124.3, 125.3, 125.4, 126.6, 127.5, 128.6, 129.1, 129.2, 130.9, 137.2, 147.9, 148.7, 153.0, 153.4, 153.6, 154.5, 155.6, 157.0. Элементный анализ: Найдено (%): C, 72.63; H, 4.59; N, 15.77. Вычислено для C₂₇H₂₁N₅O₂ (%): C, 72.47; H, 4.73; N, 15.65.

4-(11-Оксо-2,3,4,11-тетрагидро-1*H*-индено[1,2-с]изохинолин-5-ил)-4-фенил-1,2,5-оксадиазол 2-оксид **7h**. Оранжевый твердый продукт. Выход: 213 мг (77%). Т_{пл}. = 161-162 °C. R_f = 0.47 (CCl₄ : EtOAc = 8 : 1). ИК (KBr): 2956, 2929, 2855, 1717, 1595, 1578, 1561, 1486, 1455, 1365, 1253, 1169, 936, 751 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H:

1.83 (4H, уш. с, 2CH₂), 2.59 (2H, уш. с, CH₂), 3.28 (2H, т, ${}^{3}J$ = 7.0 Гц, CH₂), 7.36-7.48 (4H, м, H Ar), 7.51-7.72 (5H, м, H Ar). 13 C ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 21.1, 21.7, 25.1, 25.7, 115.6, 121.1, 124.0, 126.0, 126.6, 127.6, 129.0, 131.1, 131.2, 135.2, 135.3, 136.3, 142.6, 149.1, 162.9, 186.5. HRMS (ESI) *m*/*z* для C₂₄H₁₈N₃O₃ (M+H)⁺: Вычислено 396.1343, Найдено 396.1338. Элементный анализ: Найдено (%): C, 73.03; H, 4.20; N, 10.52. Вычислено для C₂₄H₁₇N₃O₃ (%): C, 72.90; H, 4.33; N, 10.63.

Получение (пиридин-2-ил)фуроксанов 9а-1 и 9'а-1. (общая методика).

Смесь соответствующего 1,2,4-триазина 1 (1 ммоль) и 2,5-норборнадиена 8 (3 ммоль, 0.31 мл) в PhCl (3 мл) кипятят в течение 5-14 часов (ТСХ мониторинг, элюент – CCl₄ : EtOAc). Растворитель и избыток 2,5-норборнадиена упаривают при пониженном давлении, а остаток очищают флэш хроматографией (элюент – CCl₄ : EtOAc). Соединения 9а и 9'а выделяют путем колоночной хроматографии на SiO₂ (элюент – CCl₄ : EtOAc = 4 : 1).

3-Метил-4-(пиридин-2-ил)-1,2,5-оксадиазол 2-оксид **9а**. Бесцветный твердый продукт. Выход: 108 мг (61%). Т_{пл}. = 100-101 °C. R_f = 0.64 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 1595, 1566, 1508, 1472, 1412, 1255, 1118, 997, 932, 790 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 2.55 (3H, c,

Me), 7.42 (1H, т, ${}^{3}J$ = 7.2 Гц, H Het), 7.86 (1H, т, ${}^{3}J$ = 7.7 Гц, H Het), 8.07 (1H, д, ${}^{3}J$ = 7.9 Гц, H Het), 8.69 (1H, уш. с, H Het). 13 С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 9.8, 113.0, 122.0, 125.2, 137.1, 147.4, 149.6, 155.8. HRMS (ESI) m/z для C₈H₈N₃O₂ (M+H)⁺: Вычислено 178.0611, Найдено 178.0614. Элементный анализ: Найдено (%): C, 54.38; H, 4.14; N, 23.61. Вычислено для C₈H₇N₃O₂ (%): C, 54.24; H, 3.98; N, 23.72.

4-Метил-3-(пиридин-2-ил)-1,2,5-оксадиазол 2-оксид **9**'а. Светложелтый твердый продукт. Выход: 53 мг (30%). Т_{пл}. = 93-94 °С. $R_f = 0.75$ (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 1587, 1570, 1516, 1475, 1415, 1286, 1151, 991, 964, 789 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 2.75 (3H, c, Me), 7.35-7.39 (1H, м, H Het), 7.84-7.90 (1H, м, H Het), 8.37 (1H, д, ³J = 8.1 Гц, H Het), 8.71 (1H, уш. с, H Het). ¹³С ЯМР (75.5 МГц, CDCl₃) $\delta_{\rm C}$: 14.0, 109.6, 122.0, 124.4, 124.6, 137.0, 149.7, 155.0. Элементный анализ: Найдено (%): C, 54.41; H, 3.86;

N, 23.88. Вычислено для C₈H₇N₃O₂ (%): C, 54.24; H, 3.98; N, 23.72.

3-Метил-4-(5,6-дифенилдпиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9b Ph 4-метил-3-(5,6-диметилпиридин-2-ил)-1,2,5-оксадиазол 2-оксид Me и 9'b. Желтый твердый продукт. Выход: 279 мг (85%), соотношение ó \sim 9b / 9'b **9b/9'b** = 1/1.5. Т_{пл}. = 138-139 °С. R_f = 0.81 (ССІ₄ : EtOAc = 2 : 1). ИК (KBr): 3056, 1606, 1557, 1460, 1443, 1426, 1383, 1368, 1037, 768 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 2.45 (3H, c, Me), 2.64 (3H, c, Me), 7.18-7.29 (14H, м, H Ar), 7.35-7.60 (10Н, м, Н Аг). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 9.6, 13.8, 113.0, 114.5, 120.0, 120.3, 127.7, 127.8, 127.9, 128.2, 128.5, 128.6, 129.2, 129.3, 129.4, 129.5, 129.7, 131.2, 135.5, 136.4, 137.1, 138.5, 139.0, 140.0, 140.2, 142.3, 145.0, 155.4, 155.6, 156.3, 156.4. Элементный анализ: Найдено (%): С, 73.12; Н, 4.44; N, 12.88. Вычислено для C₂₀H₁₅N₃O₂ (%): C, 72.94; H, 4.59; N, 12.76.

3-Метил-4-[(2,2':3',2"-терпиридин)-6'-ил]-1,2,5-оксадиазол 2оксид 9с и 4-метил-3-[(2,2':3',2"-терпиридин)-6'-ил]-1,2,5оксадиазол 2-оксид 9'с. Желтый твердый продукт. Выход: 248 мг (75%), соотношение 9с/9'с = 1/1. $T_{пл.} = 70-71$ °C. $R_f = 0.11$ (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3060, 1615, 1560, 1453, 1422,

1406, 1376, 1344, 1040, 775 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_{H} : 2.62 (3H, c, Me),

2.79 (3H, c, Me), 7.14-7.26 (6H, м, H Het), 7.59 (2H, т, ³*J* = 7.8 Гц, H Het), 7.77-7.80 (4H, м, H Het), 8.20-8.27 (3H, м, H Het), 8.35-8.38 (2H, м, H Het), 8.51-8.59 (3H, м, H Het). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_{C} : 9.8, 14.2, 109.4, 112.3, 120.9, 121.1, 122.1, 122.2, 123.0, 124.0, 124.2, 124.3, 124.7, 124.9, 136.1, 136.5, 136.8, 137.0, 139.8, 139.9, 143.3, 146.2, 148.3, 148.4, 148.7, 149.0, 149.1, 154.9, 156.8, 157.0. Элементный анализ: Найдено (%): С, 65.39; H, 4.08; N, 21.02. Вычислено для C₁₈H₁₃N₅O₂ (%): С, 65.25; H, 3.95; N, 21.14.

3-Метил-4-(5-оксо-5H-индено[1,2-b]пиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9d и 4-Метил-3-(5-оксо-5H-индено[1,2-b]пиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9'd. Желтый твердый продукт. Выход: 215

^{9d / 9'd} Mг (77%), соотношение **9d/9'd** = 1/1. Т_{пл}. = 184-185 °C. R_f = 0.73 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 2959, 2929, 2851, 1720, 1608, 1585, 1460, 1408, 1272, 919, 851, 750 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) δ_{H} : 2.69 (3H, c, Me), 2.88 (3H, c, Me), 7.51 (2H, т, ³J = 7.5 Гц, H Ar), 7.66 (2H, т, ³J = 7.5 Гц, H Ar), 7.77-7.85 (4H, м, H Ar), 7.97-8.07 (3H, м, H Ar), 8.35 (1H, д, ³J = 7.9 Гц, H Ar). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 10.2, 10.5, 108.9, 109.1, 121.2, 121.7, 121.9, 124.0, 124.5, 124.6, 128.1, 128.3, 131.8, 132.4, 132.5, 133.4, 133.8, 135.4, 135.6, 135.7, 136.0, 139.5, 139.9, 148.4, 164.8, 190.2, 190.5. Элементный анализ: Найдено (%): C, 64.66; H, 3.41; N, 14.87. Вычислено для C₁₅H₉N₃O₃ (%): C, 64.52; H, 3.25; N, 15.05.

> 4-(Пиридин-2-ил)-3-фенил-1,2,5-оксадиазол 2-оксид 9е и 3-(пиридин-2ил)-4-фенил-1,2,5-оксадиазол 2-оксид 9'е. Желтый твердый продукт. Выход: 229 мг (96%), соотношение 9е/9'е = 1/1. Т_{пл}. = 123-124 °C. R_f =

9e / 9'e 0.70 (CCl₄ : EtOAc = 4 : 1). ИК (КВг): 2966, 2912, 1622, 1554, 1422, 1356, 1260, 1106, 922, 732 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 7.35-7.50 (10H, м, H Ph), 7.56-7.61 (4H, м, H Het), 7.82-7.89 (1H, м, H Het), 7.95-7.98 (1H, м, H Het), 8.62 (1H, т, ³J = 4.5 Гц, H Het), 8.78 (1H, уш. с, H Het). ¹³С ЯМР (75.5 МГц, CDCl₃) $\delta_{\rm C}$: 114.7, 123.0, 123.8, 124.3, 124.9, 125.4, 128.6, 128.8, 128.9, 129.1, 129.2, 130.5, 130.6, 130.8, 130.9, 131.3, 137.2, 137.3, 149.0, 149.1, 149.3, 150.0. Элементный анализ: Найдено (%): C, 65.41; H, 3.70; N, 17.68. Вычислено для C₁₃H₉N₃O₂ (%): C, 65.27; H, 3.79; N, 17.56.

Рh 3-Фенил-4-(5,6-дифенилпиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9f и Ph Ph A-фенил-3-(5,6-дифенилпиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9'f. Weлтый твердый продукт. Выход: 379 мг (97%), соотношение 9f/9'f 9f/9'f = 1/1. $T_{пл.} = 149-150$ °C. $R_f = 0.81$ (CCl₄ : EtOAc = 2 : 1). ИК (KBr): 2960, 2920, 1615, 1582, 1453, 1405, 1299, 1154, 990, 740 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_{H} : 6.97-7.13 (5H, м, H Ar), 7.21-7.24 (4H, м, H Ar), 7.28-7.35 (6H, м, H Ar), 7.41-7.56 (8H, м, H Ar), 7.64 (1H, д, ³J = 7.8 Гц, H Ar), 7.70-7.79 (6H, м, H Ar), 7.88 (2H, д, ${}^{3}J$ = 8.0 Гц, H Ar), 7.97 (1H, д, ${}^{3}J$ = 7.8 Гц, H Ar), 8.13 (1H, д, ${}^{3}J$ = 8.0 Гц, Н Аг). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 112.1, 114.8, 121.2, 121.5, 122.5, 126.5, 127.4, 127.5, 127.7, 128.0, 128.4, 128.6, 128.7, 128.8, 129.1, 129.2, 129.4, 129.6, 129.7, 129.8, 129.9, 130.0, 130.2, 130.3, 130.8, 131.4, 134.1, 134.4, 138.8, 139.6, 152.9, 153.3, 155.6, 155.9, 156.4, 157.4. Элементный анализ: Найдено (%): С, 76.87; Н, 4.51; N, 10.63. Вычислено для C₂₅H₁₇N₃O₂ (%): C, 76.71; H, 4.38; N, 10.74.

4-[(2,2':3',2"-Терпиридин)-6'-ил]-3-фенил-1,2,5-оксадиазол 2-И 3-[(2,2':3',2"-терпиридин)-6'-ил]-4-фенил-1,2,5оксид 9g оксадиазол 2-оксид 9'д Желтый твердый продукт. Выход: 310 мг (79%), соотношение 9g/9'g = 1/1. $T_{nn} = 132-134$ °C. $R_f = 0.28$ (CCl₄ : EtOAc = 2 : 1). ИК (KBr): 2972, 2930, 1625, 1564, 1468, 1402, 1322, 1263, 1054, 944, 724 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) б_н: 7.06-7.32 (8H, м, H Ar), 7.38-7.68 (14H, м, H Ar), 8.05 (1H, д, ³*J* = 7.7 Гц, H Ar), 8.13-8.27 (5H, м, H Ar), 8.54 (2H, уш. с, H Ar). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_{C} : 104.5, 109.2,

122.1, 122.2, 122.3, 122.4, 123.0, 124.1, 124.2, 124.3, 127.6, 128.4, 128.5, 129.2, 129.5, 130.1, 130.3, 135.9, 136.3, 136.4, 140.1, 140.2, 148.1, 148.2, 149.3, 149.4, 156.6, 157.5. Элементный анализ: Найдено (%): С, 70.38; Н, 3.73; N, 17.97. Вычислено для C₂₃H₁₅N₅O₂ (%): C, 70.22; H, 3.84; N, 17.80.

4-(5-Оксо-5Н-индено[1,2-b]пиридин-2-ил)-3-фенил-1,2,5-оксадиазол 2-оксид 9h и 3-(5-оксо-5H-индено[1,2-b]пиридин-2-ил)-4-фенил-*1,2,5-оксадиазол 2-оксид* **9'h**. Оранжевый твердый продукт. Выход:

218 мг (64%), соотношение **9h/9'h** = 1.5/1. T_{III} . = 170-171 °C. R_f = 9h / 9'h 0.77 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 2958, 2924, 2854, 1718, 1570, 1407, 1275, 1099, 918, 752 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) *б*_H: 7.43-7.61 (12H, м, H Ar), 7.70-7.78 (7H, м, H Ar), 7.90 (1H, д, ${}^{3}J = 7.7$ Гц, H Ar), 8.05 (1H, д, ${}^{3}J = 7.9$ Гц, H Ar), 8.18 (1H, д, ³*J* = 7.7 Гц, Н Аг). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 109.4, 112.3, 121.0, 121.1, 122.2, 122.5, 124.2, 124.3, 128.0, 128.2, 129.3, 129.5, 130.3, 130.4, 131.4, 132.1, 135.3, 135.4, 154.9, 156.8, 157.0, 186.7, 189.8. Найдено (%): С, 70.23; Н, 3.14; N, 12.48. Вычислено для C₂₀H₁₁N₃O₃ (%): C, 70.38; H, 3.25; N, 12.31.

3-Амино-4-(пиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9i 4-амино-3-(пиридин-2-ил)-1,2,5-оксадиазол 2-оксид 9'i. Оранжевый твердый продукт. Выход: 112 мг (63%), соотношение 9i/9'i = 1/1. Т_{пл}. = 118-120 °C. R_f = 0.58 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3408, 3308, 2958, 2927, 1598, 1532, 1507, 1431, 1418, 1294, 1190, 1054, 997, 960, 787 см⁻

¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 6.82 (2H, уш. с, NH₂), 7.03 (2H, уш. с, NH₂), 7.55 (2H, т, ³*J* = 7.6 Гц, H Het), 8.07 (2H, т, ³*J* = 7.6 Гц, H Het), 8.35 (1H, д, ³*J* = 8.0 Гц, H Het), 8.74 (1H, уш. с, H Het), 9.03 (1H, уш. с, H Het), 9.48 (1H, уш. с, H Het). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 113.8, 120.7, 124.8, 138.0, 144.3, 149.0, 149.4, 149.9, 150.2, 156.4, 156.9. Элементный анализ: Найдено (%): С, 47.06; H, 3.55; N, 31.59. Вычислено для C₇H₆N₄O₂ (%): С, 47.19; H, 3.39; N, 31.45.

^{Ph} *3-Амино-4-(5,6-дифенилпиридин-2-ил)-1,2,5-оксадиазол 2-оксид* **9ј и** *4-амино-3-(5,6-дифенилпиридин-2-ил)-1,2,5-оксадиазол 2-оксид* **9'ј**. Желтый твердый продукт. Выход: 251 мг (76%), соотношение **9ј**/9'**ј** = 1/2. Тпл. = 224-225 °С. $R_f = 0.63$ (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3445, 3345, 2944, 2908, 1620, 1452, 1310, 1110, 1085, 945, 708 см⁻¹. ¹H ЯМР (300 МГц, CDCl₃, м.д.) δ_{H} : 5.59 (2H, уш. с, NH₂), 6.07 (2H, уш. с, NH₂), 7.19-7.36 (10H, м, H Ar), 7.39-7.54 (8H, м, H Ar), 7.62-7.79 (4H, м, H Ar), 7.87 (1H, д, ³J = 7.6 Гц, H Het), 7.97 (1H, д, ³J = 7.6 Гц, H Het). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 109.1, 117.2, 126.9, 128.2, 128.3, 128.4, 128.6, 128.7, 128.8, 128.9, 129.0, 129.1, 129.3, 129.5, 129.7, 129.9, 130.0, 130.1, 130.6, 131.8, 133.1, 134.5, 135.0, 138.1, 139.6, 142.6, 155.3, 155.7, 157.5. Элементный анализ: Найдено (%): С, 68.92; H, 4.09; N, 17.14. Вычислено для С₁₉H₁₄N₄O₂ (%): С, 69.08; H, 4.27; N, 16.96.

3-Амино-4-[(2,2':3',2"-Терпиридин)-6'-ил]-1,2,5-оксадиазол 2-4-Амино-3-[(2,2':3',2"-Терпиридин)-6'-ил]-1,2,5-9k И оксид оксадиазол 2-оксид 9'к. Оранжевый твердый продукт. Выход: 249 мг (75%), соотношение 9k/9'k = 1/2. T_{пл}. = 151-153 °C. R_f = 0.32 9k / 9'k (CCl₄ : EtOAc = 1 : 2). *UK* (KBr): 3410, 3310, 2965, 2912, 1653, 1590, 1438, 1364, 1322, 1154, 1070, 930, 743 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) б_н: 5.83 (2H, уш. с, NH₂), 6.07 (2H, уш. с, NH₂), 7.03-7.06 (2H, м, H Het), 7.16-7.26 (4H, м, H Het), 7.45-7.54 (3H, м, H Het), 7.64-7.71 (3H, м, H Het), 7.78 (1H, д, ${}^{3}J = 8.0$ Гц, H Het), 8.12-8.24 (2H, M, H Het), 8.32 (1H, YIII. c, H Het), 8.43 (1H, YIII. c, H Het), 8.54 (3H, π , $^{3}J = 8.0$ Гц, Н Неt). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 107.8, 117.2, 120.3, 121.9, 122.5, 123.3, 123.4, 123.6, 124.3, 124.6, 127.7, 132.6, 136.1, 136.4, 136.7, 136.8, 139.1, 140.0,

140.3, 144.1, 148.9, 149.3, 149.4, 149.7, 155.5, 156.5, 156.7, 157.0. Элементный анализ: Найдено (%): C, 61.58; H, 3.81; N, 25.14. Вычислено для C₁₇H₁₂N₆O₂ (%): C, 61.44; H, 3.64; N, 25.29.

З-Амино-4-(5-оксо-5Н-индено[1,2-b]пиридин-2-ил)-1,2,5-

оксадиазол 2-оксид 91 и 4-амино-3-(5-оксо-5H-индено[1,2*b]пиридин-2-ил)-1,2,5-оксадиазол* 2-оксид **9'l**. Оранжевый твердый продукт. Выход: 199 мг (71%), соотношение 91/9'1 = 91 / 9'I 1/1.5. Т_{пл}. = 229-230 °C. R_f = 0.46 (CCl₄ : EtOAc = 4 : 1). ИК (KBr): 3428, 3328, 2962, 2918, 1728, 1586, 1422, 1290, 1085, 923, 768 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) б_н: 5.73 (2H, уш. с, NH₂), 6.22 (2H, уш. с, NH₂), 7.50-7.57 (2H, м, H Ar), 7.63 (1H, д, ³J = 7.4 Гц, Н Аг), 7.68-7.86 (5Н, м, Н Аг), 7.95 (1Н, д, ³*J* = 7.5 Гц, Н Аг), 8.01 (1Н, д, ³*J* = 7.5 Гц, Н Аг), 8.06 (1Н, д, ${}^{3}J$ = 7.7 Гц, Н Аг), 8.14 (1Н, д, ${}^{3}J$ = 7.7 Гц, Н Аг). 13 С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 109.5, 112.3, 120.7, 121.9, 122.1, 122.6, 124.5, 124.6, 128.3, 128.7, 130.7, 131.6, 132.1, 132.4, 134.6, 135.3, 135.9, 155.9, 157.8, 158.0, 184.6, 187.8. Элементный анализ: Найдено (%): С, 59.82; Н, 3.06; N, 20.12. Вычислено для C₁₄H₈N₄O₃ (%): C, 60.00; H, 2.88; N, 19.99.

3.1.2. Синтез гибридных гетероциклических структур, объединяющих фуроксановый цикл с изоксазольным-, изоксазолинильным- и 1,2,4-оксадиазольным структурными фрагментами.

Получение гетарилфуроксанов 17а-h, 23а-i,i', 24а-с (общая методика)

Me

17a

Раствор N₂O₄ (0.46 г, 5.0 ммоль для оксимов **22а,b** и 0.92 г, 10.0 ммоль для оксима **22с**) в сухом CHCl₃ или PhH (5 мл) по каплям добавляют к перемешивающейся суспензии соответствующего оксима (1.0 ммоль) в CHCl₃ или PhH (5 мл) при 0-5 °C. Реакционную смесь перемешивают при температуре 0-5 °C в течение 30 минут, потом охлаждают, удаляют водяную баню и финальный раствор упаривают на роторном испарителе, удаляя избыток N₂O₄ (конечный объем 4 мл, в случае оксима **22а** избыток N₂O₄ не удаляют). Соответствующий диполярофил (1.0 ммоль) добавляют и полученную смесь кипитят в течение 3 часов. Потом растворитель упаривают и остаток очищают колоночной хроматографией. В случае соединений **17а-h**, **23а-i**, **24а-с** элюентом являлась смесь CHCl₃петролейный эфир в соотношении 2:1. В случае соединений **17g,23h-23h',23i-23i'** элюентом была смесь CHCl₃-EtOAc в соотношении 2:1

-CO₂Et 3-Метил-4-[4,5-бис(этоксикарбонил)изоксазол-3-ил]-1,2,5-

со₂Et *оксадиазол 2-оксид* **17а**. Бесцветный твердый продукт. Выход 202 мг (64%). $T_{пл.} = 70-71$ °C. $R_f = 0.41$ (CHCl₃-петролейный эфир = 2 : 1).

123

ИК (КВг): 2987, 2936, 1746, 1621, 1482, 1380, 1367, 1315, 1281, 1192, 1132, 1065, 1015, 939, 849, 774 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) δ_{H} : 1.25-1.47 (6H, м, OCH₂CH₃), 2.45 (3H, с, Me), 4.38-4.55 (4H, м, OCH₂). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_{C} : 8.7, 13.6, 13.8, 62.8, 63.2, 101.7, 110.9, 116.2, 146.8, 151.0, 154.9, 159.3. HRMS (ESI) m/z для C₁₂H₁₄N₃O₇ (M+H)⁺: Вычислено 312.0826, Найдено 312.0820.

Ne3-Метил-4-(5-фенилизоксазол-3-ил)-1,2,5-оксадиазол2-оксид17b.MeЖелтый твердый продукт. Выход 163 мг (66%). $T_{пл.} = 148-149$ °C. $R_f = 0.08$ (CHCl₃-петролейный эфир = 2 : 1). ИК (КВг): 2858, 2782 1615, 1555, 1466, 1436, 1387, 1374, 1321, 1258, 1104, 1035, 1014, 939, 854, 818 см⁻¹. ¹HЯМР (300 МГц, CDCl₃, м.д.) $\delta_{H:}$ 2.47 (3H, с, Me), 7.50-7.61 (3H, м, Ph), 7.66 (1H, с, CHизоксазола), 7.88 (2H, д, Ph, ${}^{3}J = 7.4$ Гц). 13 С ЯМР (75.5 МГц, CDCl₃, м.д.) $\delta_{C:}$ 9.2, 107.8, 108.1, 125.5, 128.8, 129.1, 131.6, 150.6, 155.9, 156.3. HRMS (ESI) m/z для C₁₂H₁₀N₃O₃ (M+H)⁺: Вычислено 244.0716, Найдено 244.0705.

