ФИО соискателя Галочкин Антон Андреевич

Название диссертации *Синтез новых фармакологически ориентированных* производных имидазо[4,5-d]имидазола

Шифр специальности – 1.4.3. – органическая химия

Химические науки

Шифр диссертационного совета 24.1.092.01

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н. Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел.: (499) 137-13-79

E-mail: sci-secr@ioc.ac.ru

Дата размещения полного текста диссертации на сайте Института http://zioc.ru/

4 октября 2024 года

Дата приема к защите

10 октября 2024 года

Дата размещения автореферата на сайте BAK https://vak.minobrnauki.gov.ru

23 октября 2024 года

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ ИМ. Н. Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Галочкин Антон Андреевич

СИНТЕЗ НОВЫХ ФАРМАКОЛОГИЧЕСКИ ОРИЕНТИРОВАННЫХ ПРОИЗВОДНЫХ ИМИДАЗО[4,5-d]ИМИДАЗОЛА

1.4.3 — Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в лаборатории азотсодержащих соединений Федерального государственного бюджетного учреждения науки Института органической химии им. Н. Д. Зелинского Российской академии наук (ИОХ РАН)

НАУЧНЫЙ РУКОВОДИТЕЛЬ

Баранов Владимир Владимирович,

кандидат химических наук, старший научный сотрудник лаборатории азотсодержащих соединений ИОХ РАН

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ

Белоглазкина Елена Кимовна,

доктор химических наук, профессор кафедры органической химии, заведующая лабораторией биологически активных органических соединений Химического факультета МГУ им. М. В. Ломоносова

Перевалов Валерий Павлович,

доктор химических наук, профессор, заведующий кафедрой технологии тонкого органического синтеза и химии красителей РХТУ им. Д. И. Менделеева

ВЕДУЩАЯ ОРГАНИЗАЦИЯ

Государственный научный центр Российской Федерации Федеральное государственное унитарное предприятие «Государственный научно-исследовательский институт органической химии и технологии» (ФГУП «ГосНИИОХТ»).

Защита диссертации состоится <25> декабря 2024 г. в 12^{30} часов на заседании Диссертационного совета 24.1.092.01 в Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н. Д. Зелинского РАН по адресу: 119991 Москва, Ленинский проспект, 47.

С диссертацией можно ознакомиться в библиотеке ИОХ РАН и на официальном сайте института http://zioc.ru

Автореферат разослан «30» октября 2024 г.

Ваш отзыв в двух экземплярах, заверенный гербовой печатью, просим направлять по адресу: 119991 Москва, Ленинский проспект, 47, учёному секретарю диссертационного совета ИОХ РАН

Учёный секретарь диссертационного совета 24.1.092.01 ИОХ РАН доктор химических наук

raquelle

Г. А. Газиева

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Яркими представителями имидазо[4,5-d]имидазолов являются бициклические бисмочевины – гликольурилы. Эти соединения обладают различными видами фармакологической активности: прежде всего, разработан и внедрен в медицинскую практику дневной транквилизатор «Мебикар», а среди широкого разнообразия синтезированных структур встречаются гликольурилы, проявляющие антибактериальные, ноотропные и нейротропные свойства. За более чем 30 лет исследований синтезированы сотни представителей, однако превзойти «Мебикар» не удалось, потенциал таких структур практически исчерпан. Новой вехой в изучении химии и возможных путей применения имидазо[4,5-d]имидазолов стала разработка удобных препаративных подходов к синтезу гетероаналогов гликольурилов - 5тиоксогексагидроимидазо[4,5-d]имидазол-2(1H)-онов (семитиогликольурилов) тетрагидроимидазо[4,5-d]имидазол-2,5(1H,3H)-дитионов (тиогликольурилов). Производные тио(семитио)гликольурилов антипролиферативную проявили селеносодержащего противогрибковую активности, a единственный пример гетероаналога – диселеномебикар – запатентован в качестве кормовой добавки. Таким образом, имидазо[4,5-а]имидазольный фрагмент является перспективным структурным блоком для конструирования новых молекул с биологической активностью, а разработка методов его функционализации является актуальной.

Одним из широко используемых подходов в синтезе биологически активных веществ является комбинация нескольких фармакофорных фрагментов в одной молекуле, а наличие реакционноспособной (NH-C=S)-группы в тиогликольурилах открывает широкие горизонты направленной функционализации таких бициклов.