3-Метил-4-[5-(метоксикарбонил)изоксазол-3-ил]-1,2,5-оксадиазол 2-оксид **17с**. Бесцветный твердый продукт. Выход 143 мг (62%). Т_{пл}. = 95-96 °C. R_f = 0.46 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2924, 1749, 1613, 1597, 1554, 1487, 1414, 1319, 1282, 1211, 1129,

1034, 954, 929, 848, 807, 773 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 2.51 (3H, c, Me), 4.03 (3H, c, OMe), 7.48 (1H, c, CH изоксазола). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 9.1, 53.3, 107.4, 111.1, 148.1, 154.0, 156.4, 161.4. HRMS (ESI) m/z для C₈H₈N₃O₅ (M+H)⁺: Вычислено 226.0458, Найдено 226.0454.

3-Метил-4-(5-метоксикарбонил-4,5-дигидроизоксазол-3-ил)-1,2,5-

оксадиазол 2-оксид **23а**. Светло-желтое масло. Выход 122 мг (55%). R_f = 0.24 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2958, 2919, 2850, 1749, 1619, 1564, 1516, 1463, 1438, 1384, 1336, 1285, 1222,

1150, 1040, 1021, 909, 844 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) δ_H: 2.41 (3H, с, Me), 3.72-3.76 (2H, м, CH₂), 3.85 (3H, с, OMe), 5.26 (1H, т, CH изоксазолина, ³*J* = 8.4 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 9.2, 37.8, 53.2, 78.4, 111.0, 148.7, 149.0, 169.4. HRMS (ESI) m/z для C₈H₁₀N₃O₅ (M+H)⁺: Вычислено 228.0615, Найдено 228.0603.

3-Метил-4-(4,6-диоксо-5-фенил-4,5,6,6а-тетрагидро-ЗаН-пирроло[3,4d]изоксазол-3-ил)-1,2,5-оксадиазол 2-оксид **23b**. Бесцветный твердый продукт. Выход 179 мг (60%). Т_{пл}. = 218-219 °C. R_f = 0.12 (CHCl₃- Петролейный эфир, = 2 : 1). ИК (КВг): 2964, 1794, 1730, 1621, 1495, 1393, 1331, 1201, 1043, 837, 748 см⁻¹. ¹Н ЯМР (300 МГц, ДМЅО-d₆, м.д.) $\delta_{\rm H}$: 2.35 (3H, c, Me), 5.29 (1H, д, CH изоксазолина, ³J = 9.8 Гц), 7.35 (2H, д, Ph, ³J = 7.4 Гц), 7.48-7.57 (3H, м, Ph). ¹³С ЯМР (75.5 МГц, ДМЅО-d₆, м.д.) $\delta_{\rm C}$: 8.7, 54.1, 81.4, 107.5, 123.7, 125.9, 128.4, 128.5, 130.8, 145.0, 168.1, 169.8. HRMS (ESI) m/z для C₁₄H₁₁N₄O₅ (M+H)⁺: Вычислено 315.0724, Найдено 315.0713.

3-Метил-4-[(4R,5R)-4,5-бис(метоксикарбонил)-4,5-дигидроизоксазол-3-ил]-1,2,5-оксадиазол 2-оксид **23с**. Светло-желтый твердый продукт. Выход 173 мг (61%). Тпл. = 66-67 °С. R_f = 0.3 (CHCl₃-петролейный эфир = 2 : 1). ИК (КВг): 2960, 2848, 1742, 1613,

1459, 1437, 1294, 1272, 1211, 1192, 1015, 920, 845, 799 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, δ_{H} : 2.39 (3H, c, Me), 3.80 (3H, c, OMe), 3.85 (3H, c, OMe), 4.89 (1H, д, CH изоксазолина, ³*J* = 5.3 Гц), 5.43 (1H, д, CH изоксазолина, ³*J* = 5.3 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 9.2, 53.6, 53.8, 55.5, 82.5, 111.0, 146.6, 148.3, 167.5, 167.9. HRMS (ESI) m/z для C₁₀H₁₂N₃O₇ (M+H)⁺: Вычислено 286.0670, Найдено 286.0676.

3-Метил-4-(5-трихлораметил-1,2,4-оксадиазол-3-ил)-1,2,5-оксадиазол 2-оксид **24а**. Бесцветный твердый продукт. Выход 130 мг (56%). Т_{пл}. = 93-94 °C. R_f = 0.40 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2929, 1616, 1467, 1437, 1386, 1318, 1104, 1035, 939, 856, 818 см⁻¹. ¹Н ЯМР

(200 МГц, CDCl₃, м.д.) δ_{H} : 2.25 (3H, c, Me). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_{C} : 8.5, 110.2, 111.6, 121.6, 142.7, 145.6. HRMS (ESI) m/z для C₆H₃³⁵Cl₃N₄NaO₃ (M+Na)⁺: Вычислено 306.9168; Найдено 306.9160.

 $4-\Phi$ енил-3-(4,5-бис(этоксикарбонил)изоксазол-3-ил)-1,2,5-оксадиазол 2оксид **17d**. Светло-желтый твердый продукт. Выход 204 мг (55%). Т_{пл}. = 78-79 °C. $R_f = 0.46$ (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2989,

17d 2907, 2850, 1745, 1614, 1577, 1541, 1475, 1449, 1365, 1315, 1271, 1239, 1197, 1099, 1010, 940, 774 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 1.30 (3H, т, OCH₂CH₃, ³*J* = 7.1 Гц), 1.49 (3H, т, OCH₂CH₃, ³*J* = 7.1 Гц), 4.30 (2H, кв, OCH₂, ³*J* = 7.1 Гц), 4.54 (2H, кв, OCH₂, ³*J* = 7.1 Гц), 7.48-7.59 (3H, м, Ph), 7.71 (2H, д, Ph, ³*J* = 7.1 Гц). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) $\delta_{\rm C}$: 13.6, 13.8, 62.4, 63.4, 106.2, 115.6, 125.3, 127.8, 129.0, 131.3, 149.4, 155.1, 155.6, 158.1, 162.0. HRMS (ESI) m/z для C₁₇H₁₆N₃O₇ (M+H)⁺: Вычислено 374.0983, Найдено 374.0977.

3-[5-(Метоксикарбонил)изоксазол-3-ил]-4-фенил-1,2,5-оксадиазол 2оксид **17е**. Бесцветный твердый продукт. Выход 0.18 г (64%). Т_{пл}. = 129-130 °C. R_f = 0.56 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2964, 1746, 1611, 1524, 1511, 1439, 1366, 1314, 1268, 1207, 1181, 1160,

1002, 958, 929, 858, 820, 766 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 4.02 (3H, с, OMe), 7.50-7.61 (3H, м, Ph), 7.68 (1H, с, CH изоксазола), 7.81 (2H, д, Ph, ³J = 6.8 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 53.2, 107.8, 108.1, 125.5, 128.8, 129.1, 131.6, 150.7, 155.9, 156.3, 161.2. HRMS (ESI) m/z для C₁₃H₁₀N₃O₅ (M+H)⁺: Вычислено 287.0615, Найдено 287.0609.

Ме 3-(5-Метоксикарбонил-4,5-дигидроизоксазол-3-ил)-4-фенил-1,2,5-

оксадиазол 2-оксид **23d**. Бесцветное масло. Выход 151 мг (54%). R_f = 0.37 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2955, 2930, 2856, 1748, 1603, 1571, 1487, 1439, 1350, 1271, 1219, 1185, 1144, 1114, 1074,

1023, 963, 911, 862, 821, 772 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) δ_H: 3.78-3.85 (5H, м, CH₂ изоксазолина + OMe), 5.16-5.25 (1H, м, CH изоксазолина), 7.50-7.55 (3H, м, Ph), 7.76-7.81 (2H, м, Ph). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 38.1, 53.0, 78.2, 109.3, 125.6, 128.6, 129.3, 131.4, 145.0, 156.1, 169.4. HRMS (ESI) m/z для C₁₃H₁₂N₃O₅ (M+H)⁺: Вычислено 290.0771, Найдено 290.0769.

3-(4,6-Диоксо-5-фенил-4,5,6,6а-тетрагидро-3аН-пирроло[3,4d]изоксазол-3-ил)-4-фенил-1,2,5-оксадиазол 2-оксид **23е**. Светло-Ph

желтый твердый продукт. Выход 197 г (54%). $T_{пл.} = 126-127$ °C. $R_f = 0.2$ (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 3062, 2967, 1794,

1725, 1606, 1572, 1498, 1383, 1197, 1109, 907, 770 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 5.48 (1H, д, CH изоксазолина, ³*J* = 9.8 Гц), 5.71 (1H, д, CH изоксазолина, ³*J* = 9.8 Гц), 7.24 (2H, д, Ph, ³*J* = 7.0 Гц), 7.48-7.62 (6H, м, Ph), 7.78 (2H, д, Ph, ³*J* = 7.2 Гц). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 52.8, 80.7, 107.5, 125.3, 126.0, 128.9, 129.0, 129.4, 129.5, 130.4, 131.7, 142.2, 155.9, 168.6, 169.6. HRMS (ESI) m/z для C₁₉H₁₃N₄O₅ (M+H)⁺: Вычислено 377.0880, Найдено 377.0871.

3-[(4R,5R)-4,5-Бис(метоксикарбонил)-4,5-дигидроизоксазол-3-ил]-4фенил-1,2,5-оксадиазол 2-оксид **23f**. Желтое масло. Выход 206 г (60%). R_f = 0.36 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2958, 2851, 1747, 1604, 1570, 1486, 1438, 1350, 1309, 1262, 1224, 1182, 1107,

1076, 1017, 965, 918, 821, 772 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 3.80 (3H, c, OMe),

3.87 (3H, с, OMe), 5.21 (1H, д, CH изоксазолина, ³*J* = 4.9 Гц), 5.46 (1H, д, CH изоксазолина, ³*J* = 4.9 Гц), 7.51-7.59 (3H, м, Ph), 7.79 (2H, д, Ph, ³*J* = 7.0 Гц). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 53.5, 53.7, 54.8, 81.6, 109.1, 125.5, 128.9, 129.0, 131.5, 143.4, 156.2, 167.2, 168.0. HRMS (ESI) m/z для C₁₅H₁₄N₃O₇ (M+H)⁺: Вычислено 348.0826, Найдено 348.0822.

4-Фенил-3-(5-трихлорометил-1,2,4-оксадиазол-3-ил)-1,2,5-оксадиазол 2оксид **24b**. Светло-желтый твердый продукт. Выход 0.20 г (58%). Т_{пл}. = 109-110 °C. R_f = 0.5 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2954,

24ь 2927, 2855, 1610, 1546, 1488, 1456, 1368, 1271, 1219, 1197, 1170, 1145, 1047, 1014, 946, 911, 855, 823, 771 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) δ_H: 7.51-7.62 (3H, м, Ph), 7.75-7.79 (2H, м, Ph). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 107.7, 125.1, 128.1, 128.9, 129.4, 129.7, 131.7, 152.8, 155.8. HRMS (ESI) m/z для C₁₁H₅³⁵Cl₃N₄NaO₃ (M+Na)⁺: Вычислено 368.9319; Найдено 368.9306.

3,4-бис[4,5-бис(этоксикарбонил)изоксазол-3-ил]-1,2,5-

оксадиазол 2-оксид **17f**. Бесцветное масло. Выход 242 мг (48%). R_f = 0.67 (CHCl₃-петролейный эфир = 2 : 1). ИК (KBr): 2987, 2942, 2909, 2876, 1747, 1629, 1541, 1468, 1371, 1276,

1190, 1095, 1054, 1013, 859, 834, 809, 770, 734 cm⁻¹. ¹H \Re MP (300 MFu, CDCl₃, m.g.) $\delta_{\rm H}$: 1.30-1.37 (6H, m, -OCH₂CH₃), 1.44-1.48 (6H, m, OCH₂CH₃), 4.33-4.39 (4H, m, OCH₂), 4.51-4.55 (4H, m, OCH₂). ¹³C \Re MP (75.5 MFu, CDCl₃, m.g.) $\delta_{\rm C}$: 13.8 (x2), 14.0 (x2), 62.7, 63.0, 63.5, 63.7, 105.6, 115.6, 115.9, 145.7, 148.4, 150.5, 155.2, 155.3, 158.4, 158.9, 160.8, 162.0.

HRMS (ESI) m/z для C₂₀H₂₁N₄O₁₂ (M+H)⁺: Вычислено 509.1150, Найдено 509.1149.

3,4-бис(5-фенилизоксазол-3-ил)-1,2,5-оксадиазол 2-оксид **17g**. Желтое масло. Выход 222 мг (61%). R_f = 0.67 (CHCl₃-EtOAc = 2 : 1). ИК (KBr): 2979, 2900, 1624, 1559, 1452, 1344, 1273, 1083, 1046, 1002, 988,

878 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.61-7.87 (12H, м, 2xPh + 2xCH изоксазола). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 108.9, 125.4, 125.8, 127.9, 128.1, 128.2, 128.4, 128.6, 129.0, 129.5, 131.2, 145.3, 146.5, 152.6, 153.2, 156.5. HRMS (ESI) m/z для C₂₀H₁₃N₄O₄ (M+H)⁺: Вычислено 373.0931, Найдено 373.0936.

3,4-Бис[5-(метоксикарбонил)изоксазол-3-ил]-1,2,5-

оксадиазол 2-оксид **17h**. Светло-желтый твердый продукт. Выход 184 мг (55%). Т_{пл}. = 78-79 °С. R_f = 0.36 (CHCl₃- петролейный эфир = 2 : 1). ИК (КВг): 2958, 1739, 1628, 1561, 1534, 1439, 1357, 1287, 1207, 1176, 1116, 1086, 1001, 954, 932, 819, 770, 734 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 4.03 (3H, с, OMe), 4.06 (3H, с, OMe), 7.60 (1H, с, CH изоксазола), 7.71 (1H, с, CH изоксазола). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) $\delta_{\rm C}$: 52.1, 53.2, 106.8, 108.3, 109.4, 114.9, 149.4, 152.1, 156.0, 156.1, 161.4, 163.6, 163.6. HRMS (ESI) m/z для C₁₂H₉N₄O₈ (M+H)⁺: Вычислено 337.0415, Найдено 337.0408.

3-[(R)-5-Метоксикарбонил-4,5-дигидроизоксазол-3-ил]-4-[(S)-5-метоксикарбонил-4,5-дигидроизоксазол-3-ил]-1,2,5оксадиазол 2-оксид **23g** и 3,4-бис[(S)-5-метоксикарбонил-4,5-дигидроизоксазол-3-ил]-1,2,5-оксадиазол 2-оксид **23g**'. Красное масло. Выход 257 мг (52%). R_f = 0.21 (CHCl₃петролейный эфир = 2 : 1). ИК (KBr): 2959, 2852, 1748, 1618, 1571, 1478, 1439, 1364, 1293, 1223, 1161, 1021, 915, 873, 801, 734 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 3.70-

3.83 (10H, м, 2CH₂ + 2OMe), 5.21-5.31 (2H, м, 2CH изоксазолина). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 38.2, 38.5, 52.9 (х2), 78.7 (х2), 106.5, 143.7, 146.7, 147.0, 169.0, 169.1. HRMS (ESI) m/z для C₁₂H₁₃N₄O₈ (M+H)⁺: Вычислено 341.0728, Найдено 341.0721.

3,4-Бис[(3aR,6aS)-4,6-диоксо-5-фенил-4,5,6,6а-тетрагидро-ЗаН-пирроло[3,4-d]изоксазол-3-ил]-1,2,5-оксадиазол 2-оксид **23h** и 3-[(3aR,6aS)-4,6-диоксо-5-фенил-4,5,6,6а-тетрагидро-ЗаН-пирроло[3,4-d]изоксазол-3-ил]-4-[(3aS,6aR)-4,6-диоксо-5-фенил-4,5,6,6а-тетрагидро-ЗаН-пирроло[3,4-d]изоксазол-3ил]-1,2,5-оксадиазол 2-оксид **23h**'. Бесцветный твердый продукт. Выход 303 мг (58%). Тпл. = 261-262 °C. R_f = 0.45 (CHCl₃-EtOAc = 2 : 1). ИК (KBr): 1793, 1729, 1614, 1499, 1386,

1199, 922, 906, 741 см⁻¹. ¹Н ЯМР (300 МГц, DMSO-d₆, м.д.) δ_H: 5.30-5.56 (2H, м, 2CH изоксазолина), 5.91-6.02 (2H, м, 2CH изоксазолина), 7.17-7.34 (5H, м, Ph), 7.43-7.50 (5H, м, Ph). ¹³С ЯМР (75.5 МГц, DMSO-d₆, м.д.) δ_C: 54.8, 55.6, 82.1, 82.5, 105.5, 126.7, 126.9, 127.1, 128.9, 129.0, 131.2, 131.4, 131.6, 144.4, 146.5, 169.8, 170.2, 170.8, 171.0. HRMS (ESI) m/z для C₂₀H₂₁N₄O₁₂ (M+H)⁺: Вычислено 515.0946, Найдено 515.0936.

3-[(4R,5R)-4,5-Бис(метоксикарбонил)-4,5дигидроизоксазол-3-ил]-4-[(4S,5S)-4,5бис(метоксикарбонил)-4,5-дигидроизоксазол-3-ил]-1,2,5оксадиазол 2-оксид **23i** в 3,4-бис[(4R,5R)-4,5бис(метоксикарбонил)-4,5-дигидроизоксазол-3-ил]-1,2,5оксадиазол 2-оксид **23i**'. Желтое масло. Выход 200 мг (46%). R_f = 0.69 (CHCl₃-EtOAc = 2:1). ИК (KBr): 2961, 1747, 1708, 1561, 1439, 1341, 1241, 1184, 1069, 1012, 929, 831, 799

см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_{H} : 3.80 (3H, с, OMe), 3.82 (3H, с, OMe), 3.87 (3H, с, OMe), 3.89 (3H, с, OMe), 5.21-5.31 (2H, м, 2CH изоксазолина), 5.43-5.56 (2H, м, 2CH изоксазолина). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 53.2, 53.4, 53.6, 53.7, 54.9, 80.8, 108.4, 145.6, 157.6, 167.5, 167.8, 168.3, 168.5. HRMS (ESI) m/z для C₁₆H₁₇N₄O₁₂ (M+H)⁺: Вычислено 457.0837, Найдено 457.0831.

3,4-Бис(5-трихлорометил-1,2,4-оксадиазол-3-ил)-1,2,5-оксадиазол 2-оксид **24с**. Желтое масло. Выход 226 мг (49%). R_f = 0.47 (CHCl₃- петролейный эфир = 2 : 1). ИК (KBr): 2919,

2850, 1726, 1633, 1584, 1526, 1449, 1356, 1216, 1077, 1046, 966, 933, 811, 765 см⁻¹. ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 107.8, 138.1, 138.9, 139.4, 139.7, 141.7, 152.9, 155.7. Элементный анализ: Найдено (%): C, 20.81; N, 18.58. Вычислено для C₈Cl₆N₆O₄ (%): C, 21.03; N, 18.40.

3.1.3.Синтез производных 1,2,3-триазолилфуроксанов

Синтез 4-азидо-3-фенил-фуроксана 27а.

Азид натрия (1.63 г, 25 ммоль) добавляют в одну порцию к раствору 4-нитро-3фенилфуроксана **29a** (2.07 г, 10 ммоль) в ДМСО (15 мл) при перемешивании и при комнатной температуре. Смесь перемешивают в течение 3 часов до исчезновения исходного соединения **29a** (ТСХ мониторинг, элюент CHCl₃–CCl₄ = 1:1). Реакционную массу разбавляют водой (30 мл), твердый осадок фильтруют, промывают водой и сушат на

воздухе.

№3 Рһ Желтый твердый продукт. Выход 2.24 г (96%). Т_{пл.} = 103-105 °С. R_f 0.71
№ (СНСІ₃). ИК (КВг): 2924, 2856, 2170, 1650, 1610, 1578, 1424, 1312, 1250, 27a 1212, 1132, 1060, 982, 860 см⁻¹; ¹Н ЯМР (300 МГц, CDCI₃, м.д.) δ_H: 7.99 (д, 2H, Ar, ³J = 6.2 Гц), 7.01 д, 2H, Ar, ³J = 6.2 Гц), 3.87 (с, 3H, OMe); ¹³С ЯМР (75.5 МГц, CDCI₃, м.д.) δ_C: 161.2, 152.4, 128.1, 114, 113.3, 108.6, 55.3; ¹⁴N ЯМР (21.7 МГц, CDCI₃, м.д.)

δ_N: -145.8 (N₃); Элементный анализ: Найдено (%): C, 46.19; H, 2.92; N, 30.17. Вычислено для C₉H₇N₅O₃ (%): C, 46.36; H, 3.03; N, 30.03.

Получение 3-арил-4-(5-фенил-4-этоксикарбонил-1*H*-1,2,3-триазол-1-ил)-1,2,5оксадиазол 2-оксидов 26а-с (общая методика).

Триэтиламин (0.34 мл, 2.5 ммоль) добавляют к раствору соответствующего 3-арил-4-азидофуроксана **27а,b** (10 моль) и бензоилацетоуксусному эфиру **28а** (1.91 г, 10 ммоль) или хлороацетоуксусному эфиру **28b** (1.65 г, 10 ммоль) в MeCN (12 мл). Реакционную массу перешивают при температуре 45-50 °C в течение 10-16 ч до исчезновения исходного азидофуроксана (TCX мониторинг, элюент CHCl₃). MeCN упаривают, добавляют Et₂O (10 мл) и выливают остаток в лед. Осадок отфильтровывают, промывают водой, минимальным количеством холодного Et₂O и сушат на воздухе.

3-Фенил-4-(5-фенил-4-этоксикарбонил-1H-1,2,3-триазол-1-ил)-1,2,5оксадиазол 2-оксид **26а.** Светло-кремовый твердый продукт. Выход 2.46 г (66%). Т_{пл.} = 73-74 °C. R_f = 0.54 (CHCl₃). ИК (KBr): 3384, 3324, 1736, 1609, 1535, 1503, 1475, 1445, 1257, 1195, 964, 768, 689 см⁻¹; ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.79 (д, 1H, Ph), 7.60-7.23 (м, 6H, Ph),

7.18-7.05 (м, 3H, Ph), 4.35 (кв, 2H, CH₂, ${}^{3}J = 7.1$ Гц), 1.28 (т, 3H, CH₃, ${}^{3}J = 7.1$ Гц). 13 С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 159.8, 148.2, 143.3, 136.8, 131.2, 130.4, 129.5, 129.3, 128.3, 126.9, 126.5, 119.9, 111.1; 61.8, 14.1; HRMS (ESI) m/z для C₁₉H₁₆N₅O₄ (M+H)⁺: Вычислено 378.1197, Найдено 378.1190.

3-Фенил-4-(5-хлорметил-4-этоксикарбонил-1H-1,2,3-триазол-1-ил)-1,2,5-оксадиазол 2-оксид **26b**. Светло-кремовый твердый продукт. Выход 2.52 г (72%). Т_{пл}. = 124-125 °С, R_f = 0,62 (CHCl₃). ИК (KBr): 3436, 1732, 1614, 1546, 1510, 1482, 1449, 1280, 1216, 1186, 1057, 970, 772, 729, 691 см⁻¹; ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.48 (уш. с, 5H,

Ph), 5.18 (c, 2H, CH₂Cl), 4.52 (кв, 2H, *CH*₂CH₃, ${}^{3}J$ = 7.1 Гц), 1.48 (т, 3H, CH₃, ${}^{3}J$ = 7.1 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 159.9, 147.9, 140.1, 137.2, 131.5, 129.4, 127.4, 120.0, 110.8, 62.3, 30.5, 14.2. HRMS (ESI) m/z для C₁₄H₁₃³⁵ClN₅O₄ (M+H)⁺: Вычислено 350.0651, Найдено 350.0647.

3-(4-Метоксифенил)-4-(5-хлорметил-4-этоксикарбонил-1H-1,2,3-триазол-1-ил)-1,2,5-оксадиазол 2-оксид **26с**. Светлооранжевый твердый продукт. Выход 2.73 г (72%). Т_{пл}. = 219-220 °C. R_f = 0.66 (CHCl₃). ИК (KBr): 3033, 2981, 2848, 1735, 1607, 1520, 1469, 1429, 1378, 1299, 1212, 1180, 1155, 1014, 962, 838, 741 см⁻¹; ¹Н ЯМР (300 МГц, ДМSO-d₆, м.д.) δ_H: 7.32 (д, 2H, Ar, ³*J* = 8.2 Гц), 7.06 (д, 2H, Ar, ³*J* = 8.2 Гц), 5.22 (с, 2H, CH₂Cl), 4.42 (кв, 2H, *CH*₂CH₃, ³*J* = 6.5 Гц), 3.79 (с, 3H, OCH₃), 1.37 (т, 3H, CH₂*CH*₃, ³*J* = 6.5 Гц). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 161.8, 159.7, 148.6, 141.3, 137.6, 129.8, 129.6, 115.2, 112.2, 62.1, 55.9, 31.4, 14.5. HRMS (ESI) *m*/*z* для C₁₅H₁₅³⁵ClN₅O₅ (M+H)⁺: Вычислено 380.0757, Найдено 380.0752.

Получение 4-[5-(циклоалкиламино)метил-4-этоксикарбонил-1*H*-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксидов 30а-с (общая методика).

К раствору хлорметильного производного **26b** (10 ммоль) в EtOH (70 мл) добавляют соответсвующий циклоалкиламин (20 ммоль). Реакционную смесь кипятят 1.5-2.5 часа (ТСХ мониторинг), охлаждают до 3-5 °C, осадок фильтруют, промывают водой, минимальным количество холодного EtOH и сушат на воздухе.

4-[5-(Морфолин-1-ил)метил-4-этоксикарбонил-1H-1,2,3-триазол-1ил]-3-фенил-1,2,5-оксадиазол 2-оксид **30а.** Бесцветный твердый продукт. Выход 3.12 г (78%), Т_{пл}. = 126-127 °C, R_f = 0,19 (CHCl₃). ИК (KBr): 3423, 2930, 2829, 1723, 1611, 1540, 1450, 1226, 1118, 1064, 1013, 955, 868, 775, 701 см⁻¹; ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.46 (с, 5H,

Ph), 4.49 (кв, 2H, O*CH*₂CH₃, ³*J* = 7.1 Гц), 3.94 (с, 2H, CH₂-триазола), 3.20 (с, 4H, CH₂OCH₂), 2.23 (уш. с, 4H, CH₂NCH₂), 1.47 (т, 3H, OCH₂*CH*₃, ³*J* = 7.1 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 160.5, 149.1, 142.3, 137.9, 131.6, 129.5, 126.5, 120.8, 111.3, 66.3, 62.0, 53.3, 50.0, 14.3. HRMS (ESI) *m*/*z* для C₁₈H₂₁N₆O₅ (M+H)⁺: Вычислено 401.1568, Найдено 401.1560.

3-Фенил-4-[5-(4-этилпиперазин-1-ил)метил-4-этоксикарбонил-1H-1,2,3-триазол-1-ил]-1,2,5-оксадиазол 2-оксид **30b.** Бесцветный твердый продукт. Выход 2.10 г (49%). Т_{пл}. = 92-93 °C. R_f = 0.52 (CHCl₃-MeOH = 6:1). ИК (KBr): 3412, 2944, 2824, 1716, 1616, 1543, 1444, 1307, 1230, 1014, 953, 772, 698 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃.

м.д.) δ_{H} : 7.44 (с, 5H, Ph), 3.90 (с, 2H, CH₂-триазола), 4.47 (кв, 2H, OCH₂CH₃, ³J = 7.1 Гц), 2.27-1.96 (м, 10H, N(CH₂CH₂)₂N + CH₃CH₂N), 1.44 (т, 3H, OCH₂CH₃, ³J = 7.1 Гц), 0.95 (3H, т, CH₃CH₂N ³J = 7.0 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 160.6, 149.3, 142.9, 137.7, 131.5, 129.5, 126.6, 120.9, 111.5, 61.9, 53.1, 52.1, 49.9, 14.3, 11.8. HRMS (ESI) *m/z* для

 $C_{20}H_{26}N_7O_4 (M+H)^+$: Вычислено 428.2040, Найдено 428.2037.

4-[5-(Пирролидин-1-ил)метил-4-этоксикарбонил-1H-1,2,3-триазол-1ил]-3-фенил-1,2,5-оксадиазол 2-оксид **30с.** Бесцветный твердый продукт. Выход 3.15 г (82%). Т_{пл}. = 107-108 °С. R_f = 0.36 (CHCl₃). ИК (КВг): 2970, 2876, 2813, 1716, 1615, 1548, 1447, 1378, 1304, 1225, 1187, 1078, 955, 773, 698 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 7.42 (с, 5H, Ph), 4.46 (кв., 2H, *CH*₂CH₃, ³*J* = 7.1 Гц), 4.03 (с, 2H, CH₂-триазола), 2.18 (уш. с, 4H, CH₂*CH*₂N*CH*₂CH₂), 1.48-1.42 (м, 7H, CH₃ + *CH*₂CH₂NCH₂*CH*₂). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) $\delta_{\rm C}$: 160.6, 149.2, 144.0, 136.8, 131.3, 129.3, 126.6, 120.9, 111.6, 61.8, 53.9, 46.9, 23.4 14.3. HRMS (ESI) *m*/*z* для C₁₈H₂₁N₆O₄ (M+H)⁺: Вычислено 385.1619, Найдено 385.1613.

Получение 3-арил-4-(5-гетарилоксиметил-4-этоксикарбонил-1*H*-1,2,3-триазол-1-ил)-1,2,5-оксадиазол 2-оксидов 25а,b,e,f (общая методика).

Диазобициклоундецен (DBU) (0.80 г, 0.52 ммоль) добавляют к раствору соответствующего гидроксигетарила (0.52 ммоль) в MeCN (3 мл) при комнатной температуре. Добавляют хлорметильное производное **26b** или **26c** (0.52 ммоль). Реакционную массу перемешивают при комнатной температуре в течение 24-72 часов до исчезновения исходного соединения **26b** или **26c** (TCX мониторинг). Добавляют воду (15 мл), осадок фильтруют, промывают водой, минимальным количеством CHCl₃ и сушат на воздухе.

4-[5-(6-Метилпиридин-3-илокси)метил-4-этоксикарбонил-1Н-1,2,3-

триазол-1-ил)- 3-фенил 1,2,5-оксадиазол 2-оксид **25а.** Светлооранжевый твердый продукт. Выход 103 мг (59%). Т_{пл}. = 123-124 °С. R_f = 0.16 (CHCl₃). ИК (KBr): 3422, 2924, 2855, 1720, 1617, 1577, 1546, 1510, 1477, 1448, 1389, 1306, 1268, 1229, 1190, 1085, 1048, 1006, 820

см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 7.54-7.47 (м, 4H, Ar), 7.36-7.33 (м, 2H, Ar), 7.21-7.12 (м, 2H, Ar), 5.60 (с, 2H, CH₂ -триазола), 4.37 (кв, 2H, OCH₂CH₃, ³J = 7.4 Гц), 2.36 (с, 3H, CH₃), 1.27 (т, 3H, OCH₂CH₃, ³J = 7.4 Гц). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 151.5, 151.2, 148.5, 139.7, 137.8, 136.4, 131.5, 129.3, 127.3, 123.4, 122.1, 120.1, 112.0, 61.6, 58.0, 23.0, 13.9. HRMS (ESI) *m/z* для C₂₀H₁₉N₆O₅ (M+H)⁺: Вычислено 423.1412, Найдено 423.1409.

4-[5-(5-Бромхинолин-8-илокси)метил-4-этоксикарбонил-1H-1,2,3триазол-1-ил)- 3-фенил 1,2,5-оксадиазол 2-оксид **25b.** Желтый твердый продукт. Выход 261 мг (88%). Т_{пл}. = 140-141 °C. R_f = 0.12 (CHCl₃). ИК (KBr): 3070, 2985, 2933, 1753, 1744, 1620, 1611, 1540, 1497, 1447, 1379, 1303, 1276, 1212, 1185, 1126, 1080, 817, 790 см⁻¹; ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 8.74-8.72 (м, 1H, Ar), 8.38 (д, 1H, Ar, ³J = 8.5 Гц), 7.83 (д, 1H, Ar, ³J = 8.5 Гц), 7.71-7.65 м, 1H, Ar), 7.45-7.33 (м, 3H, Ar), 7.19-7.15 (м, 3H, Ar), 5.84 (с, 2H,

132

СH₂Триаз.), 4.43 (кв, 2H, OCH₂CH₃, ³J = 7.0 Гц), 1.37 (т, 3H, CH₃, ³J = 7.0 Гц). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 159.8, 152.4, 150.5, 149.6, 140.8, 140.2, 135.1, 131.4, 130.3, 129.3, 127.7, 127.0, 123.8, 120.5, 112.9, 111.1, 61.9, 60.4, 14.3. HRMS (ESI) *m/z* для C₂₃H₁₈⁷⁹BrN₆O₅ (M+H)⁺: Вычислено 537.0517, Найдено 537.0510.

4-[5-(5-Бромхинолин-8-илокси)метил-4-этоксикарбонил-1H-1,2,3-триазол-1-ил)-3-(4-метоксифенил)-1,2,5-оксадиазол 2оксид 25е. Светло-серый твердый продукт. Выход 181 мг (64%). Т_{пл}. = 138-139 °С. R_f = 0.15 (СНСІ₃). ИК (КВг): 3082, 2980, 2940, 1743, 1633, 1606, 1540, 1486, 1457, 1439, 1358, 1300, 1256, 1215, 1192, 1176, 1125, 1103, 1077, 1019, 958, 914, 814, 790 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 8.74-8.72 (м, 1H, Het), 8.36 (д, 1H, Het, ³J = 8.5 Гц), 7.80 (д, 1H, Het, ³J =

8.5 Гц), 7.69-7.65 (м, 1H, Het), 7.14 (д, 1H, Het, ${}^{3}J = 8.5$ Гц), 7.06 (д, 2H, Ar, ${}^{3}J = 7.8$ Гц), 6.87 (д, 2H, Ar, ${}^{3}J = 7.8$ Гц), 5.87 (с, 2H, CH₂-триазола), 4.44 (кв, 2H, OCH₂CH₃, ${}^{3}J = 7.1$ Гц), 3.73 (с, 3H, OCH₃), 1.38 (т, 3H, OCH₂CH₃, ${}^{3}J = 7.1$ Гц). 13 C ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_{C} : 161.1, 159.6, 152.1, 150.2, 149.3, 140.6, 140.0, 136.9, 134.7, 130.0, 128.2, 127.4, 123.5, 114.6, 112.7, 111.9, 111.8, 110.7, 61.7, 60.0, 55.4, 14.0. HRMS (ESI) m/z для C₂₄H₂₀⁷⁹BrN₆O₆ (M+H)⁺: Вычислено 567.0623, Найдено 567.0617.

3-(4-Метоксифенил)-4-[5-(хинолин-8-илокси)метил-4этоксикарбонил-1H-1,2,3-триазол-1-ил)-1,2,5-оксадиазол 2оксид **25f.** Светло-коричневый твердый продукт. Выход 163 мг (64%). Т_{пл.} = 159-160 °C. R_f = 0.18 (CHCl₃). ИК (KBr): 3436, 1740, 1604, 1571, 1520, 1482, 1375, 1318, 1275, 1261, 1217, 1183, 1115, 1073, 1031, 1018, 833, 791, 757 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 8.71-8.69 (м, 1H, Ar), 8.27 (д, 1H, Ar, ³J = 8.4 Гц), 7.55-7.45 (м, 3H, Ar), 7.20-7.15 (м, 3H, Ar), 6.92 (д, 2H, Ar,

³*J* = 8.3 Гц), 5.84 (с, 2H, CH₂-триазола), 4.44 (кв, 2H, OCH₂CH₃, ³*J* = 7.0 Гц), 3.73 (с, 3H, OCH₃), 1.37 (т, 3H, OCH₂CH₃, ³*J* = 7.0 Гц). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 161.5, 160.1, 152.7, 151.3, 150.1, 150.0, 141.3, 136.3, 129.5, 129.0, 127.0, 122.5, 121.8, 115.2, 112.6, 112.5, 110.4, 62.1, 60.5, 55.9, 14.5. HRMS (ESI) *m*/*z* для C₂₄H₂₁N₆O₆ (M+H)⁺: Вычислено 489.1518, Найдено 489.1510.

Синтез 4-[5-(3-амино-1*H*-1,2,4-триазол-5-илтио)метил-4-этоксикарбонил-1*H*-1,2,3триазол-1-ил)-3-фенил-1,2,5-оксадиазол 2-оксида 25с.

DBU (86 мг, 0.56 ммоль) добавляют к раствору 3-амино-1,2,4-триазол-5-тиона (65 мг, 0.56 ммоль) в MeCN (3 мл). Добавляют соединение **26b** (196 мг, 0.56 ммоль). Реакцонную массу перемешивают в течение 72 часов при комнатной температуре до исчезновения исходного соединения **26b** (ТСХ мониторинг). Приливают воду (15 мл), образовашуюся смесь экстрагируют CHCl₃ (3х20 мл), промывают водой и сушат над MgSO₄.

Светло-желтый твердый продукт. Выход 168 мг (71%). Т_{пл}. = 84-85 °C. R_f = 0.21 (CHCl₃-EtOAc = 3:1). ИК (KBr): 3364, 2982, 2933, 1725, 1617, 1546, 1480, 1449, 1375, 1308, 1278, 1228, 1159, 1049, 968, 756, 690 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 8.31 (с, 1H, NH). 7.56-7.45 (м, 3H, Ph), 7.33 (д, 2H, Ph, ³J = 7.6 Гц), 4.73 (с, 2H, CH₂-триазола), 4.35 (кв, 2H, OCH₂CH₃, ³J = 7.1 Гц), 1.34 (т,

3H, OCH₂*CH*₃, ³*J* = 7.1 Гц). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 159.5, 157.7, 148.4, 143.0, 136.9, 131.3, 129.1, 127.6, 127.2, 120.2, 111.4, 61.4, 22.8, 14.0. HRMS (ESI) *m/z* для C₁₆H₁₆N₉O₄S (M+H)⁺: Вычислено 430.1041, Найдено 430.1035.

Синтез 4-[5-(4-оксо-3,4,5,6,7,8-гексагидробензо[4,5]тиено[2,3-d]пиримидин-2илтио)метил-4-этоксикарбонил-1*H*-1,2,3-триазол-1-ил)-3-фенил-1,2,5-оксадиазол 2оксида 25d.

Эфир **26b** (200 мг, 0.58 ммоль) добавляют к раствору калиевой соли меркаптогетарила (160 мг, 0.58 ммоль) в DMF (5 мл). Реакционную смесь перемешивают в

течение 24 часов при комнатной температуре. Приливают воду (25 мл), осадок фильтруют, промывают эфиром и сушат на воздухе.

Бесцветный твердый продукт. Выход 250 мг (90%). Т_{пл}. = 229-230 °C. R_f = 0.10 (CHCl₃). ИК (KBr): 3059, 2937, 2321, 2840, 1749, 1648, 1618, 1555, 1477, 1448, 1407, 1277, 1197, 1177, 1020, 963, 773, 690, 547 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) $\delta_{\rm H}$:

7.48-7.43 (м, 1H, Ph). 7.37-7.33 (м, 2H, Ph), 7.19-7.17 (м, 2H, Ph), 4.97 (с, 2H, CH₂-триазола), 4.42 (кв, 2H, OCH₂CH₃, ³J = 6.8 Гц), 2.72 (уш. с, 4H, 2CH₂), 1.73 (уш. с, 4H, 2CH₂), 1.36 (т, 3H, OCH₂CH₃, ³J = 6.8 Гц). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 160.1, 158.2, 148.8, 142.5, 138.0, 131.8, 131.5, 131.1, 129.7, 129.5, 127.5, 127.4, 120.5, 119.8, 111.9, 62.0, 25.6, 24.8, 22.9, 22.2, 22.0, 14.5. HRMS (ESI) *m*/*z* для C₂₄H₂₂N₇O₅S₂ (M+H)⁺: Вычислено 552.1119, Найдено 552.1113.

Получение 4-[4-гидразинокарбонил-5-(циклоалкиламино)метил-1*H*-1,2,3-триазол-1ил]-3-фенил-1,2,5-оксадиазол 2-оксидов 31а-с (общая методика).

Гидразин-гидрат (5 мл, 100 ммоль) добавляют к суспензии соответствующего соединения **30а-с** (5 ммоль) в EtOH (50 мл) при комнатной температуре. Реакционную смесь перемешивают при температуре 45-50 °C в течение 1 часа и 10 часов при температуре 20 °C до исчезновения исходного соединения **30а-с** (ТСХ мониторинг). Прикапывают по каплям H₂O (75 мл), осадок фильтруют, промывают водой, минимальным количеством EtOH и сушат на воздухе.

4-[4-Гидразинокарбонил-5-(морфолин-1-ил)метил-1H-1,2,3-

триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксид **31а.** Бесцветный твердый продукт. Выход 1.70 г (88%). Т_{пл}. = 171-172 °C. R_f = 0.53 (CHCl₃-MeOH=6:1). ИК (KBr): 3336, 3297, 2851, 1674, 1622, 1544,

1510, 1476, 1449, 1288, 1115, 956, 867, 768 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 8.58 (уш. с, 1H, CONH), 7.44 (с, 5H, Ph), 4.13 (уш. с, 2H, NH₂), 3.98 (с, 2H, CH₂-триазола) 3.23 (с, 4H, CH₂OCH₂), 2.25 (с, 4H, CH₂NCH₂). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 160.5, 149.2, 140.4, 138.6, 131.6, 129.5, 126.6, 120.8, 111.3, 66.3, 53.3, 49.8. HRMS (ESI) *m/z* для C₁₆H₁₉N₈O₄ (M+H)⁺: Вычислено 387.1524, Найдено 387.1516.

4-[4-Гидразинокарбонил-5-(4-этилпиперазин-1-ил)метил-1H-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксид **31b.** Бесцветный твердый продукт. Выход 1.83 г (84%). Т_{пл.} = 150-151 °C, R_f = 0.45 (CHCl₃-MeOH = 6:1). ИК (KBr): 3411, 3347, 2940,

2827, 2808, 1671, 1619, 1552, 1504, 1476, 1449, 1289, 1166, 1015, 912, 775, 697 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_{H} : 8.80 (уш. с, 1H, CONH), 7.50-7.35 (м, 5H, Ph), 3.92 (с, 2H, CH₂триазола), 3.70 (уш. с, 2H, NH₂), 2.27-1.96 (м, 10H, N(CH₂CH₂)₂N + CH₃*CH*₂N), 0.94 (т, 3H, CH₃, ³J = 7.1 Гц); ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_{C} : 160.5, 149.2, 140.9, 138.3, 131.5, 129.4, 126.5, 120.8, 111.4, 61.9, 53.1, 52.1, 49.6, 11.7. HRMS (ESI) *m/z* для C₁₈H₂₄N₉O₃ (M+H)⁺: Вычислено 414.1997, Найдено 414.1991.

4-[4-Гидразинокарбонил-5-(пирролидин-1-ил)метил-1Н-1,2,3-

*твердый продукт. Выход 1.70 г (92%). Т*_{пл}. = 122-123 °C. R_f = 0.56 (CHCl₃-MeOH = 6:1). ИК (KBr): 3336, 2962 ,2826, 1669, 1612, 1544, 1507, 1475, 1445, 1279, 1118, 1005, 961, 874, 823, 769, 692 см⁻¹. ¹H

ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 10.16 (уш. с, 1H, CONH), 7.52 (уш. с, 3H, Ph), 7.33 (уш. с, 2H, Ph), 4.57 (уш. с, 2H, NH₂), 3.95 (с, 2H, CH₂-триазола), 2.15 (с, CH₂NCH₂), 1.34 (с, 4H, *CH*₂CH₂NCH₂*CH*₂). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 159.4, 149.2, 140.5, 136.9, 131.5, 129.4, 126.6, 120.4, 111.7, 53.1, 45.9, 23.0. HRMS (ESI) *m/z* для C₁₆H₁₉N₈O₃ (M+H)⁺: Вычислено 371.1575, Найдено 371.1569.

Получение 4-[4-азидокарбонил-5-(циклоалкиламино)метил-1*H*-1,2,3-триазол-1-ил]-3фенил-1,2,5-оксадиазол 2-оксидов 32а,b (общая методика).

К раствору соответствующего гидразида кислоты **31а-с** (5 ммоль) в смеси AcOHдиоксан (30 мл, 1:1) при температуре 2-6 °С добавляют раствор NaNO₂ (1.04 г, 15 ммоль) в воде (1.5 мл) в течение 15 минут. Реакционную смесь перемешивают в 3 часа, добавляют по каплям воду (40 мл), осадок фильтруют, промывают водой и сушат на воздухе.

4-[4-Азидокарбонил-5-(морфолин-1-ил)метил-1H-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксид **32а.** Бесцветный твердый продукт. Выход 1.83 г (92%), Т_{пл}. = 141-142 °C. R_f = 0.19 (CHCl₃). ИК (KBr): 3448, 2815, 2159, 1687, 1611, 1543, 1507, 1479, 1450, 1261, 1220, 987, 864, 768 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.42 (с, 5H, Ph), 3.92

(с, 2H, CH₂-триазола), 3.18 (с, 4H, CH₂OCH₂), 2.21 (с, 4H, CH₂NCH₂). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 166.2, 149.0, 143.5, 138.3, 131.7, 129.6, 126.5, 120.6, 111.2, 66.2, 53.4, 50.0. HRMS (ESI) *m/z* для C₁₆H₁₆N₉O₄ (M+H)⁺: Вычислено 398.1320, Найдено 398.1309.

4-[4-Азидокарбонил-5-(4-этилпиперазин-1-ил)метил-1H-1,2,3триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксид **32b.** Бесцветный твердый продукт. Выход 1.72 г (81%). Т_{пл}. = 145-165 °С (разл.). R_f =

⁰-^N _{32b} 0.50 (CHCl₃-MeOH = 6:1). ИК (KBr): 3483, 3425, 2923, 2669, 2604, 2144, 1698, 1616, 1544, 1448, 1213, 1185, 988, 771 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.65-7.35 (м, 5H, Ph), 4.05 (с, 2H, CH₂-триазола), 3.00-1.70 (м, 10H, N(CH₂CH₂)₂N + CH₃CH₂N), 1,23 (уш. с, 3H, CH₃). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 165.9, 142.1, 138.8, 132.0, 129.9, 126.4, 120.6, 111.0, 52.4, 51.1, 49.9, 9.3. HRMS (ESI) *m/z* для C₁₈H₂₁N₁₀O₃ (M+H)⁺: Вычислено 425.1793, Найдено 425.1788.

Получение N,N-дизамещенных 4-[4-аминокарбонил-5-(циклоалкиламино)метил-1*H*-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксидов 33i,j,l (общая методика).

К раствору азидокарбонильных производных **32a** или **32b** (1 ммоль) в диоксане (5 мл) добавляют соответствующий циклоалкиламин (2 ммоль). Реакционную смесь перемешивают при температуре 20 °C в течение 3-10 часов до исчезновения исходного соединения **32** (ТСХ мониторинг). Приливают воду (40 мл), продукт экстрагируют EtOAc

(2х25 мл), сушат над MgSO₄ и упаривают растворитель при пониженном давлении. Добавляют Et₂O (10 мл), остаток растирают при охлаждении, затем фильтруют, промывают минимальным количеством холодного Et₂O и сушат на воздухе.

4-[5-(Морфолин-1-ил)метил-4-(4-этилпиперазин-1-ил)карбонил-1H-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксид **33i.** Бесцветный твердый продукт. Выход 0.33 г (75%), Т_{пл}. = 136-137 °С. R_f = 0.46 (CHCl₃-MeOH = 6:1). ИК (KBr): 3401, 2983, 2820, 1632, 1610, 1548, 1448, 1114, 1011, 766 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.)

δ_H: 7.43 (c, 5H, Ph), 4.10 (c, 2H, CH₂-триазола), 3.81 (c, 4H, CH₂NCH₂ пиперазина), 3.18 (c, 4H, CH₂OCH₂), 2.59 (c, 4H, CH₂NCH₂ пиперазина), 2.49 (кв, 2H, *CH*₂CH₃, ³*J* = 7.1 Гц), 2.24 (c, 4H, CH₂NCH₂), 1.23 (т, 3H, CH₂*CH*₃, ³*J* = 7.1 Гц). ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 159.4, 149.4, 141.7, 141.2, 131.6, 129.5, 126.5, 120.8, 111.4, 66.3, 53.4, 53.3, 52.5, 52.3, 50.3, 47.3, 42.6, 11.9; HRMS (ESI) *m*/*z* для C₂₂H₂₉N₈O₄ (M+H)⁺: Вычислено 469.2306, Найдено 469.2303.

4-[5-(Морфолин-1-ил)метил-4-(1-пирролидинил)карбонил-1Н-1,2,3-

*твердый продукт. Выход 0.35 г (82%). Т*_{пл.} = 126-127 °C, R_f = 0.35 (CHCl₃-EtOAc = 4:1). ИК (KBr): 3436, 2973, 2826, 1714, 1627, 1610, 1537, 1445, 1115, 1015, 866, 771, 698 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃.