Известно, что введение атома селена в молекулу халькогенсемикарбазонов приводит к увеличению антибактериальной, противопаразитарной и противовирусной активности. Тиазолидиноновый фрагмент входит в состав биологически ативных соединений, проявляющих бактерицидную, пестицидную, фунгицидную, инсектицидную, противосудорожную, туберкулостатическую и противовоспалительную активности, а гидразоны изатинов проявляют цитотоксическую, противоопухолевую и противомалярийную виды активности.

Целью работы является разработка методов получения новых производных имидазо[4,5-*d*]имидазола с селеномочевинным, тиазолидиновым, селеназолидиновым и оксиндольным фрагментами на основе тиогликольурилов и их изотиоурониевых солей и изучение биологической активности полученных соединений.

Для выполнения поставленной цели предполагалось решить следующие основные задачи:

- 1. Разработка методов синтеза широкого круга тио(семитио)гликольурилов, в том числе энантиомерно чистых, и их изотиоурониевых солей.
- 2. Разработка методов синтеза новых производных имидазо[4,5-*d*]имидазола с селеномочевинным, тиазолидиновым, селеназолидиновым и оксиндольным фрагментами.
- 3. Исследование биологической активности полученных соединений.

Научная новизна и практическая значимость работы. Разработаны новые методы функционализации имидазо[4,5-d]имидазолов, что позволило синтезировать широкий круг их новых бициклических производных (тио(семитио)гликольурилов и семиселено(тиоселено)гликольурилов), неизвестные ранее трициклические системы (3,3а-дигидро-1H-имидазо[4',5':4,5]имидазо[2,1-b]тиазолы и 3,3а-дигидро-1H-имидазо[4',5':4,5]имидазо[2,1-b][1,3]селеназолы) и недоступные гибридные молекулы, содержащие имидазо[4,5-d]имидазольный и оксиндольный фрагменты.

Реализованы методы синтеза ранее недоступных 1-замещённых, в том числе энантиомерно чистых, 1-алкил-4-метил-, 1,3,4-триалкилсемитиогликольурилов и 1,3-дизамещённых тиогликольурилов на основе циклоконденсации 4,5-дигидроксиимидазолидин-2-онов(тионов) с HNCS или 4,5-дигидроксиимидазолидин-2-тионов с различными мочевинами.

Разработан универсальный подход селенирования тио(семитио)гликольурилов на основе синтетической последовательности, заключающейся в *S*-метилировании исходных субстратов до соответствующих изотиоурониевых солей с их последующим взаимодействием с генерируемым *in situ* NaHSe.

В результате изучения реакций симметрично 1,3-дизамещённых тиоселено(семиселено)гликольурилов тио(семитио)гликольурилов ИЛИ диэтилацетилендикарбоксилатом получены первые представители новых гетероциклических систем - 3,3а-дигидро-1*H*-имидазо[4',5':4,5]имидазо[2,1-b]тиазолы и 3,3а-дигидро-1*H*-имидазо[4',5':4,5]имидазо[2,1-*b*][1,3]селеназолы

Разработан метод получения азинов, содержащих фрагмент имидазо[4,5-d]имидазола и оксиндола, на основе взаимодействия изотиоурониевых солей с гидратом гидразина и последующей конденсацией полученных гидразоноимидазоимидазолов с изатинами. Изучение изомеризации целевых азинов под действием температуры, кислот и оснований, УФ и видимого света свидетельствует о выявлении в ряду данных соединений новых молекулярных переключателей.

Биологические испытания тиоселено(семиселено)гликольурилов показали, что они являются новым классом соединений с противогрибковой активностью и низкой цитотоксичностью и перспективны для применения в медицине и сельском хозяйстве. Для трициклических соединений выявлена ингибирующая активность в отношении грибов-фитопатогенов. В каждой группе соединений выявлены соединения-лидеры.

Положения, выносимые на защиту:

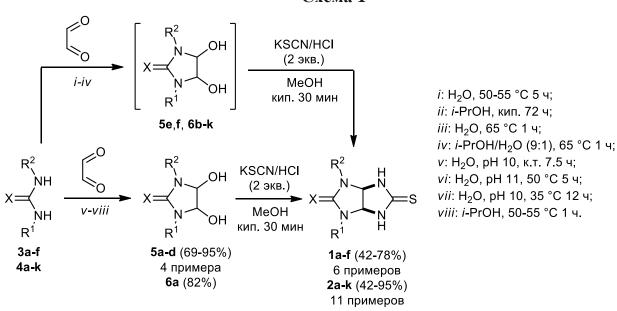
- 1. Разработка методов синтеза 1-замещенных, в том числе энантиомерно чистых,
- 1,3-, 1,4-, 1,3,4-замещенных семитиогликольурилов, 1,3-дизамещенных тиогликольурилов и их изотиоурониевых солей.
- 2. Разработка процесса селенирования изотиоурониевых солей для синтеза целевых тиоселено(семиселено)гликольурилов.
- 3. Синтез новых гетероциклических систем 3,3а-дигидро-1H- имидазо[4',5':4,5]имидазо[2,1-b]тиазолов и 3,3а-дигидро-1H- имидазо[4',5':4,5]имидазо[2,1-b][1,3]селеназолов.
- 4. Синтез новых гибридных молекул, включающих имидазо[4,5-d]имидазольный и оксиндольный фрагменты.
- 5. Исследование биологической активности полученных соединений.