м.д.) $\delta_{\rm H}$: 7.42 (уш. с, 5H, Ph), 4.09 (т, 2H, CHNCH пирролидина), 3.92 (с, 2H, CH₂-триазола), 3.67 (т, 2H, CHNCH пирролидина), ${}^{3}J = 6.3$ Гц), 3.18 (уш. с, 4H, CH₂OCH₂), 2.23 (т, 4H, CH₂NCH₂, ${}^{3}J = 4.1$ Гц), 1.91 (с, 4H, (CH₂)₂) 13 C ЯМР (75.5 МГц, CDCl₃, м.д.) $\delta_{\rm C}$: 159.1, 149.4, 141.5, 131.4, 129.3, 126.4, 120.9, 111.4, 66.2, 53.3, 50.3, 49.0, 46.9, 26.5, 23.8; HRMS (ESI) m/z для C₂₀H₂₄N₇O₄ (M+H)⁺: Вычислено 426.1884, Найдено 426.1878.

4-[4-(Морфолин-1-ил) карбонил-5-(4-этилпиперазин-1-ил)метил-1H-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксид. **331.** Бесцветный твердый продукт. Выход 0.24 г (51%). Т_{пл}. = 134-135 °C. R_f = 0.42 (CHCl₃-MeOH = 10:1). ИК (KBr): 3449, 2817, 1621, 1606, 1543, 1447, 1229, 1116, 1010, 764, 690 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.42 (c, 5H, Ph), 4.14 (c, 2H, CH₂-триазола),

3.80 (уш. с, 8Н, морфолин), 2.27-2.21 (м, 8Н, пиперазин), 2.16 (кв, 2Н, *CH*₂CH₃, ³*J* = 7.0 Гц), 0.95 (т, 3Н, CH₂*CH*₃, ³*J* = 7.0 Гц); ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) $\delta_{\rm C}$: 159.4, 149.3, 142.4, 131.3, 129.2, 126.3, 120.9, 111.5, 67.2, 66.9, 53.0, 52.1, 50.3, 47.9, 43.0, 11.8; HRMS (ESI) *m/z* для C₂₂H₂₉N₈O₄ (M+H)⁺: Вычислено 469.2306, Найдено 469.2302.

Синтез 4-[4-карбокси-5-(морфолин-1-ил)метил-1*H*-1,2,3-триазол-1-ил]-3-фенил-1,2,5оксадиазол 2-оксида 33g.

Соединение **32a** (1.99 г, 5 ммоль) добавляют к раствору NaOH (0.50 г, 12.5 ммоль) в смеси воды (40 мл) и диоксана (12 мл). Образовавшуюся суспензию перемешивают в течение 5 часов до исчезновения соединения **32a**. После фильтрования реакционную массу подкисляют до pH 7 добавлением небольшого количества AcOH. Приливают воду (100 мл), осадок фильтруют, промывают водой и сушат на воздухе.

Бесцветный твердый продукт. Выход 1.72 г (92%). Т_{пл.} = 168-170 °C. R_f = 0.65 (CHCl₃-MeOH = 6:1). ИК (KBr): 3391, 3198, 2851, 1714, 1660, 1613, 1541, 1507, 1476, 1448, 1293, 1116, 1007, 865, 771 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) $\delta_{\rm H}$: 11.17 (уш. с, 1H, OH), 7.59 (уш. с, 3H, Ph), 7.43 (уш. с, 2H, Ph), 3.92 (с, 2H, CH₂-триазола), 3.17 (с, 4H, CH₂OCH₂), 2.20 (с,

4H, CH₂NCH₂). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ: 158.3, 149.1, 140.5, 138,7, 131,6, 129,5, 126,6, 120,3, 111.6, 65,6, 55.6, 52.8. HRMS (ESI) *m/z* для C₁₆H₁₇N₆O₅ (M+H)⁺: Вычислено 373.1259, Найдено 373.1252.

Синтез 5-бром-1-этилизатиновый гидразон 4-[4-гидразинокарбонил-5-(морфолин-1ил)метил-1*H*-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксида 33h.

Раствор гидразида **31a** (0.39 г, 1 ммоль) и 5-бромо-1-этилизатина (0.32 г, 1 ммоль) в смеси EtOH (15 мл) and AcOH (0.5 мл) кипитят в течение 3.5 часов. После охлаждения до комнатной температуры образовавшийся осадок фильтруют, промывают EtOH (10 мл) и

сушат на воздухе.

Желтый твердый продукт. Выход 0.54 г (77%). Т_{пл}.= 151-152 °С. R_f 0.17 (CHCl₃). ИК (KBr): 3574, 3475, 2850, 1707, 1692, 1613, 1507, 1475, 1342, 1182, 1110, 934, 666, 511, 444 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_{H} : 14.54 (с, 1H, NH), 7.98 (с, 1H, Het), 7.53 (д, 1H, Het, ³J = 8.1 Гц), 7.46 (с, 5H, Ph), 6.82 (д, 1H, Het, ³J = 8.1 Гц),

4.07 (с, 2H, CH₂-Триазола), 3.85 (кв, 2H, NCH₂CH₃, ³J = 7.0 Гц), 3.21 (с, 4H, CH₂OCH₂), 2.27 (с, 4H, CH₂NCH₂), 1.34 (т, 3H, CH₃, 3J = 7.0 Гц). ¹³С ЯМР (75.5 МНz, CDCl₃, м.д.) δ_C: 160.7, 157.0, 142.6, 141.8, 138.5, 134.4, 131.6, 129.5, 126.5, 125.2, 120.6, 116.3, 110.7, 66.3, 53.3, 49.7, 34.8, 12.8. HRMS (ESI) m/z для C₂₆H₂₅⁷⁹BrN₉O₅ (M+H)⁺: Вычислено 622.1157, Найдено 622.1147.

Синтез 4-[4-карбокси-5-(пирролидин-1-ил)метил-1*H*-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2-оксида 33m.

К раствору гидразида **31c** (1.48 г, 4 ммоль) в смеси диоксана (4 мл) и AcOH (4 мл) при температуре 2-7 °C добавляют раствор NaNO₂ (420 мг, 6 ммоль) в воде (1.6 мл) в течение 12 минут. Реакционную смесь перемешивают при той же температуре в течение 1 часа, потом нагревают до 20 °C и перемешивают дополнительно еще 10 часов. Добавляют дополнительную порцию NaNO₂ (420 мг, 6 ммоль) и реакционную смесь перемешивают в течение 10 часов до исчезновения исходного гидразида **16c** (ТСХ мониторинг). Осадок фильтруют, промывают водой и сушат на воздухе.

Бесцветный твердый продукт. Выход 1.16 г (81%). Т_{пл}. = 134-135 °C. R_f = 0.52 (MeOH). ИК (KBr): 3429, 1644, 1615, 1550, 1480, 1449, 1388, 1279, 1063, 827, 774, 690, 514 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 7.52 (c, 3H, Ph), 7.37 (2H, c, Ph), 4.44 (c, 2H, CH₂-Триазол), 3.50 (уш. c, 1H, OH), 2.75 (c, 4H, CH₂NCH₂), 1.69 (c, 4H,

(*CH*₂CH₂NCH₂*CH*₂). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 161.2, 148.7, 141.5, 137.3, 131.4, 129.2, 127.3, 120.4, 111.8, 52.5, 46.2, 23.0. HRMS (ESI) *m*/*z* для C₁₆H₁₇N₆O₅ (M+H)⁺: Вычислено 357.1306, Найдено 357.1300.

Синтез 4-[4-карбокси-5-фенил-1*H*-1,2,3-триазол-1-ил]-3-фенил-1,2,5-оксадиазол 2оксида 34.

Раствор NaHCO₃ (640 мг, 7.6 ммоль) в воде (30 мл) добавляют к эфиру **26а** (720 мг, 1.9 ммоль). Образовавшуюся смесь кипитят в течение 2 часов, потом охлаждают до комнатной температуры, обрабатывают разбавленной соляной кислотой, экстрагируют

EtOAc (3х20 мл) и сушат над MgSO₄. Светло-желтый твердый продукт. Выход 0.60 г (41%). Т_{пл}. = 87-88 °C. R_f = 0.53 (CHCl₃). ИК (KBr): 3068, 2986, 1740, 1604, 1538, 1498, 1471, 1445, 1422, 1303, 1266, 1200, 1060, 1005, 959, 846, 818, 762 см⁻¹. ¹Н ЯМР (300 МГц,

ДМСО-d₆, м.д.) δ_{H} : 8.06-8.04 (м, 3H, Ph), 7.68-7.61 (м, 2H, Ph), 7.55-7.48 (м, 5H, Ph), 2.48 (уш. с, OH). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_{C} : 159.3, 148.5, 142.7, 136.5, 131.4, 131.3, 130.6, 130.0, 129.3, 128.2, 127.1, 122.9, 119.8, 119.7, 111.2; HRMS (ESI) *m/z* для C₁₇H₁₂N₅O₄ (M+H)⁺: Вычислено 350.0884, Найдено 350.0877

Получение 3-фенил-4-(5-R-1*H*-1,2,3-триазол-1-ил)-1,2,5-оксадиазол 2-оксидов 5k,n (общая методика) 33k,n.

Соответствующую карбоксильную кислоту **33g** или **34** (2 ммоль) растворяют в уксусной кислоте (20 мл), образовавшийся раствор кипятят в течение 30 минут в случае

соединения **33g** или в течение 3 часов в случае соединения **34**. АсОН упаривают при пониженном давлении. Остаток очищают флеш хроматографией из EtOH для соединения **33k** или флэш хроматографией (элюент CHCl₃-EtOAc = 4:1) для соединения **33n**.

4-[5-(Морфолин-1-ил)метил-1H-1,2,3-триазол-1-ил]-3-фенил-1,2,5оксадиазол 2-оксид **33k.** Светло-серый твердый продукт. Выход 0.51 г (77%), Т_{пл.} = 126-127 °C. R_f = 0.41 (CHCl₃-EtOAc = 4:1). ИК (KBr): 3434,

33k 2980, 2860, 2798, 1621, 1551, 1511, 1446, 1286, 1243, 1117, 1074, 867, 839, 769 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.76 (с, 1H, CH), 7.44-7.41 (м, 5H, Ph), 3.55 (с, 2H, CH₂триазола), 3.23 (с, 4H, CH₂OCH₂), 2.20 (с, 4H, CH₂NCH₂). ¹³C ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 149.2, 137.4, 133.9, 131.2, 129.3, 126.7, 120.9, 111.2, 66.4, 53.2, 50.4; HRMS (ESI) *m/z* для C₁₅H₁₇N₆O₃ (M+H)⁺: Вычислено 329.1357, Найдено 329.1359.

3-Фенил-4-(5-фенил-1H-1,2,3-триазол-1-ил)-1,2,5-оксадиазол 2-оксид **33п.** Светло-оранжевый твердый продукт. Выход 0.29 г (55%), Т_{пл.} = 91-92 °С, R_f = 0.15 (CHCl₃). ИК (KBr): 3434, 3072, 2677, 2563, 1688, 1604, 1454, 1424,

1327, 1292, 1180, 1128, 1073, 1027, 935, 810, 762, 708 см⁻¹. ¹Н ЯМР (300 МГц, ацетон-d₆, м.д.) δ_H: 7.96-7.92 (м, 3H, Ph).7.65-7.58 (м, 2H, Ph) 7.54-7.46 (м, 5H, Ph), 7.33 (с, 1H, CH). ¹³С ЯМР (50.3 МГц, ацетон-d₆, м.д.) δ_C: 167.3, 133.4, 132.9, 131.3, 130.8, 130.2, 129.3, 129.1, 128.5, 128.2, 127.1, 126.7; HRMS (ESI) *m*/*z* для C₁₆H₁₂N₅O₂ (M+H)⁺: Вычислено 306.0986, Найдено 306.0980.

3.2 Синтез энергоемких производных гетарилфуроксанов.

3.2.1. Синтез энергоемких бифуроксанильных структур, содержащих 3нитрофуроксанильный фрагмент.

Синтез амида 4-азидофуроксан-3-карбоновой кислоты 15с.

NaNO₂ (1.4 г, 20.3 ммоль) добавляют к охлажденной до 5 °С 97% H₂SO₄ (16 мл) при перемешивании. К полученному раствору при интенсивном перемешивании добавляют 4аминофуроксан-3-карбоксамид (2.78г, 19.3 ммоль) при температуре 0-3 °С. Добавляют 85% H₃PO₄ (16 мл) и реакционную смесь перемешивают в течение 2 ч при температуре 0-3 °С. Реакционную массу выливают в раствор NaN₃ (6.7 г, 103 ммоль) в смеси с мелким льдом и водой (общий объём 103 мл). Образовавшийся твердый осадок фильтруют, промывают водой и сушат на воздухе.

ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 106.8, 153.1, 154.7. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆, м.д.) δ_N: -146.9 (c, N₃). Элементный анализ: Найдено (%): C, 20.96; H, 1.30; N, 49.23. Вычислено для C₃H₂N₆O₃ (%): C, 21.18; H, 1.19; N, 49.41.

Синтез амидов фуроксанкарбоновых кислот 10b,с.

Синтез амида 4-бензилсульфанилфуроксан-3-карбоновой кислоты 15g.

К раствору (1.74 г, 10 ммоль) амида 4-бензилсульфанилфуроксан-3-карбоновой кислоты **38** при интенсивном перемешивании в сухом MeCN (25 мл), охлажденном до -15 °C, добавляют одной порцией Et₃N (1.4 мл, 10 ммоль). К полученному раствору в одну порцию добавляют бензилмеркаптан (1.2 мл, 10 ммоль) и перешивают при -15 °C в течение 30 минут. Баню убирают и перемешивают реакционную смесь дополнительно 30 минут. Образовавшийся осадок фильтруют, промывают водой и сушат на воздухе.

BnS, CONH₂ Амид 4-бензилсульфанил-1,2,5-оксадиазол-3-карбоновой кислоты 2-оксид
15g. Бесцветный твердый продукт. Выход 1.23 г (56%). Т_{пл}. = 158-159 °С.
R_f = 0.44 (CHCl₃-EtOAc = 1:1). ИК (KBr): 3406, 3181, 2929, 1691, 1620, 1566, 1473, 1339, 1253, 1100, 1045, 989, 827, 691 см⁻¹. ¹Н ЯМР (200 МГц, ДМСО-d₆, м.д.)
δ_H: 4.37 (2H, c, CH₂), 7.26-7.40 (3H, м, H Ph), 7.45-7.50 (2H, м, H Ph), 7.70 (1H, c, CONH), 8.46 (1H, c, CONH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_C: 33.6, 110.8, 127.6, 128.5, 129.2, 136.1, 155.6, 156.3. Элементный анализ: Найдено (%): С, 47.91; H, 3.48; N, 16.58; S, 12.92.
Вычислено для С₁₀H₉N₃O₃S (%): С, 47.80; H, 3.61; N, 16.72; S, 12.76.

Синтез амида 4-метоксифуроксан-3-карбоновой кислоты 15h.

Раствор NaOH (0.69 г, 17.2 ммоль) в MeOH (12 мл) добавляют по каплям при перемешивании к раствору амида 4-нитро-1,2,5-оксадиазол-3-карбоновой кислоты 2оксида **11** (3.0 г, 17.2 ммоль) в MeOH (12 мл) при температуре -15 °C. Ледяную баню убирают и реакционную смесь перемешивают 3 часа. Конечный раствор разбавляют водой (40 мл) и экстрагируют EtOAc (3x30 мл). Объединенные органические слои промывают водой и сушат над MgSO₄.

Синтез фуроксанкарбонитрилов 4f-h,i (общая методика).

При перемешивании к соотвествующему амиду фуроксанкарбоновой кислоты (6 ммоль) 15 в сухом CH₂Cl₂ (25 мл) при комнатной температуре добавляют сухой пиридин (12 ммоль, 1.0 мл). Полученную смесь охлаждают до 0 °С на ледяной бане и прибавляют по каплям (CF₃CO)₂O (11.4 ммоль, 1.6 мл) при температуре 0-5 °C. Охлаждающую баню убирают и реакционная смесь перемешивают при комнатной температуре в течение 4-8 часов до исчезновения исходных веществ (ТСХ мониторинг, элюент- CHCl₃-EtOAc = 1:1). Добавляют H₂O (40 мл), органический слой отделяют, промывают 10% HCl, а потом снова промыют водой. Продукт сушат над MgSO4. Затем растворитель упаривают. Полученный осадок очищают от примесей с помощью перекристаллизации из этилового спирта.

4-Фенилсульфанил-3-циано-1,2,5-оксадиазол 2-оксид Беспветный **4f**. твердый продукт. Выход 1.29 г (98%). Т_{пл}. = 103-104°С. R_f = 0.88 (CHCl₃). ИК (КВг): 3054, 2243, 1698, 1669, 1616, 1594, 1476, 1440, 1400, 1334, 1128, 1037, 809 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) б_Н: 7.48-7.57 (3H, м, H Ph),

7.69 (2H, д, ³*J* = 7.5 Гц, Н Рh). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 104.3, 110.9, 124.7, 129.6, 130.9, 135.3, 156.2. Элементный анализ: Найдено (%): С, 49.53; Н, 2.12; N, 18.99; S, 14.82. Вычислено для C₉H₅N₃O₂S (%): C, 49.31; H, 2.30; N, 19.17; S, 14.63.

4-Бензилсульфанил-3-циано-1,2,5-оксадиазол 2-оксид 4g. Бесцветный N_0 твердый продукт. Выход 1.33 г (95%). Т_{пл}. = 85-86 °С. R_f = 0.83 (CHCl₃). ИК (КВг): 3032, 2964, 2249, 1619, 1455, 1408, 1261, 1045, 1002, 813, 704 см⁻¹. ¹Н ЯМР (200 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 4.45 (2H, с, CH₂), 7.39 (5H, уш. с,

H Ph). ¹³C ЯМР (75.5 МГц, CDCl₃) δ_C: 35.4, 96.9, 104.8, 128.6, 129.1, 129.4, 134.3, 154.2. Элементный анализ: Найдено (%): С, 51.36; Н, 2.88; N, 18.19; S, 13.64. Вычислено для C₁₀H₇N₃O₂S (%): C, 51.49; H, 3.02; N, 18.02; S, 13.75.

4-Метокси-3-циано-1,2,5-оксадиазол 2-оксид 4h. Желтый твердый продукт. Выход 0.72 г (85%). Т_{пл}. = 159-160 °С. R_f = 0.85 (CHCl₃). ИК (тонкий слой): 2995, 2949, 2247, 1718, 1623, 1572, 1498, 1423, 1396, 1208, 1162, 1019, 969, 753 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 4.18 (3H, с,

ОМе). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_{C} : 58.1, 101.9, 104.2, 161.0. Элементный анализ: Найдено (%): C, 33.91; H, 2.31; N, 29.89. Вычислено для C₄H₃N₃O₃ (%): C, 34.05; H, 2.14; N, 29.78.

N₃ CN 4-Азидо-3-циано-1,2,5-оксадиазол 2-оксид 4с. Желтое масло. Выход 0.76 г $N_0 \xrightarrow{0} N_0^{-0} \oplus$ (83%). Все спектральные характеристики соответствуют литературным данным [195].

Синтез амидоксимов фуроксанов 15a,b,d-i (общая методика).

Соответствующий фуроксанкарбонитрил (5.0 ммоль) добавляют в одну порцию при перемешивании к раствору NaOH (0.30 г, 7.5 ммоль), NH₂OHHCl (0.52 г, 7.5 ммоль) в воде (10 мл) и ТГФ (10 мл, для нитрилов **4d,e**) или ^{*i*}-*PrOH* (8 мл, для других нитрилов). Реакционную смесь перемешивают при комнатной температуре до исчезновения исходных веществ (ТСХ мониторинг, элюент – CHCl₃). Реакционную смесь разбавляют водой (20 мл), осадок фильтруют, промывают водой, сушат на воздухе.

3-Метил-1,2.5-оксадиазол-4-карбоксамидоксим 2-оксид **15а**. Бесцветный твердый продукт. Выход 0.61 г (77%). Все спектральные характеристики были получены в соответствии с данными [196].

4-Фенил-1,2.5-оксадиазол-3-карбоксамидоксим 2-оксид **15b**. Бесцветный твердый продукт. Выход 0.89 г (81%). Т_{пл}. = 126-127 °C. R_f = 0.40 (CHCl₃-EtOAc = 3:1). ИК (KBr): 3417, 3331, 3175, 2925, 2853, 1703, 1652, 1591, 1370, 1233, 944, 771 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 6.29 (2H, c, NH₂), 7.54-7.60 (3H, м, H Ph), 7.75 (2H, д, ³J = 6.5 Гц, H Ph), 10.22 (1H, c,

NOH). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 110.3, 125.8, 127.3, 129.1, 131.4, 139.0, 156.0. Элементный анализ: Найдено (%): C, 48.95; H, 3.78; N, 25.36. Вычислено для C₉H₈N₄O₃ (%): C, 49.09; H, 3.66; N, 25.45.

4-Мезитилдиазено-1,2.5-оксадиазол-3-карбоксамидоксим 2оксид 15d. Оранжевый твердый продукт. Выход 1.22 г (84%).
Т_{пл}. = 208-209 °C. R_f = 0.18 (CHCl₃). ИК (KBr): 3487, 3374, 3256, 2973, 2926, 1622, 1475, 1432, 1377, 1288, 1129, 1035 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 2.33 (3H, с, Me), 2.44 (6H, с, 2 Me), 6.10 (2H, с, NH₂), 7.10 (2H, с, H Ar), 10.09 (1H, с, NOH). ¹³С ЯМР

(75.5 МГц, ДМСО-d₆, м.д.) δ_C: 20.2, 21.0, 104.3, 130.6, 135.3, 139.0, 143.7, 146.7, 163.6.
Элементный анализ: Найдено (%): C, 49.52; H, 4.97; N, 29.08. Вычислено для C₁₂H₁₄N₆O₃
(%): C, 49.65; H, 4.86; N, 28.95.

4-(4-Метоксифенилдиазено)-1,2.5-оксадиазол-3-карбоксамидоксим
2-оксид 15е. Оранжевый твердый продукт. Выход 1.04 г (75%). Тпл.
= 208-209 °C. R_f = 0.56 (CHCl₃). ИК (KBr): 3456, 3348, 3186, 2968, 2843, 1649, 1624, 1598, 1499, 1466, 1399, 1255, 1147, 1116, 1106, 959, 844 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 3.91 (3H, с,

Ме), 6.09 (2H, c, NH₂), 7.21 (2H, д, ³*J* = 8.2 Гц, H Ar), 7.93 (2H, д, ³*J* = 8.2 Гц, H Ar), 10.25 (1H, c, NOH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_{C} : 56.1, 105.6, 115.2, 126.3, 139.1, 146.1, 163.1, 164.7. Элементный анализ: Найдено (%): C, 43.32; H, 3.53; N, 30.09. Вычислено для C₁₀H₁₀N₆O₄ (%): C, 43.17; H, 3.62; N, 30.21.

4-Фенилсульфанил-1,2.5-оксадиазол-3-карбоксамидоксим 2-оксид 15f. Бесцветный твердый продукт. Выход 1.03 г (82%). $T_{пл.} = 138-139$ °C. $R_f = 0.35$ (CHCl₃). ИК (KBr): 3415, 3188, 3056, 2837, 1670, 1577, 1477, 1440,

15f 1334, 1037, 819 см⁻¹. ¹Н ЯМР (200 МГц, ДМСО-d₆, м.д.) δ_H: 6.11 (2H, уш. с, NH₂), 7.50 (3H, уш. с, H Ph), 7.67 (2H, уш. с, H Ph), 10.77 (1H, с, NOH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_C: 110.6, 126.1, 129.7, 130.2, 134.9, 140.0, 155.7. Элементный анализ: Найдено (%): C, 42.97; H, 3.03; N, 22.34; C, 12.55. Вычислено для C₉H₈N₄O₃S (%): C, 42.85; H, 3.20; N, 22.21; C, 12.71.

HON 4-Бензилсульфанил-1,2.5-оксадиазол-3-карбоксамидоксим 2-оксид 15g. BnS NH₂ Бесцветный твердый продукт. Выход 1.20 г (90%). Т_{пл.} = 182-183 °C. R_f $\stackrel{(+)}{}_{O}$ = 0.24 (CHCl₃). ИК (KBr): 3501, 3380, 3335, 3030, 2843, 1644, 1594, 1549, 15g 1497, 1411, 1321, 1045, 949, 706 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) $\delta_{\rm H}$: 4.35 (2H, c, CH₂), 6.04 (2H, уш. с, NH₂), 7.29-7.38 (3H, м, H Ph), 7.44 (2H, д, ³J = 7.2 Гц, H Ph), 10.65 (1H, c, NOH). ¹³C ЯМР (50.3 МГц, ДМСО-d₆, м.д.) $\delta_{\rm C}$: 34.1, 110.4, 127.6, 128.6, 129.1, 136.0, 140.0, 154.7. Элементный анализ: Найдено (%): C, 45.24; H, 3.96; N, 20.91; C, 11.93. Вычислено для C₁₀H₁₀N₄O₃S (%): C, 45.11; H, 3.79; N, 21.04; C, 12.04.

HON 4-Азидо-1,2.5-оксадиазол-3-карбоксамидоксим 2-оксид 15і. Бесцветный твердый продукт. Выход 0.675 г (73%). Т_{пл}. = 199-200 °С. R_f = 0.66 (CHCl₃ − N⁺_O)
EtOAc = 1:1). ИК (KBr): 3483, 3362, 3262, 2166, 1655, 1612, 1573, 1509, 1420, 1230, 1010, 969, 717 см⁻¹. ¹Н ЯМК (200 МГц, ДМСО-d₆, м.д.) δ_H: 6.08 (2H, c, NH₂), 10.61 (1H, c, NOH). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 106.3, 138.4, 152.6. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆) δ_N: -148.3 (c, N₃). Элементный анализ: Найдено (%): C, 19.61; H, 1.52; N, 53.09. Вычислено для C₃H₃N₇O₃ (%): C, 19.47; H, 1.63; N, 52.97.

Синтез хлорангидридов фуроксангидроксамовых кислот 16a,b,d-i (общая методика).

К суспензии амидоксима (1.9 ммоль) в 20% HCl (3.0 мл) и ТГФ (для субстратов **15d,e**, 2 мл) при интенсивном перемешивании добавляют по каплям раствор NaNO₂ (0.20 г, 2.85 ммоль) в воде (0.5 мл) при температуре 0-5 °C. Образовавшуюся смесь перемешивают в течение 30 минут при температуре 0-5 °C, ледяную баню убирают, и раствор оставляют перемешиваться при комнатной температуре на ночь. На следующий день, реакционную массу разбавляют водой (15 мл), осадок фильтруют, промывают водой и сушат в эксикаторе в вакууме над P₂O₅ в течение 24 часов.

ном Клорангидрид 3-метил-1,2,5-оксадиазол-3-гидроксамовой кислоты 2-оксид
№ СІ
Э О N О N
16a
16a
1300, 1199, 1022, 915, 859 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆) δ_H: 2.27 (3H, 1300, 1199, 1022, 915, 859 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆) δ_H: 2.27 (3H, 1300, 11354 (1H, с, NOH). ¹³С ЯМР (75.5 МГц, ДМСО-d₆) δ_C: 9.6, 112.3, 126.4, 152.0.
Элементный анализ: Найдено (%): C, 27.27; H, 2.04; N, 23.49. Вычислено для C4H4ClN₃O₃ (%): C, 27.06; H, 2.27; N, 23.67.

155.4. Элементный анализ: Найдено (%): С, 44.98; Н, 2.70; N, 17.42. Вычислено для С₉H₆ClN₃O₃ (%): С, 45.11; Н, 2.52; N, 17.54.

Хлорангидрид 4-*мезитилдиазено*-1,2,5-*оксадиазол*-3-*гидроксамовой кислоты* 2-*оксид* **16d**. Оранжевый твердый продукт. Выход 0.49 г (83%). Т_{пл}. = 129-130 °C. R_f = 0.15 (CHCl₃). ИК (KBr): 3286, 2926, 2853, 1622, 1608, 1576, 1376, 1356, 1290, 1207, 1114, 1096, 1027, 961, 939 см⁻¹. ¹Н ЯМР (200 МГц, ДМСО-d₆, м.д.) δ_H: 2.34 (3H, c, Me), 2.43

(6H, c, 2 Me), 7.11 (2H, c, H Ar), 13.46 (1H, c, NOH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_C: 20.4, 21.1, 104.8, 129.3, 130.9, 135.7, 144.6, 146.5, 162.4. Элементный анализ: Найдено (%): C, 46.38; H, 4.03; N, 22.50. Вычислено для C₁₂H₁₂ClN₅O₃ (%): C, 46.54; H, 3.91; N, 22.61.

HON

BnS

Хлорангидрид 4-метоксфенилдиазено-1,2,5-оксадиазол-3-гидроксамовой кислоты 2-оксид 16е. Оранжевый твердый продукт.
 Выход 0.43 г (76%). Тпл. = 138-139 °С. R_f = 0.88 (CHCl₃ – EtOAc 3:1).
 ИК (KBr): 3309, 2947, 2842, 1611, 1600, 1579, 1501, 1397, 1260, 1149, 1121, 1020, 942, 717 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 3.91

(3H, c, OMe), 7.19 (2H, д, ³*J* = 8.7 Гц, H Ar), 7.90 (2H, д, ³*J* = 8.7 Гц, H Ar), 13.51 (1H, c, NOH). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C: 56.3, 105.7, 115.6, 120.8, 126.7, 146.1, 162.4, 165.4. Элементный анализ: Найдено (%): C, 40.52; H, 2.53; N, 23.76. Вычислено для C₁₀H₈ClN₅O₄ (%): C, 40.35; H, 2.71; N, 23.53.

НОК Хлорангидрид 4-фенилсульфанил-1,2,5-оксадиазол-3-гидроксамовой PhS CI кислоты 2-оксид 16f. Бесцветный твердый продукт. Выход 0.46 г (89%). $T_{пл.} = 128-129$ °C. $R_f = 0.75$ (CHCl₃). ИК (KBr): 3251, 2921, 2834, 1669, 16f 1570, 1477, 1442, 1292, 1092, 1040, 1010, 810 см⁻¹. ¹Н ЯМР (200 МГц, ДМСО-d₆, м.д.) δ_{H} : 7.52 (3H, уш. с, H Ph), 7.69 (2H, д, ³J = 7.2 Гц, H Ph), 13.67 (1H, с, NOH). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_{C} : 110.9, 125.5, 129.8, 130.2, 134.4, 134.9, 155.6. Элементный анализ: Найдено (%): C, 39.92; H, 1.99; N, 15.60; C, 11.63. Вычислено для C₉H₆ClN₃O₃S (%): C, 39.79; H, 2.23; N, 15.47; C, 11.80.

Хлорангидрид 4-бензилсульфанил-1,2,5-оксадиазол-3-гидроксамовой кислоты 2-оксид **16g**. Бесцветный твердый продукт. Выход 0.40 г (74%). $T_{пл.} = 149-150$ °C. $R_f = 0.88$ (CHCl₃). ИК (KBr): 3322, 3032, 1605, 1579,

16g 1332, 1292, 1092, 1008, 916, 815, 702 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 4.43 (2H, c, CH₂), 7.29-7.38 (5H, м, H Ph), 13.59 (1H, c, NOH). ¹³С ЯМР (75.5 МГц, DMCO-d₆, м.д.) δ_C: 34.3, 110.7, 127.7, 128.6, 129.2, 135.7, 154.1, 154.9. Элементный анализ:

Найдено (%): C, 41.91; H, 2.72; N, 14.96; C, 11.35 Вычислено для C₁₀H₈ClN₃O₃S (%): C, 42.04; H, 2.82; N, 14.71; C, 11.22..

ION Хлорангидрид 4-метокси-1,2,5-оксадиазол-3-гидроксамовой кислоты 2оксид 16h. Бесцветный твердый продукт. Выход 0.50 г (56%). Т_{пл.} = 134-135 °C. $R_f = 0.75$ (CHCl₃). ИК (KBr): 3287, 2949, 1619, 1564, 1501, 1414,

16h 1323, 1208, 1020, 971, 833, 742 см⁻¹. ¹Н ЯМР (200 МГц, ДМСО-d₆, м.д.) δ_H: 4.08 (3H, c, OMe), 13.58 (1H, c, NOH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_C: 57.9, 104.9, 120.5, 161.4. Элементный анализ: Найдено (%): C, 24.66; H, 1.95; N, 21.98. Вычислено для C₄H₄ClN₃O₄ (%): C, 24.82; H, 2.08; N, 21.71.

НОК Хлорангидрид 4-азидо-1,2,5-оксадиазол-3-гидроксамовой кислоты 2-оксид N₃ CI **16**і. Желтый твердый продукт. Выход 0.55 г (60%). Т_{пл}. = 107-108 °С. R_f = N_{O}^{\oplus} 0.18 (CHCl₃). ИК (KBr): 3282, 2163, 2139, 1613, 1580, 1506, 1485, 1371, 1222, **16**i 1078, 1024, 933, 724 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_{H} : 13.58 (1H, c, NOH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_{C} : 106.5, 120.3, 152.1. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆, м.д.) δ_{N} : -147.4 (c, N₃). Элементный анализ: Найдено (%): C, 17.48; H, 0.74; N, 40.91. Вычислено для C₃HClN₆O₃ (%): C, 17.62; H, 0.49; N, 41.09.

Синтез хлорангидрида 4-нитро-3-фуроксангидроксамовой кислоты 16ј.

Конц. HCl (0.22 мл, d = $1.19 \text{ г} \cdot \text{см}^{-3}$) добавляют при перемешивании к охлажденному раствору 4-нитрофуроксан-3-нитроловой кислоты **39** [34] (0.515 г, 2.35 ммоль) в Et₂O (5 мл). Ледяную баню убирают и реакционную смесь перемешивают в течение 2 ч при комнатной температуре. Добавляют воду (5 мл), органический слой отделяют, водный слой экстрагируют трижды Et₂O (5 мл). Объединенные органические слои промывают водой, осадок сушат над MgSO₄. Упаривание растворителя при пониженном давлении приводит к образованию целевого соединения **16** ј.

MeO

 ON
 Хлорангидрид
 4-нитро-1,2,5-оксадиазол-3-гидроксамовой кислоты
 2

 CI
 оксид
 16j. Желтый твердый продукт. Выход 0.166 г (34%). Тпл. = 97-98 °С.
 0.166 г (34%). Тпл. = 97-98 °С.

 M⁺O^O
 ИК (тонкий слой): 3246, 2904, 1651, 1616, 1572, 1536, 1472, 1384, 1036,

16j 975, 954, 821, 734 см⁻¹. ¹Н ЯМР (200 МГц, ДМСО-d₆, м.д.) δ_H: 12.58 (1H, с, NOH). ¹³С ЯМР (50.3 МГц, ДМСО-d₆, м.д.) δ_C: 123.9, 133.4, 148.2. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆, м.д.) δ_N: -36.6 (с, NO₂). Элементный анализ: Найдено (%): C, 17.46; H, 0.72; N, 26.53. Вычислено для C₃HClN₄O₅ (%): C, 17.28; H, 0.48; N, 26.87.

Синтез бифуроксанов 41а,b,d-к (общая методика).

Раствор соответствующего хлороксиминофуроксана **16** (1.0 ммоль) в DMF (2 мл) добавляют по каплям при перемешивании к охлажденному раствору NaCH(NO₂)₂ (2.2 ммоль) в DMF (2 мл). Полученную смесь перемешивают при температуре 0-5 °C в течение 30 минут и в последующем оставляют на ночь в холодильнике на 72 часа. Потом в этот раствор добавляют в одну порцию безводного AcONa (0.369 г, 4.5 ммоль) при температуре 0-5 °C и дополнительно перемешивают в течение 30 минут, добавляют AcOH (7 мл) при температуре 0-5 °C и последующим добавляют NaNO₂ (0.414 г, 6.0 ммоль) одной порцией. Реакционную смесь перемешивают 15 минут при температуре 0-5 °C, ледяную баню убирают, а смеси позволяют нагреться до комнатной температуры и перемешивают еще 1 час, а твердый осадок собирают фильтрованием, промывают водой, сушат на воздухе. Соединения **41b,c,h-j** экстрагируют CHCl₃ (3x10 мл), объединенные органические слои промывают водой (3x40 мл) и сушат над MgSO4. Упаривание растворителя приводит к образованию целевого продукта.

3-Метил-3'-нитро-4,4'-би-1,2,5-оксадиазол 2,2'-*диоксид* **41а**. Бесцветный твердый продукт. Выход 0.13 г (56%). Т_{пл}. = 106-107 °C. R_{*f*} = 0,69 (CHCl₃). ИК (KBr): 2905, 1649, 1610, 1549, 1445, 1348, 1041, 995, 951, 858, 786 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 2.39 (3H, c, Me). ¹³С ЯМР (50.3 МГц, CDCl₃) δ_C: 8.5, 101.8, 110.9, 140.1, 144.3. ¹⁴N ЯМР

(21.7 МГц, CDCl₃, м.д.) δ_{N} : -41.7 (c, NO₂). MC (70 эВ): *m/z* (%): 229 (42) [M]⁺, 199 (26) [M – NO]⁺, 183 (6) [M – NO₂]⁺, 169 (2) [M – 2NO]⁺, 153 (12) [M – NO — NO₂]⁺, 139 (11) [M – 3NO]⁺, 123 (26) [M – 2NO — NO₂]⁺, 93 (100) [M – 3NO — NO₂]⁺, 63 (34) [M – 4NO — NO₂]⁺. Элементный анализ: Найдено (%): C, 26.47; H, 1.47; N, 30.34. Вычислено для C₅H₃N₅O₆ (%): C, 26.21; H, 1.32; N, 30.57.

3-Нитро-4'-фенил-4,3'-би-1,2,5-оксадиазол 2,2'-диоксид **41b**. Бежевый твердый продукт. Выход 0.12 г (40%). Т_{пл}. = 108-109 °C. R_f = 0.83 (CHCl₃). ИК (KBr): 1653, 1620, 1569, 1547, 1457, 1392, 1353, 944, 779 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.55-7.59 (3H, м, H Ph), 7.70 (2H, д, ³J = 5.8 Гц, H Ph). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.)

 $δ_{C}$: 104.5, 124.5, 126.7, 127.7, 129.4, 131.5, 132.0, 155.1. ¹⁴N ЯМР (21.7 МГц, CDCl₃, м.д.) $δ_{N}$: -42.6 (c, NO₂). MC (70 эB): m/z (%): 291 (44) [M]⁺, 231 (53) [M – 2NO]⁺, 201 (17) [M – 3NO]⁺, 185 (20) [M – 3NO – O]⁺, 171 (37) [M – 4NO]⁺, 155 (100) [M – 4NO–O]⁺, 113 (45) [Ph-C₃], 77 (16) [Ph]. Элементный анализ: Найдено (%): C, 41.44; H, 1.64; N, 23.91. Вычислено для C₁₀H₅N₅O₆ (%): C, 41.25; H, 1.73; N, 24.05.

4-Мезитилдиазено-3'-нитро-4--3,4'-би-1,2,5-оксадиазол 2,2'диоксид 41d. Оранжевый твердый продукт. Выход 0.253 г (70%).
Т_{пл.} = 103-104 °C. R_f = 0.87 (CHCl₃). ИК (KBr): 2923, 2852, 1672, 1622, 1573, 1381, 1351, 1288, 1138 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 2.30 (6H, с, 2Me), 2.36 (3H, с, Me), 6.99 (2H, с, H Ar). ¹³C

ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 20.6, 21.6, 124.3 (уш.), 129.4, 131.4, 136.1, 138.6, 145.5, 147.3, 162.9. ¹⁴N ЯМР (21.7 МГц, CDCl₃, м.д.) δ_N: -40.4 (с, NO₂). MC (70 эВ): *m/z* (%): 361 (2) [M]⁺, 225 (17) [M – 3NO – NO₂]⁺, 147 (22) [MesN=N]⁺, 133 (34) [MecN]⁺, 119 (100) [Mes]⁺. Элементный анализ: Найдено (%): C, 43.04; H, 2.95; N, 27.36. Вычислено для C₁₃H₁₁N₇O₆ (%): C, 43.22; H, 3.07; N, 27.14.

4-(4-Метоксифенил)диазено-З'-нитро-З,4'-би-1,2,5-оксадиазол
2,2'-диоксид 41е. Оранжевый твердый продукт. Выход 0.223 г
(64%). Тпл. = 108-109 °С. R_f = 0.79 (СНСІз). ИК (КВг): 2948, 2843,
1667, 1624, 1600, 1578, 1537, 1493, 1386, 1345, 1257, 1154, 1134,
1020, 971, 846 см⁻¹. ¹Н ЯМР (300 МГц, CDСІз, м.д.) δ_H: 3.93 (3H,

с, ОМе), 7.01 (2H, д, ³*J* = 9.1 Гц, H Ar), 7.72 (2H, д, ³*J* = 9.1 Гц, H Ar). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_{C} : 56.1, 115.3, 124.1, 127.0, 127.5, 146.1, 162.3, 163.1, 166.1. ¹⁴N ЯМР (21.7 МГц, CDCl₃, м.д.) δ_{N} : -40.8 (с, NO₂). MC (70 эВ): *m/z* (%): 349 (2) [M]⁺, 303 (9) [M – NO₂]⁺, 213 (39) [M – 3NO – NO₂]⁺, 135 (70) [PMPN=N]⁺, 121 (100) [PMPN]⁺, 107 (64) [PMP]⁺. Элементный анализ: Найдено (%): C, 38.06; H, 1.88; N, 27.97. Вычислено для C₁₁H₇N₇O₇ (%): C, 37.83; H, 2.02; N, 28.08.

3-Нитро-4'-фенилсульфанил-4,3'-би-1,2,5-оксадиазол 2,2'-диоксид **41f**. Бесцветный твердый продукт. Выход 0.139 г (43%). Т_{пл}. = 143-144 °C. R_f = 0.83 (CHCl₃). ИК (KBr): 1677, 1610, 1569, 1476, 1441, 1334, 1038,

41f 818 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) δ_H: 7.50 (3H, уш. с, H Ph), 7.68 (2H, уш. с, H Ph). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 110.9, 124.6, 129.6, 130.5, 134.2, 135.3, 156.1, 157.6. ¹⁴N ЯМР (21.7 МГц, CDCl₃, м.д.) δ_N: -42.6 (с, NO₂). MC (70 эВ): *m/z* (%): 323 (35) [M]⁺, 263 (38) [M – 2NO]⁺, 187 (100) [M – 3NO – NO₂]⁺, 77 (38) [Ph]⁺. Элементный анализ: Найдено (%): C, 37.32; H, 1.39; N, 21.53; C, 10.08. Вычислено для C₁₀H₅N₅O₆S (%): C, 37.16; H, 1.56; N, 21.67; C, 9.92.

4-Бензилсульфанил-3'-нитро-3,4'-би-1,2,5-оксадиазол 2,2'-диоксид 41g. Бесцветный твердый продукт. Выход 0.111 г (33%). Тпл. = 132-133 °С. R_f = 0.85 (CHCl₃). ИК (KBr): 2924, 2856, 1682, 1606, 1572, 1488, 1413, 1355, 1062, 842 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃, м.д.) $\delta_{\rm H}$: 4.45 (2H, c, CH₂), 7.33-

7.40 (5H, м, H Ph). ¹³С ЯМР (50.3 МГц, CDCl₃, м.д.) δ_C: 35.4, 104.9, 125.0, 128.4, 129.1, 129.3, 134.3, 154.1, 159.1. ¹⁴N ЯМР (21.7 МГц, CDCl₃, м.д.) δ_N : -42.8 (с, NO₂). Элементный анализ: Найдено (%): С, 38.99; Н, 1.92; N, 20.95; С, 9.77. Вычислено для С₁₁H₇N₅O₆S (%): C, 39.17; H, 2.09; N, 20.76; C, 9.51.

4-Метокси-3'-нитро-3,4'-би-1,2,5-оксадиазол 2,2'-диоксид 41h. Желтое масло. Выход 0.105 г (43%). R_f = 0.78 (CHCl₃). ИК (тонкий слой): 2949, 1655, 1637, 1569, 1409, 1352, 1207, 1165, 981 см⁻¹. ¹Н ЯМР (300 МГц, CDCl₃) δ_H: 4.21 (3H, c, OMe). ¹³C ЯМР (75.5 МГц, CDCl₃) δ_C: 58.2, 98.8, 124.2, 136.6, 161.3. ¹⁴N ЯМР (21.7 МГц, CDCl₃) δ_N: -42.3 (c, NO₂). MC

(70 3B): *m/z* (%): 245 (19) [M]⁺, 215 (11) [M – NO]⁺, 199 (6) [M – NO₂]⁺, 169 (17) [M – NO – NO_2]⁺, 155 (15) [M - 3NO]⁺, 139 (31) [M - 2NO - NO_2]⁺, 109 (29) [M - 3NO - NO_2]⁺, 30 (100) [NO]. Элементный анализ: Найдено (%): C, 24.31; H, 1.49; N, 28.38. Вычислено для C₅H₃N₅O₇ (%): C, 24.50; H, 1.23; N, 28.57.

4-Азидо-3'-нитро-3,4'-би-1,2,5-оксадиазол 2,2'-диоксид **41i**. Желтое масло. Выход 0.12 г (48%). $R_f = 0.77$ (CHCl₃). ИК (тонкий слой): 2166, NO₂ № Θ^{\ominus} 2143, 1659, 1633, 1577, 1515, 1413, 1350, 1226, 951 см⁻¹. ¹³С ЯМР (75.5 МГц, CDCl₃, м.д.) δ_C: 99.7, 105.0, 136.0, 152.3. ¹⁴N ЯМР (21.7 МГц, CDCl₃, м.д.) δ_{N} : -42.7 (с, NO₂), -149.7 (с, N₃). MC (70 эВ): *m/z* (%): 256 (2)

[M]⁺, 180 (3) [M – NO — NO₂]⁺, 30 (100) [NO]. Элементный анализ: Найдено (%): C, 18.59; N, 43.99. Вычислено для C₄N₈O₆ (%): C, 18.76; N, 43.76.

,4'-Динитро-4,3'-бис-1,2,5-оксадиазол 2,2'-диоксид 41j. Желтый твердый продукт. Выход 0.055 г (21%). Т_{пл}. = 84-86 °С. $R_f = 0.80$ № NO_2 (CHCl₃). ИК (тонкий слой): 1655, 1631, 1570, 1458, 1377, 1342, 1108 см⁻ ¹. ¹³C ЯМР (75.5 МГц, CDCl₃) δ_C: 102.6, 140.6, 154.6, 158.1. ¹⁴N ЯМР

(21.7 MΓц, CDCl₃) δ_N: -37.6 (c, 4-NO₂), -40.7 (c, 3-NO₂). MC (70 эB): *m/z* (%): 260 (17) [M]⁺, 184 (6) [M – NO — NO₂]⁺, 138 (4) [M – NO — 2NO₂]⁺, 30 (100) [NO]. Элементный анализ: Найдено (%): С, 18.79; N, 32.09. Вычислено для C₄N₆O₈ (%): С, 18.47; N, 32.31.

3-нитро-3'-ииано-4,4'-би-1,2,5-оксадиазол 2,2'-диоксид 41k. Желтый твердый продукт. Выход 0.075 г (31%). Т_{пл}. = 119-120 °С. R_f = 0.75 (CHCl₃). ИК (тонкий слой): 2249, 1663, 1635, 1554, 1441, 1388, 1349, 1100 cm⁻¹. ¹³C ЯМР (75.5 МГц, CDCl₃) δ_C: 103.3, 115.4, 120.8, 129.7, 155.7. ¹⁴N ЯМР (21.7 МГц, CDCl₃) δ_N: -42.8 (c, NO₂). MC (70 эB): *m/z*

(%): 240 (2) [M]⁺, 194 (4) [M – NO₂]⁺, 150 (48) [M - 3NO]⁺, 30 (100) [NO]. Элементный анализ: Найдено (%): C, 24.83; N, 35.22. Вычислено длдя C₅N₆O₆ (%): C, 25.01; N, 35.00.

3.2.2. Синтез 4,4'-динитрамино-3,3'-диазенофуроксана.

Трифторуксусный ангидрид (0.67 мл, 4.8 ммоль) добавляют по каплям к перемешивающемуся раствору 100%-ной HNO₃ (1.0 мл, 23.8 ммоль) в CCl₄ (10 мл) при температуре -5 °С. Порциями при той же температуре -5 °С добавляют 4,4'-диамино-3,3'диазенофуроксан 42 (0.37 г, 1.6 ммоль). Реакционную смесь перемешивают в течение 30 минут, образовавшийся твердый осадок фильтруют, промывают холодной CF₃COOH (2 х 4 мл) и сушат в эксикаторе под вакуумом над P₂O₅ и KOH в течение 24 часов.

[⊙] → ^N → ^O ⊂ ^N → ^N → ^O ⊂ ^N → ^N → ^O ⊂ ^N → ^N Желтый твердый продукт. Выход 0.34 г (80%). Тпл. = 74-75

(21.7 МГц, уксусная кислота-d₄, м.д.): $\delta_{\rm C}$ -38.4 (с, NO₂); HRMS (ESI) *m/z*: рассчитано (%) для C₄H₃N₁₀O₈: 319.0130; Найдено: 319.0138 [M+H]⁺.

3.2.3.Синтез солей азидо(тетразолил)- и азо(тетразолил)фуроксанов с высокоазотными анионами.

Получение серебряной соли 4-азидо-1,2,5-оксадиазол-3-(тетразол-1-ид) 2-оксида 47а.