Достоверность полученных результатов обеспечивается применением комплекса современных физико-химических методов анализа, таких как: спектроскопия ЯМР на ядрах ¹H, ¹³C, в том числе методов 2D ЯМР-спектроскопии (HSQC, HMBC), масс-спектрометрия высокого разрешения, ИК спектроскопия, рентгеноструктурный анализ.

Апробация работы. Основные результаты диссертационной работы были представлены и обсуждены на российских и международных конференциях.

Публикации. По результатам проведенных исследований опубликовано 6 статей в ведущих отечественных и зарубежных журналах и 6 тезисов докладов на российских и международных научных конференциях.

Личный вклад автора состоял в поиске, анализе и систематизации литературных источников, планировании и проведении экспериментов, установлении строения полученных соединений и самостоятельной интерпретации экспериментальных данных.


Структура и объём работы. Диссертация состоит из списка сокращений, введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов и списка литературы. Материал изложен на 200 страницах машинописного текста, библиографический список включает 231 наименование.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1 Синтез исходных семитио- и тиогликольурилов

Известные незамещённый **1a**, 1,3-дизамещенные семитиогликольурилы **1b-e**, 1,3-дипропилсемитиогликольурил 1.3тиогликольурилы 2a-c, новые диалкилтиогликольурилы 2d-k получали конденсацией мочевин 3a-f или тиомочевин 4a**к** с глиоксалем с образованием соответствующих 4,5-дигидроксиимидазолидин-2-онов **5а-f** или 4,5-дигидроксиимидазолидин-2-тионов (ДГИТ) **6а-k**, взаимодействовали с полученной *in situ* HNCS (схема 1). Условия синтеза ДГИТ **6d-k** (*iv*) разрабатывали. Выходы семитиогликольурилов 1a-f составили 42-78%, тиогликольурилов 2a-k-42-95%.

Схема 1

X = O, $R^1 = R^2 = H$ (1a (68%), 3a, 5a (69%, v)), Me (1b (78%), 3b, 5b (73%, vi)), Et (1c (67%), 3c, 5e (i)), Pr (1f (60%), 3f, 5f (ii)); $R^1 = Ph$, $R^2 = Me$ (1d (42%), 3d, 5d (97%, vii)), Et (1e (57%), 3e, 5c (95%, vii)); X = S, $R^1 = R^2 = Me$ (2a (89%), 4a, 6b (iii)), Et (2b (78%), 4b, 6c (iii)); $R^1 = Me$, $R^2 = Et$ (2c (81%), 4c, 6a (82%, viii)), Pr (2d (47%), 4d, 6d (iv)), i-Pr (2e (58%), 4e, 6e (iv)), (CH₂)₂OH (2f (95%), 4f, 6f (iv)), Bn (2g (42%), 4g, 6g (iv)), PMB (2h (82%), 4h, 6h (iv)); $R^1 = Et$, $R^2 = i$ -Pr (2i (79%), 4i, 6i (iv)), Bn (2j (82%), 4j, 6j (iv)), PMB (2k (76%), 4k, 6k (iv)).

Для разработки метода синтеза новых представителей 1-замещенных семитиогликольурилов подробно изучили 2 подхода, используя метод ¹Н ЯМР мониторинга (схемы 2, 3). Разработку подхода 1 (схема 2) начали с изучения модельных реакций ДМИТ 7 (вариант А) или ДГИТ 6I (вариант Б) с этилмочевиной 3g в H₂O при 76-80 °C, варьируя количество НС1 и время реакции, контролируя полноту конверсии этилмочевины 3g в семитиогликольурил 1g. Показано, что при использовании ДГИТ 6I (вариант Б) реакция идёт быстрее и эффективнее. Наибольший выход продукта 1g достигается при реакции этилмочевины 3g с ДГИТ 6I в соотношении 6I/3g 1.2:1 в H₂O в

присутствии 18 мольн.% 35% HCl_(водн) при 76-80 °C в течение 30 мин. Разработанные условия применили для синтеза 1-замещённых семитиогликольурилов **1h-u**, используя взаимодействие 1-замещённых мочевин **3h-u** и ДГИТ **6l** (схема 2).