Серебряная соль 4-азидо-1,2,5-оксадиазол-3-(тетразол-1-ид) 2-оксида N₃ → N N₃ → N N₃ → N N₄ → N N₅ → Ag + Каплям к раствору аммонийной соли 4-азидо-3-(1*H*-тетразол-5ил)фуроксана 44а (3.93 г, 23.1 ммоль) в H₂O (150 мл) при перемешивании. Образовавшаяся смесь перемешивают при комнатной

температуре в течение 5 ч до осаждения серебряной соли 47а. Образованный осадок отфильтровывают, промывают водой (3х50 мл) и сушат на воздухе. Белый осадок. Выход 5.37 г (96%). Элементный анализ Найдено: С 12.15, Н 0.05, N 41.36. Вычислено (%) для C₃AgN₉O₂ (301.96): C 11.93, H 0.00, N 41.75;

Получение энергоемких солей 4-азидо-1,2,5-оксадиазол-3-(тетразол-1-ид) 2-оксида 48 - 52 (общая методика).

Соответствующий хлорид полиазотистого основания (3.3 ммоль) добавляют к перемешивающейся суспензии серебряной соли 47a (1.0 г, 3.3 ммоль) в H₂O (40 мл) при комнатной температуре. Образовавшуюся смесь перемешивают при 60 °C в течение 5 часов, AgCl удаляют фильтрацией и растворитель упаривают в вакууме. Остаток кристализуют из воды и сушат в эксикаторе в вакууме над Р2О5 в течение 24 ч.

 N
 N
 NH2
 2-оксида 48. Светло-желтый твердый продукт. Выход 0.80 г

 N3
 N
 NH2
 (97%). ИК (КВг): 3492, 3430, 3355, 3152, 2882, 2804, 2413, 2272, 2161, 1656. 1629

 N0
 N0
 N0
 1578
 1525

 2-оксида 48. Светло-желтый твердый продукт. Выход 0.80 г 1037, 970, 850, 783, 773 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.):

δ_H: 7.19 (c, 6H). ¹³C ЯМР (75.5 МГц, ДМСО-d₆, м.д.): $\delta_{\rm C}$ = 158.6, 153.4, 146.4, 106.0. ¹⁴N ЯМР (21.7 МГц, DMSO-d₆) δ_N : -147.5 м.д. (уш. с, N₃). ¹⁵N ЯМР (50.7 МГц, DMSO-d₆, м.д.) δ_N: 13.8, -27.7, -31.8, -55.7, -140.9, -143.7, -293.9, -301.9 (т, J = 90 Гц). Элементный анализ: Найдено: С 18.65, Н 2.54, N 65.78; Вычислено (%) для С₄H₆N₁₂O₂ (254.07): С 18.90, Н 2.38,

Аминогуанидиниевая соль 4-азидо-1,2,5-оксадиазол-3-(тетразол-1-ид) 2-оксида **49**. Светло-желтый твердый продукт. Выход 0.83 г (93%). ИК (КВг): 3422, 3361, 3102, 2880, 2156, 1669, 1629, 1551, 1508, 1424, 1367, 1027, 972, 852, 788 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ_H: 8.76 (с, 1Н),

N 66.13; Специальные характеристики: IS: 29 Дж. FS: 240 Н.

7.32 (с, 2H), 7.01 (с, 2H), 4.72 (с, 2H). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_C : 159.0, 152.9, 146.0, 105.5. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆, м.д.) δ_N : -147.1 м.д. (уш. с, N₃). Элементный анализ: Найдено: С 17.69, Н 2.81, N 67.35; Вычислено (%) для С₄H₇N₁₃O₂ (269.19): С 17.85, Н 2.62, N 67.64;. Специальные характеристики: IS: 17 Дж. FS: 360 Н.

Триаминогуанидиниевая соль 4-азидо-1,2,5-оксадиазол-3-(тетразол-1-ид) 2-оксида 50. Светло-красный твердый продукт. Выход 0.91 г (92%). ИК (КВг): 3338, 3321, 3210, 2883, 2148, 2036, 1686, 1629, 1541, 1509, 1477, 1420, 1342, 1220, 1133, 1079, 955, 855, 790, 735 см⁻¹. ¹Н ЯМР (300 МГц,

ДМСО-d₆, м.д.) $\delta_{\rm H}$: 8.62 (с, 3H), 4.51 (с, 6H). ¹³С ЯМР (75.5 МГц, DMSO-d₆, м.д.) $\delta_{\rm C}$:

159.5, 153.4, 146.3, 106.1. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆, м.д.) δ_N : -146.2 (уш. с, N₃). Элементный анализ: Найдено: С 16.25, Н 2.89, N 69.84. Вычислено (%) для С₄H₉N₁₅O₂ (299.22): С 16.06, Н 3.03, N 70.22; Специальные характеристики: IS: 2.7 Дж. FS: 43 Н.

 $N_{O}^{(N)} N_{O}^{(N)} N_{$ ИК (КВг): 3362, 3310, 3133, 2885, 2281, 2166, 1688, 1641, 1549, 1509, 1422, 1368, 1255, 1210, 1026, 971, 872, 834, 789,

728 см⁻¹. ¹Н ЯМР (300 МГц, ДМСО-d₆, м.д.) δ : 8.23 (с, 2H), 7.25 (с, 2H), 5.81 (с, 2H). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ : 160.1, 152.9, 147.4, 145.8, 141.2, 105.5. ¹⁴N ЯМР (21.7 МГц, DMSO-d₆, м.д.) δ_N : -146.7 (уш. с, N₃). ¹⁵N ЯМР (50.7 МГц, ДМСО-d₆) δ_N : 15.0, -27.6, -31.8, -55.2, -141.1, -143.8, -174.9, -187.1, -199.7, -208.9, -258.4, -294.0, -322.9 (т, J = 90.5 Гц). Элементный анализ: Найдено: С 20.88, Н 1.81, N 67.86. Вычислено (%) для C₆H₇N₁₇O₂ (349.24): С 20.64, Н 2.02, N 68.18; Специальные характеристики: IS: 5.4 Дж. FS: 251 Н.

 N_3 N_1 N_2 N_1 N_2 N_1 N_2 N_1 N_1 N_2 N_1 N_1 2H), 6.55 (c, 4H). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) δ_{C} : 157.9, 152.9, 145.8, 105.4. ¹⁴N ЯМР (21.7 МГц, ДМСО-d₆, м.д.)

δ_N: -146.5 (уш. с, N₃). ИК (KBr): 3438, 3260, 2987, 2917, 2850, 2722, 2171, 1687, 1640, 1618, 1587, 1541, 1423, 1370, 1255, 1219, 1177, 1081, 1035, 970, 849, 777, 731 см⁻¹. Элементный анализ: Найдено: С 17.61, Н 2.11, N 62.57. Вычислено (%) для С₄H₆N₁₂O₃ (270.17): С 17.78, Н 2.24, N 62.21; Специальные характеристики: IS: 5.0 Дж. FS: 116 Н.

Получение дисеребряной соли 3,3'-диазено-4,4'-бис(тетразол-1-ид) 2,2-диоксида 47b.

Дисеребрянная соль 3,3'-диазено-4,4'-бис(тетразол-1-№ № ид) 2,2-диоксида 47. Гаствор $\stackrel{\bigcirc}{\longrightarrow} N \\ \stackrel{\bigcirc}{\longrightarrow} Ag$ ммоль) в H₂O (150 мл) добавляют по каплям к $\stackrel{\bigcirc}{\longrightarrow} \stackrel{\oplus}{\longrightarrow} Ag$ ммоль) в H₂O (150 мл) добавляют по каплям к Н₂О (250 мл) при перемешивании. Образовавшуюся

смесь перемешивают при комнатной температуре в течение 5 ч до образования серебряной соли 47b. Осадок отфильтровывают, промывают водой (3x50 мл) и сушат на воздухе. Оранжевый твердый продукт. Выход 1.36 г (86%). Элементный анализ: Найдено: С 12.92, N 35.40. Вычислено (%) для C₆Ag₂N₁₄O₄ (547.90): С 13.15, N 35.79;

Получение бисгуанидиевой соли 3,3'-диазено-4,4'-бис(тетразол-1-ид) 2,2-диоксида 53.

Бисгуанидиевая соль 3,3'-диазено-4,4'- $\stackrel{N}{\longrightarrow}$ $\stackrel{\Theta}{\longrightarrow}$ $\stackrel{\Theta}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{N_{H_2}}{\longrightarrow}$ $\stackrel{G}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{N_{H_2}}{\longrightarrow}$ $\stackrel{G}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$

перемешивают с 2 экв. соответствующим хлоридом, а, именно, с гуанидином при 60°С в течение 5 часов. AgCl фильтруют, растворитель упаривают в вакууме. Продукт сушат в эксикаторе в вакууме над P₂O₅ в течение 24 ч. Выход 0.75 г (91%). Оранжевый твердый продукт. ¹Н ЯМР (300 МГц, DMSO-d₆, м.д.) $\delta_{\rm H}$: 7.21 (с). ¹³С ЯМР (75.5 МГц, ДМСО-d₆, м.д.) $\delta_{\rm C}$: 162.3, 155.9, 146.5, 145.5, 103.0. ИК (КВг): 3407, 2882, 2804, 2366, 2345, 2146, 1685, 1655, 1647, 1636, 1571, 1543, 1411, 993, 797 см⁻¹. Элементный анализ: Найдено: С 21.12, Н 2.78, N 61.57. Вычислено (%) для C₈H₁₂N₂₀O₄ (452.32): С 21.24, Н 2.67, N 61.93; Специальные характеристики: IS: 38 Дж. FS: 342 Н.

выводы

- Разработаны два простых, высокоэффективных и диастереоселективных one-pot метода синтеза ранее неизвестных полигетероциклических структур, содержащих наряду с NO-донорным фуроксановым циклом фармакофорные тетрагидроизохинолиновый, пиридиновый, терпиридиновый и инденопиридиновый гетероциклы на основе тандемной реакции гетеро-Дильса-Альдера/ретро-Дильса-Альдера легко доступных 1,2,4-триазинилфуроксанов с енамином и норборнадиеном.
- 2. Разработан общий, простой и региоселективный способ получения изоксазолил-, изоксазолинил-(1,2,4-оксадиазолил)фуроксанов И на основе каскадного трехстадийного процесса, включающего one-pot нитрование гидроксиминофуроксанов, термолиз образовавшихся нитроловых кислот до фуроксанилкарбонитрилоксидов и их [3+2]-циклоприсоединение к различным диполярофилам – алкинам, алкенам и активированным нитрилам.
- 3. Предложены новые подходы к получению (1,2,3-триазол-1-ил)фуроксанов, основанные на [3+2]-циклоприсоединении 4-азидо-3-арилфуроксанов к бензоилуксусному и хлорацетоуксусному эфирам при катализе ТЕА с последующей химической трансформацией хлорметильной и сложноэфирной групп.
- 4. Разработан региоселективный метол синтеза ранее неизвестных бифуроксанильных систем с 3-нитробифуроксанильным каркасом, основанный на каскаде one-pot реакций – ацилирование натриевой соли динитрометана хлоргидроксиминофуроксанами, нитрозирование продукта ацилирования И внутримолекулярная циклизация продукта нитрозирования в 3нитробифуроксанильный фрагмент. Среди синтезированных соединений выявлен ряд высокоэнергетических структур.
- 5. Разработан способ получения энергоемких солей азидо-И азотетразолилфуроксанов с высокоазотными катионами, основанный на последовательных реакциях метатезиса амониевых солей взаимодействием с AgNO₃ и полученных серебряных солей с гидрохлоридами соответствующих высокоазотных оснований. Оценены физико-химические и детонационные характеристики синтезированных солей и среди них выявлены перспективные высокоэнтальпийные структуры удовлетворительными термической с стабильностью и чувствительностью к механическим воздействиям.

6. Исследована цитотоксическая активность ряда синтезированных гетарилфуроксанов in vitro методом МТТ теста на пяти линиях клеток рака человека (А549, HCT116, HeLa, MCF7, RD) и показано, что 4-амино-3-(инденотриазин-3-ил)фуроксан и нитробифуроксанилы проявляют хорошую цитотоксическую активность против всех исследованных линий раковых клеток человека. Исследована апоптоз-индуцирующая 4-амино-3активность (инденотриазин-3-ил)фуроксана и установлено, что это соединение является апоптоз-индуцирующим перспективным соединением, превышающим эту характеристику для известного противоракового препарата – камптотецина.

БЛАГОДАРНОСТИ

Автор выражает огромную благодарность научному руководителю, профессору, доктору химических наук Маховой Нине Николаевне за всестороннюю поддержку в научной работе и аспирантской жизни.

Особая благодарность

- Ферштату Л.Л., за неоценимую помощь, поддержку и полезные советы.
- Куликову А. С., за полезные научные консультации.
- Епишиной М. А., за поддержку и неравнодушие в совершенствовании навыков.
- Овчинникову И. В., за поддержку и ценные научные советы.
- Кузнецову В. В., за плодотворное сотрудничество и ценные советы.
- асп. Чаплыгину Д.А, студ. Быстрову Д. М., студ. Жилину Е. С. и студ. Чуракову А.И. за отличный коллектив и позитивный рабочий настрой.

Также я выражаю благодарность: Стручковой М. И. и Даевой Е.Б. – за съемку ЯМРспектров, Шкиневой Т.К. – за проведение оценки плотностей, Колотыркиной Н. Г. и Чижову А. О. – за съемку масс-спектров высокого разрешения, Борисовой И. А. – за съемку ИК - спектров, Ананьеву И. В. (ИНЭОС РАН) – за проведение рентгеноструктурных исследований. Муравьеву Н.В (ИХФ РАН). – за проведение исследований ДСК и ТГА и определение чувствительности к удару и трению, а также термической стабильности. Аникиной Л.В. (ИФАВ РАН) – за проведение измерений по цитотоксической активности.

СПИСОК ЛИТЕРАТУРЫ

- Gasco, A. NO donors: Focus on furoxan derivatives / A. Gasco, R. Fruttero, G. Sorba, A. Di Stilo, R. Calvino // Pure Appl. Chem. 2004. V.76 P. 973-981.
- Cerecetto, H. Pharmacological properties of furoxans and benzofuroxans: recent developments / H. Cerecetto, W. Porcal // Mini-Rev. Med. Chem. - 2005. - V. 5 – P.57-71.
- Cena, C. Use of the furoxan (1,2,5-oxadiazole 2-oxide) system in the design of new NOdonor antioxidant hybrids / C. Cena, M. Bertinaria, D. Boschi, M. Giorgis, A. Gasco // ARKIVOC – 2006. – V. vii – P. 301-309.
- Makhova, N. N. Furoxans fused with heterocycles as promising donors and precursors for nitric oxide donors / N.N. Makhova, O.A. Rakitin // Chem. Heterocycl. Compd. – 2017. – V. 53(8) – P. 849-851.
- Fershtat, L. L. Molecular hybridization tools in the development of furoxan-based NOdonor prodrugs / L. L. Fershtat, N. N. Makhova // ChemMedChem. 2017. – V. 12. – P. 622-638.
- Makhova, N. N. Advances in the chemistry of monocyclic amino- and nitrofuroxans / N. N. Makhova, A.S. Kulikov // Russ. Chem. Rev. - 2013. - V. 82 (11) - P.1007-1033.
- Zlotin, S. G. New approaches to pharmacologically-oriented and energy rich organic nitrogen-oxygen systems / S. G. Zlotin, A. M. Churakov, O. A. Luk'yanov, N. N. Makhova, A. Yu. Sukhorukov, V. A. Tartakovsky // Mendeleev Commun. – 2015. – V. 25 – P. 399-409.
- Fershtat, L. L. Advances in the synthesis of non-annelated polynuclear heterocyclic systems comprising the 1,2,5-oxadiazole ring / L. L. Fershtat, N. N. Makhova // Russ. Chem. Rev. – 2016. – V. 85(10) – P.1097-1145.
- Zlotin, S. G. Recent advances in synthesis of organic nitrogen-oxygen systems for medicine and material science» / S. G. Zlotin, A. M. Churakov, I. L. Dalinger, O. A. Luk'yanov, N. N. Makhova, A. Yu. Sukhorukov, V. A. Tartakovsky // Mendeleev Commun. – 2017. – V. 27 – P. 535-546.
- Kuchurov, I. V. Prospective Symbiosis of Green Chemistry and Energetic Materials / I.
 V. Kuchurov, M. N. Zharkov, L. L. Fershtat, N. N. Makhova, S. G. Zlotin // ChemSusChem. – 2017. – V. 10 – P. 3914-3946.
- Хмельницкий, Л. И. Химия фуроксанов. Строение и синтез / Л. И. Хмельницкий, Т. И. Годовикова, С. С. Новиков // Москва, Наука. 1996. 383 с.

- Хмельницкий, Л. И. Химия фуроксанов. Реакции и применение / Л. И. Хмельницкий, Т. И. Годовикова, С. С. Новиков // Москва, Наука – 1996. - 430 с.
- Куликов, А. С. Синтез производных фуроксана на основе азида 4-аминофуроксан-З-карбоновой кислоты / А.С. Куликов, И.В. Овчинников, С.И. Молотов, Н.Н. Махова // Изв. РАН, Сер. хим. - 2003. - с. 1727-1733.
- 14. Блинников, А. Н. Синтез и реакционная способность αгидроксиалкил(бензил)фуразанов и α-гидроксиалкил(бензил)фуроксанов / А.Н. Блинников, А.С. Куликов, Н.Н. Махова, Л.И. Хмельницкий // Изв. РАН, Сер. хим. - 1996. - с. 1782-1788.
- 15. Ovchinnikov, I. V. The Curtius Rearrangement of Azidocarbonylfuroxans: Some Peculiarities and the Synthesis of Aminofuroxans / Ovchinnikov, A.N. Blinnikov, N.N. Makhova, L.I. Khmel'nitskii // Mendeleev Commun. - 1995. - P. 58-59.
- Makhova, N. N. Synthesis of isomeric 3-nitro-4-phenylfuroxane and 4-nitro-3-phenylfuroxane / N. N. Makhova, I. V. Ovchinnikov, B. N. Khasanov, L. I. Khmel'nitskii // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1982. V. 31. V. 573-576.
- Calvino, R. Antimicrobial properties of some furazan and furoxan derivatives / R. Calvino, V. Mortarini, A. Gasco, A. M. Sanfillippo, L. Riccardi // Eur. J. Med. Chem. 1980. Vol. 15(5). P. 485-491.
- Акимова, Л. Н. Взрывчатые свойства 4,4-динитро-3,3-диазенофуроксана / Л.Н. Акимова, Г.Т. Афанасьев, В.Г. Щетинин, В.И. Пепекин // Хим. Физика – 2003. -Том. 21 - с. 93-96.
- 19. Пепекин, В. И. Пределы органических взрывчатых веществ по скорости детонации и мощности // В. И. Пепекин // Докл. акад. Наук 2007. Том. 414 (6) с. 781-783.
- Pepekin, V. I. Explosive properties of furoxanes / V.I. Pepekin, B.L. Korsunskii, Yu.N. Matyushin // Comb. Expl. Shock Waves. - 2008. - V. 44 – P.110-114.
- Ovchinnikov, I. V. Dinitrodiazenofuroxan New super-power explosive / I. V. Ovchinnikov, N. N. Makhova, L. I. Khmel'nitskii, V. S. Kuz'min, L. N. Akimova, V. I. Pepekin // Dokl. Akad. Nauk 1998. V. 359 P.499.
- Guo, T. Efficient preparation and comprehensive properties of thermal decomposition and detonation for 4,4'-dinitro-3,3'-azofuroxan / T. Guo, M. Liu, X.-C. Huang, Z. Wang, S. Qiu, Z. Ge, Z. Meng // Journal of Analytical and Applied Pyrolysis – 2017. - V.128. – P. 451-458.
- 23. Акимова, Л. Н. Взрывчатые свойства 4,4-динитро-3,3-диазенофуксана / Л.Н. Акимова, Г.Т. Афанасьев, В.Г. Щетинин, В.И. Пепекин // Хим. Физика. 2002. –

Том. 21 - с. 93-96.

- Fischer, D. Synthesis and Characterization of Diaminobisfuroxane / D.Fischer, T. M. Klapötke, J. Stierstorfer // Eur. J. Inorg. Chem. 2014. V. 34. P. 5808–5811.
- Makhova, N. N. New version of mononuclear heterocyclic rearrangement / N. N. Makhova, A. N. Blinnikov // Mendeleev Commun. 1999. V. 9. P. 17-19.
- 26. Ракитин, О. А Сульфилиминофуроксаны: синтез, структура и окисление нитро- и нитрозопроизводных / О.А. Ракитин, О.Г. Власова, Л.Ф. Чертанова, Л.И. Хмельницкий // Изв. АН СССР, Сер. хим. - 1990. - с. 1625-1629.
- 27. He, C. Boosting energetic performance by trimerizing furoxan / C. He, H. Gao, G.H. Imler,
 D. A. Parrish, J. M. Shreeve // J. Mater. Chem. A. 2018. V. 6. P. 9391-9396.
- Махова, Н. Н. Амино- и нитрофуроксаны: синтез и реакционная способность / Н. Н. Махова, Т. И. Годовикова // Журн. РХО им. Д.И. Менделеева. – 1997. – Том. XLI. – с. 54-72.
- Godovikova, T. I. 3,4-Dinitrofuroxan—the First Example of a Pernitro Heterocycle / T.I. Godovikova, O.A. Rakitin, S.P. Golova, S.A. Vozchikova, L.I. Khmel'nitskii // Mendeleev Commun. 1993. V. 5(3) P. 209-210.
- 30. Fershtat, L. L. Ionic liquid-promoted [3+2]-cycloaddition reactions of nitroformonitrile oxide generated by the cycloreversion of dinitrofuroxan / L.L. Fershtat, I.V. Ovchinnikov, N.N. Makhova // Tetrahedron Lett. 2014. V. 55. P. 2398-2400.
- 31. Годовикова, Т. И. Синтез и реакции нуклеофильного замещения 3,4динитрофуроксана / Т. И. Годовикова, О. А. Ракитин, С. П. Голова, С. А. Возчикова, М. В. Поворин, Л. И. Хмельницкий // Химия гетероцикл. соед. – 1994. – Том. 4. - с. 529-533.
- Ungnade, H. E.Nitration of chloroglyoximes: Chlorofuroxans and other nitration products / H.E.Ungnade, L.W. Kissinger // Tetrahedron. - 1963. - V. 19 (Suppl.1). - P. 143 - 154.
- 33. Ракитин, О. А. ¹⁴N ЯМР спектроскопия нитрофуроксанов качественный и количественный метод их определения / О.А. Ракитин, В.А. Огурцов, Ю.А. Стреленко, Т.И. Годовикова, Л.И. Хмельницкий // Изв. АН СССР. Сер. хим. 1990. с. 1020-1025.
- 34. Ракитин, О. А. Реакции фуроксаннитроловых кислот с тетраоксидом азота / О.А. Ракитин, В.А. Огурцов, Е.А. Хайбуллина, Т.И. Годовикова, Л.И. Хмельницкий // Хим. гетероцикл. соед. - 1993. – Том. 9. - с. 1283-1287.
- 35. Махова, Н. Н. Региоспецифичный и региоселективный синтез изомерных

нитрофуроксанов из неепредельных соединений / Н. Н. Махова, В. Г. Дубонос, А. Н. Блинников, И. В. Овчинников, Л. И. Хмельницкий // Ж. Орг. Хим. – 1997. – Том. 33. – С. 1216-1223.

- 36. Nikolaeva, A. D. Synthesis and study of detonation properties of 3-methyl-4nitrofuroxan // A. D. Nikolaeva, Yu. N. Matyushin, V. I. Pepekin, V. S. Smelov, V. V. Bulidorov, T. I. Bulidorova, A. Ya. Apin // Bull. Acad. Sci. USSR, Div. Chem. Sci. – 1972. – V. 21. – P. 927-928.
- 37. Fershtat, L. L. Dinitrogen Trioxide-Mediated Domino Process for the Regioselective Construction of 4-Nitrofuroxans from Acrylic Acids / L.L. Fershtat, M.I. Struchkova, A.S. Goloveshkin, I.S. Bushmarinov, N.N. Makhova // Heteroatom Chem. – 2014. – V. 25. – P. 226-237.
- 38. Matsubara, R. Synthesis of Furoxans (1,2,5-oxadiazole 2-oxides) from Styrenes and Nitrosonium Tetrafluoroborate in Non-Acidic Media and Mechanistic Study / R. Matsubara, A. Ando, Y. Saeki, K. Eda, N. Asada, T. Tsutsumi, Y. S. Shin, M. Hayashi // J.Heterocycl.Chem. – 2016. – V. 53. – P. 1094-1105.
- Kunai, A. Stereoselective Synthesis of (E)-2-Hydroxyimino-2-phenylacetonitrile by Photolysis of 4-Azido-3-phenylfurazan 2-oxide / A. Kunai, T. Doi, T. Nagaoka, H. Yagi, K. Sasaki // Bull. Chem. Soc. Jpn. – 1990. – V. 63. – P. 1843-1844.
- Dubonos, V. G. A New Regiospecific Synthesis of Isomeric 3(4)-Aryl-4(3)-nitro1,2,5oxadiazole 2-Oxides / V. G. Dubonos, I. V. Ovchinnikov, N. N. Makhova, L. I. Khmel'nitskii // Mendeleev Commun. – 1992. – P. 120-121.
- 41. Ovchinnikov, I. V. Nitrosation of salts of 1-hydroxyimino-2,2-dinitro-1-R-ethanes, a novel method for the preparation of isomeric 3(4)-nitro-4(3)-R-furoxans / I. V. Ovchinnikov, A. O. Finogenov, M. A. Epishina, A. S. Kulikov, Yu. A. Strelenko N. N. Makhova // Russ. Chem. Bull. 2009. V. 58 (10) P. 2137–2146.
- 42. Овчинников, И.В. Исследование механизма образования 3-нитро-4-R-фуроксанов путем нитрозирования дикалиевых солей 1-гидроксимино-2,2-динитро-1-R-этанов / И.В. Овчинников, Ю.А. Стреленко, Н.А. Попов, А.О. Финогенов, Н.Н. Махова // Изв. АН, Сер. хим. 2011. с.835.
- 43. Епишина, М.А. Синтез оксима З-амино-5-нитробензальдегида и его превращения в 3,4-бис(3-амино-5-нитрофенил)фуроксан и изомерные 3(4)-(3-амино-5нитрофенил) -4(3)-нитрофуроксаны / М.А. Епишина, И.В. Овчинников, Н.Н. Махова // Изв. АН Сер. хим. 1997. с. 2232-2235.

- 44. Ovchinnikov, I. V. Synthesis of 1,3- and 1,4-bis(3-nitrofurazan-4-yl)benzenes and isomeric 1,3- and 1,4-bis[3(4)-nitrofuroxan-4(3)-yl]benzenes / I. V. Ovchinnikov, A. O. Finogenov, M. A. Epishina, Yu. A. Strelenko, N. N. Makhova // Mendeleev Commun. 2009. V. 19. P. 217-219.
- 45. Fershtat, L. L. Side-chain prototropic tautomerism of 4-hydroxyfuroxans in methylation reactions / L. L. Fershtat , M.A. Epishina , I.V. Ovchinnikov, M. I. Struchkova, A. A. Romanova, I. V. Ananyev , N. N. Makhova // Tetrahedron Letters – 2016. – Vol.57 – P.5685–5689.
- 46. V. G. Andrianov Synthesis and properties of derivatives of 4-aminofuroxan-3carboxylic acid // Chem. Heterocycl.Comp – 1997. – V.33 (8). – P. 973-976.
- 47. Ovchinnikov, I.V. Synthesis and vasodilating properties of *N*-alkylamide derivatives of 4-amino-3-furoxancarboxylic acid and related azo derivatives / I.V. Ovchinnikov, A.S. Kulikov, N.N. Makhova, P. Tosco, A. Di-Stilo, R. Fruttero, A. Gasco // IL Farmaco. 2003. V.58. P.677-681.
- Blinnikov, A.N. Novel synthesis of 3-monosubstituted furoxans / A.N. Blinnikov, N.N. Makhova // Mendeleev Commun. 1999. V. 9 (1) P. 13-15.
- 49. Зеленов, В.П. Генерация ионов оксодиазония. Синтез и реакционная способность 3-(*N*-нитроамино)-4-фенилфуроксана / В.П. Зеленов, А.А. Воронин, А.М. Чураков, М.С. Кленов, Ю.А. Стреленко, В.А. Тартаковский // Изв. АН, Сер. хим. – 2012. – с.349.
- 50. Епишина, М. А. Синтез макроциклических систем на основе 4,4'-диамино-3,3'-би-1,2,5-оксадиазола и 3(4)-амино-4(3)-(4-амино-1,2,5-оксадиазол-3-ил)-1,2,5-оксадиазол-2-оксидов / Епишина М. А., Куликов А. С., Махова Н. Н. // Изв. РАН. Сер. хим.- 2008. Том 3. с. 631-638.
- 51. Baryshnikova, E. L. The base-induced cascade rearrangement of 4-acetylamino-3-arylazo-1,2,5-oxadiazole 2-oxides (furoxans) into 4-acetylamino-2-aryl-5-nitro-2*H*-1,2,3-triazoles / Ekaterina L. Baryshnikova, Alexander S. Kulikov, Igor V. Ovchinnikov, Vladimir V. Solomentsev, Nina N. Makhova // Mendeleev Commun. – 2001. – V. 11(6). – P. 230-232.
- 52. Finogenov, A. O. Reactions of furoxanyl and furazanyl diazonium salts with NaNO₂ in weakly acidic medium, a new approach to the preparation of nitrofuroxans and nitrofurazans / A. O. Finogenov, I. V. Ovchinnikov, A. S. Kulikov, N. N. Makhova // Russ. Chem. Bull. 2012. V. 61 (2) P. 472-475.
- 53. Parakhin, V. V. Synthesis of (α -nitroalkyl-ONN-azoxy)furoxan derivatives / V. V.

Parakhin, O. A. Luk'yanov // Russ. Chem. Bull. (Int. Ed.) - 2016. – V. 65 (1). – P. 295-297.

- Parakhin, V. V. 4-(Nitroalkyl- and dinitroalkyl-ONN-azoxy)-3-cyanofuroxans and some of their derivatives / V. V. Parakhin, N. I. Shlykova,O. A. Luk´yanov // Russian Chemical Bulletin (Int. Ed.). - 2017. - V. 66 (2). - P. 320-326.
- 55. Zelenov, V. P. Amino(tert-butyl-NNO-azoxy)furoxans: synthesis, isomerization, and rearrangement of *N*-acetyl derivatives / V. P. Zelenov, A. A. Voronin, A. M. Churakov, Yu. A. Strelenko, M. I. Struchkova, V. A. Tartakovsky // Russ. Chem. Bull. (Int. Ed.) – 2013. - V. 62(1) - P. 117-122.
- 56. Ogurtsov, V. A. Short and efficient synthesis of 1-(2-oxido-1,2,5-oxadiazol-3-yl)alkyl nitrates by unconventional nitrooxylation of 3-alkyl-1,2,5-oxadiazole 2-oxides / V.A. Ogurtsov, A. V. Shastin , S. G. Zlotin, O.A. Rakitin // Tetrahedron Letters 2016. V. 57. P. 4027–4030.
- 57. Vurchio, C. Approaches towards the synthesis of 7-halo-1,2-dihydroxyindolizidines (7-halolentiginosines) thwarting Grob fragmentation processes / C. Vurchio, F.M. Cordero, C. Faggi, B. Macchi, C. Frezza, S. Grelli, A. Brandi // Tetrahedron 2015. V. 71. P. 5806 5813.
- Li, S-G. A Novel Allyl Transfer Coupled with a Grob Fragmentation / S-G. Li, H.-J. Chen, Y.-Y. Yang, W.J. Wu, Y. Wu // Chem.Asian J. – 2015. – V.10. – P. 2333 - 2336.
- 59. Gasco, A. M. Synthesis and Structural Characterization of the Trimeric Furoxan System, a New Potent Vasodilating Moiety / A. M. Gasco, C. Cena, A. Di Stilo, G. Ermondi, C. Medana, A. Gasco // Helv. Chim. Acta. – 1996. – V. 79. – P. 1803 - 1817.
- Rakitin, O. A. Synthesis and reactivity of furazanyl- and furoxanyldiazonium salts / O.
 A. Rakitin, O. A. Zalesova, A. S. Kulikov, N. N. Makhova, T. I Godovikova, L. I Khmel'nitskii // Russ. Chem. Bull. 1993. V. 42 (11) P.1865-1870.
- Fershtat, L. L. Ionic liquid-mediated synthesis of (1*H*-1,2,3-triazol-1-yl)furoxans by [3+2] cycloaddition of azidofuroxans to acetylenes / L. L. Fershtat, Salavat S. Ashirbaev, Alexander S. Kulikov, Vadim V. Kachala, Nina N. Makhova // Mendeleev Commun. 2015. V.25. P. 257–259.
- 62. Fershtat, L. L. An efficient access to (1*H*-tetrazol-5-yl)furoxan ammonium salts via a two-step dehydration/[3+2]-cycloaddition strategy / L. L. Fershtat , M. A. Epishina , A. S. Kulikov, I. V. Ovchinnikov, I. V. Ananyev, N.N. Makhova // Tetrahedron. 2015. V. 71. P. 6764 6775.
- 63. Rai, G. Synthesis of oxadiazole-2-oxide analogues as potential antischistosomal agents /

G. Rai, C. J. Thomas, W. Leister, D. J. Maloney // Tetrahedron Lett. – 2009. – V. 50(15).
– P. 1710 - 1713.

- 64. Wieland H. Die Polymerisation der Knallsäure / H. Wieland, A. Baumann, C. Reisenegger, W. Scherer, J. Thiele, J. Will, H. Haussmann, W. Frank // Justus Liebigs Ann. Chem. 1925. V. 444. P. 7 40.
- 65. Mel'nikova, T.M. Novel synthesis of 3,4-dicyanofuroxan / T.M. Mel'nikova, T. S. Novikova, L. I. Khmel'nitskii, A.B. Sheremetev // Mendeleev Commun. 2001. V. 11(1). P. 30 31.
- 66. He, C. Potassium 4,5-Bis(dinitromethyl)furoxanate: A Green Primary Explosive with a Positive Oxygen Balance / C. He, J. M. Shreeve // Angew.Chem. – 2016. – V.55. - P. 772 – 775.
- 67. Matsubara, R. Synthesis of cyanofuroxans from 4-nitrofuroxans via C-C bond forming reactions / R. Matsubara, A. Ando, M. Hayashi // Tetrahedron Letters. 2017. V. 58. P. 3337 3340.
- Fronabarger, J.W. KDNP A Lead Free Replacement for Lead Styphnate / J.W. Fronabarger, M.D. Williams., W.B. Sanborn, D.A. Parrish, M. Bichay // Propellants Explos. Pyrotech. 2011. V. 36(5) P. 459 470.
- 69. Norris W.P., A Primary Explosive // US Patent 1985. № 4,529,801.
- 70. Fronabarger, J.W., Nitrobenzodifuroxan Compounds, Including Their Salts, and Methods There of J.W. Fronabarger, M.E. Sitzman // US Patent 2007. №7271267B1.
- 71. Leyva, E. One-pot methodology for conversion of *o*-halogen nitrobenzenes to benzofuroxans / E. Leyva, S. Leyva-Ramos, R. Jiménez-Cataño, T. A. de Luna-Méndez, A. Cárdenas-Chaparro // Synthetic Communications. 2017. V. 47(6) P. 604 608.
- 72. Fu, X.-L. Thermal behavior, decomposition mechanism and thermal safety of 5,7diamino-4,6-dinitrobenzenfuroxan (CL-14) / X.-L. Fu, X.-Z. Fan, B.-Z. Wang, H. Huo, J.-Z. Li, R.-Z. Hu // J. Therm. Anal. Calorim. – 2016. – V.124. – P. 993 – 1001.
- 73. Norris, W. P. Synthesis and Thermal Rearrangement of 5-Chloro-4,6dinitrobenzofuroxan / W. P. Norris, A. Chafin, R. J. Spear, R. W. Read // Heterocycles. – 1984. – V. 22. – P. 271 - 274.
- 74. Šarlauskas, J. Benzofuroxan (Benzo[1,2-c]1,2,5-oxadiazole N-oxide) Derivatives as Potential Energetic Materials: Studies on Their Synthesis and Properties / J. Šarlauskas, Ž. Anusevicius, A.Misiunas // Central European Journal of Energetic Materials.- 2012. – V. 9(4) – P. 365 - 386.
- 75. Chugunova, E.A. First Synthesis of Benzotrifuroxan at Low Temperature: Unexpected

Behavior of 5,7-Dichloro-4,6-dinitrobenzo-furoxan with Sodium Azide / E.A. Chugunova, R. E. Timasheva, E. M. Gibadullina, A. R. Burilov, R. Goumont // Propellants Explos.Pyrotech. – 2012. – V. 37. – P. 390 – 392.

- 76. Zlotin, S. G. Ionic liquids as substrate-specific recoverable solvents and catalysts of regio-, stereo- and enantioselective organic reactions / S. G. Zlotin, N. N. Makhova // Mendeleev Commun. – 2010. – V. 20. – P. 63 - 71.
- 77. Sheremetev, A. B. Straightforward one-pot synthesis of benzofuroxans from ohalonitrobenzenes in ionic liquids / A. B. Sheremetev, N. S. Aleksandrova, N. V. Ignat'ev, M. Schulte // Mendeleev Commun. – 2012. – V. 22. – P. 95 – 97.
- 78. Smirnov, O. Yu. Annulated benzotetrazine 1,3-dioxides 1.[1,2,5]Oxadiazolo[3,4-f] [1,2,3,4]benzotetrazine-2,4,7 and 2,4,9-trioxides / O. Yu. Smirnov, A. Yu. Tyurin, A. M. Churakov, Yu. A. Strelenko, V. A. Tartakovsky // Russ.Chem. Bull. (Int.Ed.) – 2006. - V. 55 (1) - P. 137 - 140.
- 79. Tyurin, A. Yu. Annulated benzotetrazine 1,3-dioxides. 2.[1,2,5]Oxadiazolo[3,4-f]
 [1,2,3,4]benzotetrazine 1,3,7- trioxide / A. Yu. Tyurin, O. Yu. Smirnov, A. M. Churakov, Yu. A. Strelenko, V. A. Tartakovsky // Russ. Chem.Bull. (Int. Ed.) 2006. V. 55 (2) P. 351 356.
- 80. (a) B. L. Hayes // Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing, USA 2002; (b) J. P. Tierney, P. Lidström // Microwave Assisted Organic Synthesis, Blackwell Publishing, Oxford 2005. (c) de la Hoz, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects /A. de la Hoz, A. Díaz-Ortiz and A. Moreno // Chem. Soc. Rev. 2005. V. 34. P. 164 178.
- Leyva, E. Fast preparation of benzofuroxans by microwave- assisted pyrolysis of *o*nitrophenyl azides / E. Leyva, Socorro Leyva, Regina M. González-Balderas, Denisse de Loera and Rogelio Jiménez-Cataño // Mendeleev Commun. – 2013. – V. 23. – P. 217 -218.
- Leyva, E. Generation of benzofuroxans by photolysis of crystalline *o*-nitrophenylazides.
 A green chemistry reaction / E. Leyva, R. M. González-Balderas, D. A. de Loera, R. Jiménez-Cataño // Tetrahedron Letters. 2012. V. 53 (19) P. 2447 2449.
- Samsonov, V. A. Synthesis of 1hydroxybenzotriazoles angularly annulated by furazan or furoxan rings / V. A. Samsonov, G. E. Sal´nikov, A. M. Genayev // Russ.Chem. Bull., (Int.Ed.) -2009. - V. 58 (11) - P. 2369 - 2375.
- 84. Khisamutdinov, G. Kh. Synthesis of 4,7-diaminopyridazino [4,5-c]furoxan / G. Kh. Khisamutdinov, T. A. Mratkhuzina, R. M. Gabdullin, L Sh. Abdrakhmanov, S. P.

Smirnov, O. A. Rakitin, T. L Godovikova, L. L Khmel'nitskii // Russ. Chem. Bull. - 2005. - V. 44 (8) – P. 1499 - 1500.

- 85. Tang, Y. Nitromethane Bridged Bis(1,3,4-oxadiazoles): Trianionic Energetic Salts with Low Sensitivities / Y. Tang, Chunlin He, G.H. Imler, D.A. Parrish, J. M. Shreeve // Chem. Eur.J. – 2017. – V. 23. – P. 15022 – 15025.
- 86. a) Boulton, A. J. Heterocyclic rearrangements. Part V. Rearrangement of 4-arylazo-and 4-nitroso-benzofuroxans: new syntheses of the benzotriazole and benzofurazan ring systems / A. J. Boulton, P. B. Ghosh, A. R. Katritzky // J. Chem. Soc. B. 1966. V. 0 P. 1004 1011 b) Ovchinnikov, I. V. New rearrangement of azofuroxans in an oxidising medium / I.V. Ovchinnikov, M.A. Epishina, S.I. Molotov, Y.A. Strelenko, K.A. Lyssenko, N.N.Makhova // Mendeleev Commun. 2003. V.13. P. 272 275 c) Baryshnikova, E.L. Thermal and base-induced rearrangements of furoxanylketones phenylhydrazones / E.L.Baryshnikova, N. N. Makhova // Mendeleev Commun. 2000. V. 10. P. 190 191.
- 87. Nicolaides, D. N. A Convenient Synthesis of Furoxano[3,4-b]quinoxalines and Furazano[3,4 b]quinoxalines / D. N. Nicolaides, J. K. Gallos // Synthesis. 1981. V.8. P. 638 640.
- 88. Willer, R. L. Synthesis and chemistry of some furazano- and furoxano[3,4-b]piperazine /
 R. L. Willer, D. W. Moore // J. Org. Chem. V. 50 (25) P. 5123 5125.
- Yudin, I. L. Furoxano[3,4-b]pyrazines: The First Synthesis and X-ray Structure / I. L. Yudin, A. B. Sheremetev, B. B. Averkiev and M. Y. Antipin // J. Heterocyclic Chem. 2005. V. 42. P. 691 694.
- 90. Huynh, M. Hang V. Preparation, Characterization, and Properties of 7-Nitrotetrazolo[1,5f]furazano[4,5-b]pyridine 1-Oxide / M. H. V. Huynh , M. A. Hiskey , D. E. Chavez, R.D. Gilardi // Energetic Materials. – 2005. – V. 23. – P. 99 – 106.
- 91. Fershtat, L. L. Assembly of Nitrofurazan and Nitrofuroxan Frameworks for High-Performance Energetic Materials / L. L Fershtat, I. V. Ovchinnikov, M. A. Epishina, A. A. Romanova, D. B. Lempert, N. V. Muravyev, N. N. Makhova // ChemPlusChem. -2017. – V. 82. – P. 1315 - 1319.
- 92. Properties of DNTF-Based Melt-Cast Explosives Wang Q. // Chin. J. Expl. Propell. 2003. V. 3. P. 57 59.
- 93. Ren, X. The Binary PhaseDiagram and Eutectic System for DNTF/PETN / X. Ren, S. Heng, Y. Shao, Z. Liu, G. Znag, X. Wang, F. Han // Chin. J. Energ. Mater. 2009. V.

17(4) – P. 455 - 458.

- 94. Liu, Y. The Phase Diagram and Eutectic Binary Systems for 1,3,3-Trinitroazetidine (TNAZ) with some Energetic Materials / Y. Liu, Z. Liu, C. Yin // Chin. J. Energ. Mater. 2004. V. 12. P. 227 230.
- 95. Hui S.Y. Ternary Phase Diagrammes of DNTF and TNAZ and Their Eutectics / S.Y. Hui, R.X. Ning, L.Z. Ru, Z. Xiang // J. Therm. Anal. Calom. 2010. V. 103(2). P. 617-623.
- 96. Choong, H. L. Synthesis and Characterization of Bisnitrofurazanofuroxan / H. L. Choong, K. K. Tae, H. K. Kyung, C. Kyoo-Hyun, K. Jin Seuk // Bull. Korean Chem. Soc. 2010. V. 31(5) P. 1400 1402.
- 97. Sheremetev, A. B. Desilylative Nitration of C,N-Disilylated 3-Amino-4-methylfurazan / A. B. Sheremetev, E. A. Ivanova, N. P. Spiridonova, S. F. Melnikova, I. V. Tselinsky, K. Yu. Suponitsky, M. Yu. Antipin // J. Heterocycl. Chem. 2005. V. 42. P. 1237 1242.
- 98. Tselinskii, I.V. Dimerization of Nitrile Oxides of the 1,2,5-Oxadiazole / I.V. Tselinskii, S.F. Mel'nikova, T.V. Romanova, N.P. Spiridonova, E.A. Dundukova // Zhurn.Org. Chim. – 2001. - V. 37. – P. 1419 - 1420.
- 99. Zhou, Y. Crystal Structure of 3,4-Dinitrofurazanofuroxan / Y. Zhou, Z. Zhang, J. Li, X. Guan, X. Huang, C. Zhou // Chin. J. Expl. Prop. 2005. V. 28 (2) P. 43 46.
- 100. Zhukov, B.P. Energetic Condensed Systems / B.P. Zhukov, Janus K., Eds. // Moscow -2nd ed. - 2000.
- 101. Stepanov, A. I. 3,4-Bis(4'-nitrofurazan-3'-yl)furoxan: a Melt Cast Powerful Explosive and a Valuable Building Block in 1,2,5-Oxadiazole Chemistry / A.I. Stepanov, D. V. Dashko, A. A. Astrat'ev // Central European Journal of Energetic Materials. – 2012. – V. 9(4). – P. 329 - 342.
- 102. Sheremetev, A.B Synthesis of Symmetrical Difurazanyl Ethers / A.B. Sheremetev, O.V. Kharitonova, T.M. Mel'nikova, T.S. Novikova, V.S. Kuz'min, L.I. Khmel'nitskii // Mendeleev Commun. 1999. V. 6(4) P. 141 143.
- 103. Li X.-H. Theoretical studies on nitrogen-rich furoxan-based heterocyclic derivatives / Li X.-H., Ju W.-W., Zhang R.-Z. // J.Phys.Org.Chem. 2017. V. 30 (5) e3627. P.1 8.
- 104. Tae, K. K. Synthesis and Characterization of Bisimidazolylfuroxan Derivatives / K. K. Tae, L. B. Woo, L. H. Whang, C.K.-Hyun, K. Jin Seuk // Bull. Korean Chem. Soc. 2013.
 V. 34(6) P. 1864-1866
- 105. Yanan, Li Study of Furoxan Derivatives for Energetic Applications / L. Yanan, Z.

Zhizhong, G. Zhongxue, W. Bozhou, L. Weipeng, L. Yifen // Chin. J. Chem. – 2013. – V. 31. – P. 520 - 524.

- 106. Haifeng, H. Nitrogen-Rich Energetic Dianionic Salts of 3, 4-Bis(1*H*-5-tetrazolyl)furoxan with Excellent Thermal Stability / H. Haifeng, Z. Zhiming, L. Lixuan, S. Jinhong, W. Kai, C. Dan, B. Chengming, S. Wenwen, X. Min // Z. Anorg. Allg. Chem. 2012. P. 392–400.
- 107. Fischer D. Energetic alliance of tetrazole-1-oxides and 1,2,5-oxadiazoles / D. Fischer, T. M. Klapotke, M. Reymann, J. Stierstorfer, B. Maurus, R. Volkl // New J. Chem. 2015. V. 39 P. 1619 1627.
- 108. Zhang Y. 4-Amino-3,5-dinitropyrazolate salts-highly insensitive energetic materials / Y. Zhang, Y. Huang, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A. 2011.- V.21. P. 6891–6897.
- 109. Luo, Y. Synthesis and Characterization of 3,3'-Dicyano-4,4'-azofuroxan / Y. Luo, L. Ma,
 B. Wang, Y. Zhou, H. Huo, S. Jia // Chin. J. Energ. Mater. 2010. V. 18. P. 538-540.
- 110. Liang, K. W. 4-Nitro-3-(5-tetrazole)furoxan and Its Salts: Synthesis, Characterization, and Energetic Properties Lixuan / K. W. Liang, B. Chengming, L. Liming, Z. Zhiming // Chem. Eur. J. 2013. V.19. P. 14902 14910.
- 111. Coburn, M. D. Picrylamino-substituted heterocycles. II. Furazans / M. D. Coburn, J. Heterocycl. Chem. 1968. V.5 P. 83 87.
- 112. He, C.N-Oxides light up energetic performances: synthesis and characterization of dinitraminobisfuroxans and their salts / C. He, Y. Tang, L.A. Mitchell, D.A. Parrish, J.M. Shreeve // J. Mater. Chem. A. – 2016. – V.4. – P. 8969 – 8973.
- 113. Tang, Y. Small Cation-Based High-Performance Energetic Nitraminofurazanates / Y. Tang, C. He, L. A. Mitchell, Damon A. Parrish, Jean'ne M. Shreeve // Chem. Eur.J. 2016. V. 22. P. 11846 11853.
- 114. Parker, C. O. Chemistry of dinitroacetonitrile I: Preparation and properties of dinitroacetonitrile and its salts / C.O. Parker, W.D. Emmons, H.A. Rolewicz, K.S. McCallum // Tetrahedron. 1962. V.17. P. 79 87.
- 115. Lianjie Zhai High Energy Density Materials Incorporating 4,5-Bis(dinitromethyl)-Furoxanate and 4,5-Bis(dinitromethyl)-3-Oxy-Furoxanate / Lianjie Zhai, Xiaoni Qu, Bozhou Wang, Fuqiang Bi, SanpingChen, Xuezhong Fan, Gang Xie, Qing Wei, Shengli Gao // ChemPlusChem.- 2016. – V. 81. – P. 1156 – 1159.
- 116. Fershtat, L.L. Lewis acid-catalyzed Wolff cyclocondensation in the synthesis of (1H-1,2,3-triazolyl)furoxans / L.L. Fershtat, M.R. Radzhabov, A.A. Romanova, I.V. Ananyev,

N.N. Makhova // ARKIVOC – 2017. - V.iii. – P.140 - 150.