Схема 2

 $R = Me \ (1h \ (51\%), \ 3h), \ Et \ (1g \ (52\%), \ 3g), \ Pr \ (1i \ (20\%), \ 3i), \ \emph{i-Pr} \ (1j \ (50\%), \ 3j), \ \emph{t-Bu} \ (1k \ (61\%), \ 3k), \ Cy \ (1l \ (65\%), \ 3l), \ CH_2\emph{c-C}_3H_5 \ (1m \ (45\%), \ 3m), \ All \ (1n \ (40\%), \ 3n), \ Bn \ (1o \ (45\%), \ 3o), \ PMB \ (1p \ (46\%), \ 3p), \ Ph \ (1q \ (34\%), \ 3q), \ (CH_2)_2OH \ (1r \ (26\%), \ 3r), \ (CH_2)_3OH \ (1s \ (15\%), \ 3s), \ C(Me_2)CH_2OH \ (1t \ (41\%), \ 3t), \ (CH_2)_3COOH \ (1u \ (36\%), \ 3u).$

Для разработки подхода 2 (схема 3) сначала оптимизировали условия синтеза неизвестных 1-замещённых ДГИ **5g-u** из мочевин **3g-p,r-v** и глиоксаля. На примере реакции этилмочевины **3g** выяснили, что в условиях синтеза 1,3-диметилДГИ **5b** (H₂O, рН 10, 50-55 °C) реакция полностью завершается за 3 ч. Для нерастворимых в воде мочевин **1n-p,v** разрабатывали отдельную методику синтеза ДГИ **5r-u** на примере реакции мочевины **1o**. Количественный выход ДГИ **5r** достигнут в условиях (*i*-PrOH, рН 7, кип. 5 ч). Разработанные условия использовали для синтеза ДГИ **5h-q** (*i*) и **5r-u** (*ii*) (схема 3). Полученные ДГИ **5g-u** использовались в конденсации с NaSCN и HCl без дополнительной очистки. В результате получена серия семитиогликольурилов **1g-p,r,t,v** с выходами 9-65%. В реакциях ДГИ **5p,q** с NaSCN семитиогликольурилы **1s,u** не образовывались. Вместо продукта **1s** из реакционной массы с выходом 9% выделен имидазооксазин **8**.

Сравнивая границы применимости каждого из подходов к синтезу 1-замещённых семитиогликольурилов **1g-v** можно сделать следующие выводы. Семитиогликольурилы **1q,s,u** (R = Ph, (CH₂)₃OH, (CH₂)₃COOH) возможно синтезировать только с помощью подхода 1, в то время как 1-фенетилсемитиогликольурил **1v** может быть получен только с использованием подхода 2. Выходы соединений **1i,m-p,r** (R = Pr, CH₂c-Pr, All, Bn, PMB, (CH₂)₂OH), полученных с помощью подхода 2 на 8–35% выше, а соединения **1h,k,l** (R = Me, Cy, t-Bu) получены с выходами на 11–56% выше при использовании подхода 1.

Схема 3

 $R = Me \ (1h \ (31\%), 3h, 7h), \ Et \ (1g \ (58\%), 3g, 5g), \ Pr \ (1i \ (55\%), 3i, 5i), \ \emph{i-Pr} \ (1j \ (52\%), 3j, 5j), \ \emph{t-Bu} \ (1k \ (50\%), 3k, 5k),$ $Cy \ (1l \ (9\%), 3l, 5l), \ CH_2\textit{c-Pr} \ (1m \ (53\%), 3m, 5m), \ All \ (1n \ (62\%), 3n, 5s), \ Bn \ (1o \ (63\%), 3o, 5r), \ PMB \ (1p \ (65\%), 3p, 5t),$ $(CH_2)_2OH \ (1r \ (54\%), 3r, 5n), \ (CH_2)_3OH \ (3s, 5p), \ C(Me_2)CH_2OH \ (1t \ (45\%), 3t, 5o), \ (CH_2)_3COOH \ (3u, 5q),$ $(CH_2)_2Ph \ (1v \ (61\%), 3v, 5u).$

Выходы соединений $\mathbf{1g,j,t}$ (R = *i*-Pr, Et, C(Me₂)CH₂OH) практически одинаковые для обоих подходов (50–52%, 52–58%, 41–45%, соответственно), поэтому они могут быть синтезированы любым из предложенных методов. Строение соединений $\mathbf{1g,h,j,t}$ подтверждено методом PCA.