- 117. Kulikov, A.S. Synthesis, structural characterization and cytotoxic activity of heterocyclic compounds containing the furoxan ring / A.S Kulikov, A.A. Larin, L.L. Fershtat, et al. // ARKIVOC 2017. V.iii P.250 268.
- 118. Fershtat, L.L. Efficient Assembly of Mono- and Bis(1,2,4-oxadiazol-3-yl)furoxan Scaffolds via Tandem Reactions of Furoxanylamidoximes / L.L. Fershtat, I.V. Ananyev, N.N. Makhova // RSC Adv.- 2015.- V.5 - P.47248 - 47260.
- 119. Fershtat, L.L. New Method for the Synthesis and Reactivity of (5-R-1,3,4-Oxadiazol-2yl)furoxans / L.L. Fershtat, A.S. Kulikov, I.V. Ananyev, M.I. Struchkova, N.N. Makhova.
 // J. Heterocycl Chem.- 2015.- V.53 – P.102-108.
- 120. Kozhevnikov, V. N. A Versatile Strategy for the Synthesis of Functionalized 2,2'-Bi- and 2,2':6',2' '-Terpyridines *via* Their 1,2,4-Triazine Analogues / V. N. Kozhevnikov, D. N. Kozhevnikov, T. V. Nikitina, V. L. Rusinov, O. N. Chupakhin, M. Zabel, B. K["]onig // J. Org. Chem. 2003. –V. 68. P. 2882 2888.
- 121. Wu, F. 3-(Piperidin-4-ylmethoxy)pyridine Containing Compounds Are Potent Inhibitors of Lysine Specific Demethylase 1 / F. Wu, C. Zhou, Y. Yao, L. Wei, Z. Feng, L. Deng, Y. Song // J. Med. Chem. – 2016. – V.59. – P. 253 – 263.
- 122. Fu, C.-W. Anticancer efficacy of unique pyridine-based tetraindoles / C.-W. Fu, Y.-J. Hsieh, T. T. Chang, C.-L. Chen, C.-Y. Yang, A. Liao, P.-W. Hsiao, W.-S. Li // Eur. J. Med. Chem. - 2015.- V.104. – P. 165 – 176.
- 123. Liu, Z. Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C^N-Chelated and Pyridine Ligands / Z. Liu, I. Romero-Canelon, A. Habtemariam, G. J. Clarkson and P. J. Sadler // Organometallics – 2014. – V. 33. – P. 5324 - 5333.
- 124. Prokhorov, A. M. Reactions of triazines and tetrazines with dienophiles / A. M. Prokhorov, D. N. Kozhevnikov // Chem. Heterocycl. Compd. 2012. V. 48. P.1153-1176.
- 125. Guan, A.-Y. Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods / A.-Y. Guan, C.-L. Liu, X.-F. Sun, Y. Xie and M.-A. Wang // Bioorg. Med. Chem. – 2016. – V.24 – P.342 - 353.
- 126. Koech, P. K. Synthesis and Application of Pyridine-Based Ambipolar Hosts: Control of Charge Balance in Organic Light-Emitting Devices by Chemical Structure Modification / P. K. Koech, E. Polikarpov, J. E. Rainbolt, L. Cosimbescu, J. S. Swensen, A. L. von Ruden, A. B. Padmaperuma // Org. Lett. – 2010. –V.12 – P. 5534-5537.
- 127. Stephens, D. E. Recent advances in the C-H-functionalization of the distal positions in

pyridines and quinolines / D. E. Stephens, O. V. Larionov // Tetrahedron – 2015. – V.71. – P. 8683-8716.

- Allais, C. Metal-Free Multicomponent Syntheses of Pyridines / C. Allais, J.-M. Grassot,
 J. Rodriguez, T. Constantieux // Chem. Rev. 2014. V.114. P.10829 10868.
- 129. Desimoni, G. Enantioselectively-Catalyzed Reactions with (*E*)-2-Alkenoyl-pyridines, Their *N*-Oxides, and the Corresponding Chalcones / G. Desimoni, G. Faita, P. Quadrelli // Chem. Rev. – 2014. – V.114 – P.6081 – 6129.
- 130. Henry, G. D. De novo synthesis of substituted pyridines // Tetrahedron 2004. V. 60 P. 6043 6061.
- 131. Newkome, G. R. Synthesis of 2,2-Bipyridines: Versatile Building Blocks for Sexy Architectures and Functional Nanomaterials / G. R. Newkome, A. K. Patri, E. Holder and U. S. Schubert // Eur. J. Org. Chem. – 2004. – P.225 – 229.
- 132. Varela, A. J. Construction of Pyridine Rings by Metal-Mediated [2+2+2] Cycloaddition
 / A. J. Varela, C. Saa // Chem. Rev. 2003. V.103. P. 3787 3802.
- 133. Lorion, M. Sequential Michael Addition and Enamine-Promoted Inverse Electron Demanding Diels–Alder Reaction upon 3-Vinyl-1,2,4-triazine Platforms / M. Lorion, G. Guillaumet, J.-F. Briere and F. Suzenet // Org. Lett. – 2015. – V. 17. – P. 3154.
- 134. Pozharskii, A. F., Heterocycles in Life and Society / A. T. Soldatenkov and A. R. Katritzky // John Wiley & Sons, Ltd, Chichester 2011.
- 135. Pozharskii, A. F., Heterocycles in Life and Society / A. T. Soldatenkov and A. R. Katritzky // John Wiley & Sons, Ltd, Chichester 2011.
- 136. Foster, R. A. A. Tandem inverse-electron-demand hetero-/retroDiels–Alder reactions for aromatic nitrogen heterocycle synthesis / R. A. A. Foster and M. C. Willis // Chem. Soc. Rev. – 2013. - V.42 – P. 63-76.
- 137. Boger, D. L. Diels-Alder reactions of heterocyclic aza dienes. Scope and applications / D. L. Boger // Chem. Rev. 1986.- V.86.- P.781-793.
- 138. Nicolaou, K. C. Classics in Total Synthesis II: More Targets, Strategies, Methods / K. C. Nicolaou, S. A. Snyder // Wiley-VCH Weinheim. 2003.
- 139. Neunhoeffer, H. Comprehensive Heterocyclic Chemistry / A. R. Katritzky, C. W. Rees,
 E. F. V. Scriven, Pergamon Press // Oxford. 2nd 1996. V. 6.- Ch. 6.11 P. 507–573.
- 140. Branowska, D. Synthesis, photophysics and electrochemical properties of 1,1'-(2,2'bithiophene-5,5'-diyl)bis(cycloalkeno[c]pyridine) as a result of the Diels–Alder reaction of 3-(2thienyl)-1,2,4-triazine / D. Branowska, W. Wysocki, E. Olender, J. Lawecka, B. Chaciak, P. Ledwon, M. Lapkowski and Z. Karczmarzyk // New J. Chem. – 2015. – V. 39. – P. 9672 –

9678.

- 141. Wang, S.-W. A new approach to pyridines through the reactions of methyl ketones with 1,2,4-triazines / S.-W. Wang, W.-S. Guo, L.-R. Wen, M. Li // RSC Adv. – 2014. - V.4. –P. 59218 - 59220.
- 142. Honey, M. A. Diverse Trifluoromethyl Heterocycles from a Single Precursor / M. A. Honey, R. Parceri, W. Lewis, C. J. Moody // J. Org. Chem. 2012. V. 77. P.1396 1405.
- 143. Kopchuk, D. S. Design of ICT-PET fluorescent probes for zinc(II) based on 5-aryl-2,2'bipyridines / D. S. Kopchuk, A. M. Prokhorov, P. A. Slepukhin, D. N. Kozhevnikov // Tetrahedron Lett. – 2012. –V.53. – P.6265.
- 144. Kozhevnikov, V. N. An efficient route to 5-(hetero)aryl-2,4'- and 2,2'-bipyridines through readily available 3-pyridyl-1,2,4-triazines / V. N. Kozhevnikov, D. N. Kozhevnikov, O. V. Shabunina, V. L. Rusinov, O. N. Chupakhin // Tetrahedron Lett. 2005. V.46. P. 1791-1793.
- 145. Kozhevnikov, V. N. An efficient route to 5,5"-diaryl-2,2':6',2"-terpyridines through 2,6-bis(1,2,4-triazin-3-yl)pyridines / V. N. Kozhevnikov, D. N. Kozhevnikov, O. V. Shabunina, V. L. Rusinov, O. N. Chupakhin // Tetrahedron Lett. 2005. V. 46. P.1521-1523.
- 146. Branowska, D. Synthesis of Unsymmetrical Annulated 2,2'-Bipyridine Analogues with Attached Cycloalkene and Piperidine Rings via Sequential Diels-Alder Reaction of 5,5'-bi-1,2,4-triazines // Molecules. – 2005. – V. 10. – P. 265-273.
- 147. Sainz, Y. F. Improved Methodologies for the Preparation of Highly Substituted Pyridines
 / Y. F. Sainz, S. A. Raw, R. J. K. Taylor // J. Org. Chem. 2005. V. 70. P.10086 10095.
- 148. Raw, S. A. Cascade Reactions of Substituted 1,2,4-Triazines: Rapid Access to Nitrogen-Containing Polycycles / S. A. Raw, R. J. K. Taylor // J. Am. Chem. Soc. – 2004. – V.126. – P.12260 - 12261.
- 149. Branowska, D. Application of intramolecular cycloaddition/retro cycloaddition reactions for the synthesis of unsymmetrical 2,2'-bipyridine and 2-benzofuropyrazin-2-ylpyridine analogues // Tetrahedron. – 2004. – V. 60 – P. 6021-6027.
- 150. Fershtat, L. L. Synthesis of hetarylsulfanyl- and hetaryloxyfuroxans by nucleophilic substitution of nitro group in nitrofuroxans with heterocyclic thiol and hydroxy derivatives / L. L. Fershtat, M. A. Epishina, I. V. Ovchinnikov, V. V. Kachala, N. N. Makhova // Chem. Heterocycl. Compd. – 2015. –V. 51. – P. 176 - 186.

- 151. Vass, G. Photoelectron spectroscopic investigation of the electronic structure of furoxans
 / G. Vass, D. Dzsotjan, G. G. Lajgut, T. Pasinszki // Eur. Chem. Bull. 2012. V. 1(1-2).
 P. 22 26.
- 152. Godovikova, T. I. Recyclization of substituted furoxans into 1,2,3-triazol-1-oxide derivatives / T. I. Godovikova, S. P. Golova, S. A. Vozchikova, E. L. Ignat'eva, M. V. Povorin, T. S. Pivina, L. I. Khmel'nitskii, Chem. Heterocycl. Compd. – 1999. –V. 35. –P. 180 – 185.
- 153. Godovikova, T. I. Reactions of 2,4-Disubstituted 5-Nitro-1,2,3-triazole 1-Oxides. 4. Dealkylation of 2-Substituted 4,5-Dinitro-1,2,3-triazole 1-Oxides / T. I. Godovikova, S. A. Vozchikova, E. L. Ignat'eva, L. I. Khmel'nitskii, B. L. Korsunskii // Chem. Heterocycl. Compd. 2003. V.39. P.608 612.
- 154. Gasco, A. Furazans and furazan oxides. Part IV. The structures and tautomerism of some unsymmetrically substituted furoxans / A. Gasco, A. J. Boulton // J. Chem. Soc. - Perkin Trans. II. – 1973. – P.1613-1617.
- 155. Stevens, J. Toward an Understanding of the Furoxan–Dinitrosoethylene Equilibrium / J. Stevens, M. Schweizer, G. J. Rauhut // J. Am. Chem. Soc. – 2001. – V.123. – P.7326 -7333.
- 156. Laufer, S.A. Substituted isoxazoles as potent inhibitors of p38 MAP kinase / S.A. Laufer,
 S. Margutti, M.D. Fritz // ChemMedChem. 2006. V.1. P.197 207.
- 157. Naidu, K.M. Design, synthesis and antimycobacterial activity of various 3-(4-(substitutedsulfonyl)piperazin-1-yl)benzo[d]isoxazole derivatives / K.M. Naidu, A. Suresh, J. Subbalakshmi et al. // Eur. J. Med. Chem. – 2014. V. 87 – P.71 – 78.
- 158. Sun, J. Synthesis and biological evaluation of 3,5-disubstituted-4-alkynylisoxozales as a novel class of HSP90 inhibitors / J. Sun, C. Lin, X. Qin, et al. // Bioorg. Med. Chem. Lett. -2015. –V.25. – P.3129 - 3134.
- 159. Perrone, M.G. General role of the amino and methylsulfamoyl groups in selective cyclooxygenase(COX)-1 inhibition by 1,4-diaryl-1,2,3-triazoles and validation of a predictive pharmacometric PLS model / M.G. Perrone, P. Vitale, A. Panella, C.G. Fortuna, A. Scilimati // Eur J Med Chem. 2015. V.94. P.252 264.
- 160. Ozoe, Y. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels / Y. Ozoe, M. Asahi, F. Ozoe, K. Nakahira, T. Mita // Biochem Biophys. Res. Commun. – 2011. – V. 391 – P.744-749.
- 161. Dallanoce, C. Design, Synthesis, and Pharmacological Characterization of Novel Spirocyclic Quinuclidinyl- Δ^2 -Isoxazoline Derivatives as Potent and Selective Agonists of

 α 7 Nicotinic Acetylcholine Receptors / C. Dallanoce, P. Magrone, C. Matera, et al. // ChemMedChem. – 2011. – V.6 – P.889 – 903.

- 162. Soni, A. Synthesis and evaluation of 4,5-dihydro-5-methylisoxazolin-5-carboxamide derivatives as VLA-4 antagonists / A. Soni, A. Rehman, K. Naik, et al. // Bioorg. Med. Chem. Lett. – 2013. – V.23 – P.1482 - 1485.
- 163. Kaur, K Isoxazoline containing natural products as anticancer agents: a review / K. Kaur, V. Kumar, A.K. Sharma, G.K. Gupta // Eur. J. Med. Chem. 2014. V.77. P.121-133.
- 164. Pace, A. The new era of 1,2,4-oxadiazoles / A. Pace, P. Pierro // Org Biomol Chem. -2009.
 V.7. P.4337 4348.
- 165. Piccionello, A.P. Synthesis of Isoxazoline Derivatives through Boulton–Katritzky Rearrangement of 1,2,4-Oxadiazoles / A.P. Piccionello, A. Guarcello, A. Pace, S. Buscemi // Eur. J. Org. Chem. – 2013 – P.1986 – 1992.
- 166. Guo, J. Synthesis of 3,5-disubstituted 1,2,4-oxadiazoles and their behavior of liquid crystallines / Guo J, R. Hua, Y. Sui, J. Cao // Tetrahedron Lett. – 2014. – V.55 – P.1557 – 1560.
- 167. Jiang, C.S. Synthesis and biological evaluation of novel marine-derived indole-based 1,2,4-oxadiazoles derivatives as multifunctional neuroprotective agents / C.S. Jiang, Y. Fu, L. Zhang, et al. // Bioorg. Med. Chem. Lett. 2015. V.25. P.216 220.
- 168. Pace, A. Recent advances in the chemistry 1,2,4-Oxadiazoles / A. Pace, S. Buscemi, A.P. Piccionello, I. Pibiri // Adv. Heterocycl. Chem. 2015. V.116. P.85 129.
- 169. Grundmann, C. The Nitrite Oxides / C. Grundmann, P. Grünanger // Springer-Verlag, Berlin-Heidelberg-New-York - 1971.
- 170. Grünanger, P. Isoxazoles In The Chemistry of Heterocyclic Compounds / P. Grünanger,
 P. Vita-Finzi, E. C .Taylor, A. Weissberger // Wiley: New York. 1991 V. 49. Part 1.P.125 416.
- 171. Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products / A. Padwa, W.H. Pearson, H. Feuer // Wiley - VCH: New-York. – 2002. - P. 363.
- 172. Padwa, A. Recent Advances of 1,3-Dipolar Cycloaddition Chemistry for Alkaloid Synthesis / A. Padwa, S. Bur. // Advances in Heterocyclic Chemistry - 2016. – V.119. – P. 241 - 305.
- 173. Svejstrup, T. D. Visible-light-mediated generation of nitrile oxides for the photoredox synthesis of isoxazolines and isoxazoles / T. D. Svejstrup, W. Zawodny, J.J. Douglas, D.

Bidgeli, N. S. Sheikh, D. Leonori // Chem. Commun. – 2016. – V. 52. – P. 12302 -12305.

- 174. Gasco, A. M. Synthesis and structure of a trimer of the furoxan system with high vasodilator and platelet antiaggregatory activity / A. M. Gasco, A. Di Stilo, R. Fruttero, G. Sorba, A. Gasco, P. Sabatino // Liebigs Ann. Chem. – 1993 – P. 441 - 444.
- 175. Kesornpun, C. Water-Assisted Nitrile Oxide Cycloadditions: Synthesis of Isoxazoles and Stereoselective Syntheses of Isoxazolines and 1,2,4-Oxadiazoles / C. Kesornpun, T. Aree, C. Mahidol, S. Ruchirawat, P. Kittakoop // Angew. Chem. Int. – 2016. – V. 55. - P. 3997 – 4001.
- 176. Kadam, K.S. The use of either *tert*-butyl nitrite or isoamyl nitrite enables an efficient, one-pot approach for the synthesis of 3,5-disubstituted isoxazoles from substituted aldoximes and alkynes under conventional heating conditions / K.S. Kadam, T. Gandhi, A. Gupta, A.K. Gangopadhyaya, R.Sharma // Synthesis 2016. V.48. P. 3996 4008.
- 177. Minakata, S. *tert*-Butyl hypoiodite (*t*-BuOI), generated *in situ* from *t*-BuOCl and NaI, is a powerful reagent for the cycloaddition of oximes to alkenes or alkynes, leading to various isoxazolines or isoxazoles under mild conditions / S. Minakata, S. Okumura, T. Nagamachi, Y. Takeda // Org. Lett. 2011. V.13. P.2966 2969.
- 178. Kulikov, A.S. Synthesis of N,N'-bis[4-(1H-1,2,3-triazol-1-yl)furazan-3-yl]methylenediamine derivatives / A. S. Kulikov, M. A. Epishina, L. V. Batog, V. Yu. Rozhkov, N. N. Makhova, L. D. Konyushkin, M. N. Semenova, V. V. Semenov // Russ. Chem. Bull.(Int. Ed.) – 2013. – V.62. – P. 836 - 843.
- 179. Fershtat, L. L Design of hetarylthiofuroxans by nucleophilic substitution of NO₂ group in nitrofuroxans / L. L. Fershtat, M. A. Epishina, A. S. Kulikov, N. N. Makhova // Mendeleev Commun. – 2015. – V.25 – P. 36 - 38.
- 180. Zhang, Q. Energetic N-Trinitroethyl-Substituted Mono-, Di-, and Triaminotetrazoles / Q. Zhang, J. Zhang, D. A. Parrish, J. M. Shreeve // Chem. Eur. J. 2013. V.19. P. 11000-11006.
- 181. Fischer, N. The Chemistry of 5-(Tetrazol-1-yl)-2*H*-tetrazole: An Extensive Study of Structural and Energetic Properties / N. Fischer, D. Izsak, T. M. Klapötke, J. Stierstorfer // Chem. Eur. J. – 2013. – V. 19. – P. 8948 - 8957.
- 182. Wei, H. Energetic Salts Based on Furazan-Functionalized Tetrazoles: Routes to Boost Energy / H. Wei, J. Zhang, C. He, J. M. Shreeve // Chem. Eur. J. -2015. – V.21 – P. 8607 -8612.
- 183. Groom, C. R. The Cambridge Structural Database / C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward // Acta Cryst. Sect. B 2016. V.72. P. 171 179.

- 184. Palysaeva, N. V. A Direct Approach to a 6-Hetarylamino-[1,2,4]triazolo-[4,3-b]-[1,2,4,5]tetrazine Library / N. V. Palysaeva, K. P. Kumpan, M. I. Struchkova, I. L. Dalinger, A. V. Kormanov, N. S. Aleksandrova, V. M. Chernyshev, D. F. Pyreu, K. Yu. Suponitsky, A. B. Sheremetev // Org. Lett. – 2014. – V.16. – P. 406-409.
- 185. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al. // Gaussian 09 -Revision D.01. - Gaussian, Inc. - Wallingford CT - 2016.
- 186. Jenkins, H.D.B. Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements / H.D.B. Jenkins, D. Tudela, L. Glasser // Inorg. Chem. – 2002. – V. 41. – P. 2364 – 2367; b) Khakimov, D. V. Calculated enthalpies of formation of 5,5'bitetrazole salts / D. V. Khakimov, T. S. Pivina // Mendeleev Commun. – 2016. – V. 26. – P.134-135.
- 187. Kamlet, M. J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives / M. J. Kamlet, S. J. Jacobs //J. Chem. Phys. – 1968. – V.48 – P.23 - 35.
- 188. Ferioli, R. A new class of furoxan derivatives as no donors: Mechanism of action and biological activity R. Ferioli, G. C. Folco, C. Ferretti, A. M. Gasco, C. Medana, R. Fruttero, M. Civelli, A. Gasco // Br. J. Pharmacol. – 1995. – V. 114. – P. 816-820.
- 189. Kots, A. Ya Vasorelaxant and antiplatelet activity of 4,7-dimethyl-1,2,5-oxadiazolo[3,4-d]pyridazine 1,5,6-trioxide: role of soluble guanylate cyclase, nitric oxide and thiols / A. Ya. Kots,. M. A. Grafov, Yu. V. Khropov, V. L. Betin et al. // Br.J. Pharmacol. – 2000. – V.129. – P. 1163-1177.
- 190. Steller, H. Mechanisms and genes of cellular suicide // Science 1995 V.267 P.1445
 1449.
- 191. Ashkenazi, A. Death receptors: signaling and modulation / A. Ashkenazi, V. M. Dixit // Science. – 1998. – Vol. 281. –P. 1305-1308.
- 192. STANAG 4489. Explosives. Impact Sensitivity Tests.- NATO. Brussels- 1999.
- 193. STANAG 4487. Explosives.- Friction Sensitivity Tests.-NATO. Brussels. -2002
- 194. Fershtat, L. L. An effective synthesis of (1H-1,2,4-triazol-3-yl)furoxans / L. L. Fershtat, M. A. Epishina, I. V. Ovchinnikov, V. V. Kachala, N. N. Makhova // Chem. Heterocycl. Compd. 2015. Vol.51. P. 754 759.
- 195. a) Jovene, C. The Properties and the Use of Substituted Benzofuroxans in Pharmaceutical and Medicinal Chemistry: A Comprehensive Review / C. Jovene, E. A. Chugunova, R. Goumont // MiniRev. Med. Chem. – 2013.- Vol. 13(8). – P. 1089-1136.

b) Cena, C.Use of the furoxan (1,2,5-oxadiazole 2-oxide) system in the design of new NOdonor antioxidant hybrids / C. Cena, M. Bertinaria, D. Boschi, M. Giorgis, A. Gasco// ARKIVOC.- 2006. – Vol. 7. – P. 301.

c) Nikonov, G. N. 1.2.5- Oxadiazoles. In Comprehensive Heterocyclic Chemistry / Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor // R. J. K., Eds. Elsevier: Amsterdam. - The Netherlands. – 2008. - Vol. 5. - P. 316-393.

d) Lazzarato, L. Searching for new NO-donor aspirin-like molecules: Furoxanylacyl derivatives of salicylic acid and related furazans / L. Lazzarato, C. Cena, B. Rolando, E. Marini, M. L. Lolli, S. Guglielmo, E. Guaita, G. Morini, G. Coruzzi, R. Fruttero, A. Gasco // Bioorg. Med. Chem. – 2011. – Vol. 19. – P. 5852 – 5860.

e) Borretto, E. Synthesis and Biological Evaluation of the First Example of NO-Donor Histone Deacetylase Inhibitor / E. Borretto, L. Lazzarato, F. Spallotta, C. Cencioni, Yu. D'Alessandra, C. Gaetano, R. Fruttero, A. Gasco // ACS Med. Chem. Lett. – 2013. – Vol. 4. - P. 994-999.

f) Guglielmo, S. New praziquantel derivatives containing NO-donor furoxans and related furazans as active agents against *Schistosoma mansoni* / S.Guglielmo, D. Cortese, F. Vottero, B. Rolando, V. P. Kommer, D. L. Williams, R. Fruttero, A. Gasco // Eur. J. Med. Chem. – 2014. – Vol. 84. – P. 135 -145.

196. Gumanov, L. L. Thermal decomposition of benzotrifuroxane / L. L.Gumanov, B. L. Korsunskii // Bull. Acad. Sci. USSR. Div. Chem. Sci. - 1991. - Vol.40. - P.1700-1701.