Дальнейшим развитием подхода 1 является его модификация для синтеза 1-алкил-4-метил- и 1-алкил-6-метилзамещённых семитиогликольурилов **9а-h**, **10a**: 1-метилДГИТ **6m** с 1-замещенными мочевинами **3g,i-k,o,p,v,w**. На первом этапе подробно изучили модельную реакцию 1-метилДГИТ **6m** с этилмочевиной **3g** (схема 4). В качестве начальных использовали разработанные условия (H₂O, HCl, 76-80 °C, 30 мин).

Схема 4

В ¹Н ЯМР спектре реакционной массы идентифицированы сигналы 6 различных продуктов: целевых семитиогликольурилов **9a**, **10a** и известных побочных продуктов –

изомерных 1-метил- и 3-метилтиогидантоинов 11 и 12, 1,4-диэтилгликольурила 13, 1-метил-1*H*-имидазол-2(3*H*)-тиона 14. Полученный результат свидетельствует о том, что наряду с основной реакцией образования семитиогликольурилов 9а и 10а происходит, в том числе, конкурентный процесс спонтанного восстановления ДГИТ 6m в 1-метилимидазол-2-тион 14, который является действующим веществом самого используемого в мире антитиреоидного препарата метимазола. Интересно, что такой способ синтеза 1-метилимидазол-2-тиона 14 ранее в литературе не встречался и является новым. Различные изменения условий модельной реакции (растворителей, кислот, температуры и продолжительности) не увеличили выходы семитиогликольурилов 9а (36%) и 10а (5%).

При использовании этой методики для взаимодействия 1-метилДГИТ **6m** с 1-алкилмочевинами **3i-k,о,р,v,w** синтезированы новые 1-алкил-4-метилсемитиогликольурилы **9b—h** с выходами 25—39% (схема 5). Из-за низких выходов 1-алкил-6-метилзамещенные изомеры **10b-h** не выделяли.

Схема 5

R = Pr (3i, 9b (37%)), *i*-Pr (3j, 9c (27%)), Bu (3w, 9d (39%)), *t*-Bu (3k, 9e (39%)), (CH₂)₂Ph (3v, 9f (33%)), PMB (3p, 9g (32%)), Bn (3o, 9h (25%)).

Для дальнейшего расширения круга семитиогликольурилов исходных разрабатывали подход К синтезу недоступных 1,3,4-триалкилзамещённых семитиогликольурилов 15 на примере получения 4-метил-1,3-семитиогликольурила 15а, изучив два способа (схема 6). Первая стадия в способе 1 заключалась во взаимодействии глиоксаля с 1-метилтиомочевиной **41** и образовании 1-метилДГИТ **6m**. В способе 2 глиоксаль использовали в реакции с 1,3-диэтилмочевиной 3с с образованием 1,3диэтилДГИ 5е. Полупродукты 6т и 5е образовывались с количественным выходом и использовались на последующих стадиях без выделения в реакциях с 1,3диэтилмочевиной 3с или 1-метилтиомочевиной 41 соответственно. Наибольший выход продукта 15а (60%) наблюдался через 15 минут при конденсации ДГИТ 6m с мочевиной 15a составил 52%. выделения выход Дальнейшее увеличение продолжительности реакции, повышение температуры реакции кипения,

использование кислотного катализа (0.12, 0.36 или 0.60 экв. $HCl_{конц}$) не привели к увеличению выхода тиогликольурила **15a**. При конденсации ДГИ **5e** с 1-метилтиомочевиной **4l** (способ 2) выход продукта **15a** не превышал 5% при аналогичных изменениях условий.

Схема 6

Поэтому для синтеза серии целевых 1,3,4-триалкилсемитиогликольурилов **15b-h** использовали подход 1 (схема 7). Соединения **15b-f** получены двухстадийным однореакторным методом: на первом этапе взаимодействием соответствующих тиомочевин **4l,m** с глиоксалем синтезировали 1-метил- и 1-этилДГИТ **6m,n**, которые использовали в реакциях с 1,3-диметил(диэтил, дипропил)мочевинами **3b,c,f** на стадии 2 без выделения. Соединения **15g,h** получены реакцией 1,3-диметил(диэтил)мочевин **3b,c** с 1-изобутил-ДГИТ **6o**. ДГИТ **6o** выделен после конденсации 1-изобутилтиомочевины **4n** с глиоксалем в виде осадка вследствие его низкой растворимости в воде с выходом 94%. Выходы целевых семитиогликольурилов **15b-h** составили 46-66%.

Схема 7

$$S \stackrel{\text{NH}_2}{\longrightarrow} 0 \\ \text{NH} \\ \stackrel{\text{NH}_2}{\longrightarrow}$$

 $R^1 = Me (4I, 6m), Et (4m, 6n), i-Bu (4n, 6o); R^2 = Me (3b), Et (3c), Pr (3f); R^1 = Me, R^2 = Me (15b (58\%)), Pr (15c (46\%)); R^1 = Et, R^2 = Me (15d (63\%)), Et (15e (58\%)), Pr (15f (60\%)); R^1 = i-Bu, R^2 = Me (15g (66\%)), Et (15h (58\%)).$

Для синтеза энантиомерно чистых 1-((R)-1-фенилэтил))- и 1-((S)-1-фенилэтил))- замещенных семитиогликольурилов 1**w**,**x** применили подход, заключающийся во введении в молекулу дополнительного хирального центра заданной конфигурации за счет использования энантиомерно чистых 1-(1-фенилэтил)замещенных мочевин 3**x**,**y**.

Разработку подхода проводили, изучая две стратегии на примере рацемической 1- (1-фенилэтил)мочевины **3z**: реакции мочевины **3z** с ДГИТ **6l** (подход 1) и двухстадийный *опе pot* процесс, включающий взаимодействие мочевины **3z** сначала с глиоксалем и последующую циклоконденсацию с HNCS (подход 2). На первом этапе изучили в деталях подход 1 (условия H₂O, **3z:6l** 1:1.2, 76–80 °C, 30 мин, схема 8).

Установлено, что конверсия мочевины **3z** в целевые диастереомерные рацематы **1y** и **1'y** составила 37%, побочные продукты тиогидантоин **16** и 2-меркаптоимидазол **17** являются основными. Соотношение изомерных продуктов **1y** к **1'y** по ЯМР 1.5:1. Изменения условий реакции ДГИТ **6l** с 1-(1-фенилэтил)мочевиной **3z** (изменение соотношения реагентов **3z**:**6l**, уменьшение количества кислоты одновременно с увеличением времени реакции) не привели к увеличению селективности процесса. Продукт **1y** выделен в индивидуальном виде с выходом 15%, поэтому подход 1 для синтеза энантиомерно чистых семитиогликольурилов не использовали.

Для доказательства относительной конфигурации стереоцентров в семитиогликольуриле **1у**, реакцией с параформом и метиламином его трансформировали

в трициклическое производное **18** (схема 9, выход 22%), для которого удалось получить данные рентгеноструктурного исследования.

Схема 9

$$O = \bigvee_{\substack{N = N \\ N = N \\ H \ H}} \bigvee_{\substack{N = N \\ H \$$

i: 1) H₂O, (H₂CO)_n (2 экв.), Et₃N, кип., 2 ч, 2) MeNH_{2(водн.)}, 40 °C, 30 мин

Для изучения диастереоселективности подхода 2 провели взаимодействие 1-(1-фенилэтил)ДГИ **5v** (без выделения), полученного из рацемической мочевины **1p** и тримера дигидрата глиоксаля, и HNCS (схема 10).

Схема 10

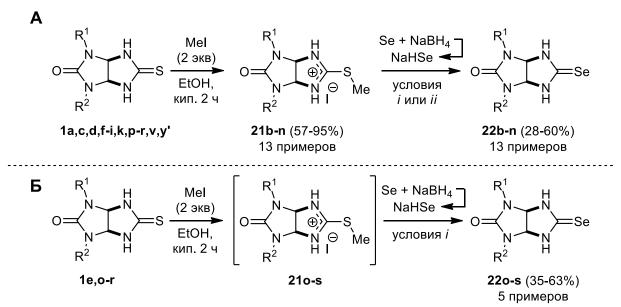
Ожидаемо, конденсация приводит к образованию смеси изомеров семитиогликольурилов **1y** и **1'y** (соотношение по ЯМР 3.1:1), соединения выделены в индивидуальном виде с выходами 31% и 1%, соответственно. Низкие выходы целевых продуктов объясняются образованием гидантоина **19** и нереакционноспособного метилового эфира **20**. В дальнейшем, из-за низких выходов рацематы типа **1'y** не выделяли.

Разработанный двухстадийный *one pot* подход применили для синтеза соответствующих энантиомерно чистых (3aS,6aS)-1-((R)-1-фенилэтил)- и (3aR,6aR)-1-((S)-1-фенилэтил)семитиогликольурилов **1w,x** (схема 11, выходы 21% и 25%, соответственно), используя диастереоселективную конденсацию HNCS с ДГИ **5w,x**, полученных реакцией глиоксаля с энантиомерно чистыми мочевинами **3x,y**.

Схема 11

2 Синтез семиселено- и тиоселеногликольурилов

Стратегия синтеза семиселено- и тиоселеногликольурилов заключается в замене S на Se в тио(семитио)гликольурилах при использовании классических реакций S-метилирования C=S группы и дальнейшем селенировании полученных изотиоурониевых солей. На примере доступной изотиоурониевой соли **21a** провели селенирование и получили семиселеногликольурил **22a** с выходом 10% (схема 12). Поэтому варьировали время реакции (5 ч, 12 ч, 18 ч) и температуру (5 °C, комнатная температура, 35 °C, кипячение), а также стехиометрическое соотношение реагентов (**21a**:Se:NaBH₄=1:1:1, 1:2:2, 1:3:3, 1:4:4). Установлено, что конверсия соли **21a** в целевой продукт **22a** составляет 94% при использовании условий МеОН, 35 °C, 12 ч, соотношение реагентов 1:3:3. Реакция проходит через стадию образования полупродукта **21'a**. Выход соединения **22a** составил 43%.


Схема 12

$$O = N + NaBH_4 + NaHSe + NaBH_4 + NaHSe + NaBH_4 + NaHSe + N$$

Синтез новых семиселеногликольурилов **22b-s** (18 примеров) осуществили двухстадийно (схема 13, методы А, Б). Сначала *S*-метилированием соответствующих семитиогликольурилов **1a,c,d,f-i,k,p-r,v,y** синтезировали соли **21b-n** (выходы 57-95%), которые селенировали, получая семитиогликольурилы **22b-n**. Семиселеногликольурилы

220-s получили *one pot* из семитиогликольурилов **1e,o-r**, не выделяя промежуточные иодиды **21o-s** (схема 13, метод Б). Выходы продуктов составили 35-63%.

Схема 13

i: MeOH, N₂, 1) Se (3 экв.), NaBH₄ (3 экв.), 0-5 °C, 30 мин. 2) **21** (1 экв.), 35 °C, 12 ч; ii: MeOH, N₂, 1) Se (3 экв.), NaBH₄ (3 экв.), 0-5 °C, 30 мин. 2) **21** (1 экв.), 35 °C, 72 ч; $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$ (1a, 21b (83%), 22b (42% (ii))), Et (1c, 21d (95%), 22c (58% (i))), Pr (1f, 21e (95%), 22d (60% (i))), $\mathbb{R}^1 = \mathbb{H}$ Me, $\mathbb{R}^2 = \mathbb{H}$ (1d, 21f (68%), 22e (37% (i))), $\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{H}$ (1h, 21c (86%), 22f (46% (i))), Et (1g, 21g (57%), 22g (35% (i))), Pr (1i, 21h (88%), 22h (28% (i))), i-Pr (1j, 21p, 22p (63% (i))), t-Bu (1k, 21i (72%), 22i (50% (i))), All (1n, 21q, 22q (35% (i))), Cy (1l, 21r, 22r (38% (i))), (CH₂)₂OH (1r, 21j (84%), 22j (37% (i))), (CH₂)₂Ph (1v, 21k (85%), 22k (32% (i))), Bn (1o, 21s, 22s (37% (i))), PMB (1p, 21l (90%), 22l (41% (i))), Ph (1q, 21m (73%), 22m (51% (i))), (i), (i)), (i)

Разработанный *опе рот* метод без выделения промежуточных изотиоурониевых солей **23a-c**, **24a-f** использовали для получения новых 1-алкил-4-метил- **25a-c** и 1,3,4-триалкилзамещённых семитиогликольурилов **26a-f** (схема 14). Структура полученного 1,3,4-триметилсемиселеногликольурила **26a** подтверждена с помощью метода РСА.

Схема 14

 $R^2 = H$, $R^3 = Me$, $R^2 = Et$ (9a, 23a, 25a (69%)), Pr (9b, 23b, 25b (64%)), t-Bu (9e, 23c, 25c (75%)); $R^1 = R^2 = R^3 = Me$ (15b, 24a, 26a (72%)); $R^3 = Me$, $R^1 = R^2 = Et$ (15a, 24b, 26b (42%)), Pr (15c, 24c, 26c (57%)); $R^1 = R^2 = R^3 = Et$ (15e, 24d, 26d (45%)); $R^3 = Et$, $R^1 = R^2 = Me$ (15d, 24e, 26e (59%)), Pr (15f, 24f, 26f (40%));

Первые энантиомерно чистые представители семиселеногликольурилов (3aS,6aS)-1-((R)-1-фенилэтил)семиселеногликольурил **22t** и (3aR,6aR)-1-((S)-1-

фенилэтил)семиселеногликольурил **22u** синтезированы аналогично рацемическому продукту **22n** с применением однореакторного подхода с выходами 43% и 48% соответственно (схема 15).

Схема 15

Расширением границ применения разработанного подхода является синтез тиоселеногликольурилов **27а-к** из исходных тиогликольурилов **2а-к**. На первом этапе изучили *S*-метилирование полученных симметрично **2а,b** и несимметрично 1,3-дизамещённых тиогликольурилов **2c-к** для синтеза новых изотиоурониевых солей тиогликольурилов **28a-k** (схема 16, стадия 1). Условия реакции (МеОН, кип. 2 ч) разработали. Образующиеся соли **28a-k** использовали в реакции селенирования без выделения (схема 16, стадия 2). Установлено, что вторая стадия процесса завершается за 18 ч и целевые тиоселеногликольурилы **27a-к** получаются с выходами 42-60%.

$S \stackrel{\text{N}}{=} N \stackrel{\text{N}}{=} N \stackrel{\text{MeI}}{=} N \stackrel{\text{MeOH}}{=} N \stackrel{\text{N}}{=} N \stackrel{\text{N}}{=$

Схема 16

 $R^1 = R^2 = Me$ (2a, 27a (51%), 28a), Et (2b, 27b (43%), 28b);

2a-k

 R^1 = Me, R^2 = Et (2c, 27c (42%), 28c), Pr (2d, 27d (58%), 28d), *i*-Pr (2e, 27e (54%), 28e), (CH₂)₂OH (2f, 27f (56%), 28f), Bn (2g, 27g (45%), 28g), PMB (2h, 27h (60%), 28h),

27а-k (42-60%) 11 примеров

 $R^1 = Et$, $R^2 = i$ -Pr (2i, 27i (60%), 28i), Bn (2j, 27j (52%), 28j), PMB (2k, 27k (47%), 28k).

28a-k

В целом, в результате проделанных исследований впервые разработан универсальный двухстадийный метод синтеза разнообразных семиселено- и тиоселеногликольурилов, состоящий из *S*-метилирования тио(семитио)гликольурилов с

образованием изотиоурониевых солей и последующего замещения SMe-группы на Se в реакции с *in situ* генерируемым NaHSe. Незамещённый 22b, 1-замещённые 22f-n и 1,3дизамещённые 22а,с-е семиселеногликольурилы (14 примеров, выходы 28-60%) получены двухстадийно с выделением промежуточных солей 21а-п. 1-Фенил-3-этил-**220**, монозамещённые **22р-s**, 1-алкил-4-метил- **25а-с** и 1,3,4-триалкилзамещённые **26а-f** семиселеногликольурилы (14 примеров, выходы 35-75%) и тиоселеногликольурилы 27с**к** (9 примеров, выходы 42-60%) синтезированы однореакторно без выделения солей. Осуществлен синтез первых энантиомерно чистых представителей (3aS.6aS)-1-((R)-1-фенилэтил)-5семиселеногликольурилов: селеноксогексагидроимидазо[4,5-d]имидазол-2(1H)-она (3aR,6aR)-1-((S)-1-**22t** И фенилэтил)-5-селеноксогексагидроимидазо[4,5-d]имидазол-2(1H)-она **22u** с выходами 43% и 48% соответственно.

3 Синтез первых представителей новых гетероциклических систем - 3,3а-дигидро-1*H*-имидазо[4',5':4,5]имидазо[2,1-*b*]тиазолов и 3,3а-дигидро-1*H*-имидазо[4',5':4,5]имидазо[2,1-*b*][1,3]селеназолов

Для синтеза представителей новых гетероциклических систем 3,3а-дигидро-1*H*имидазо[4',5':4,5]имидазо[2,1-*b*]тиазолов (дигидроимидазоимидазотиазолов) 30a,b 3,3а-дигидро-1*H*-имидазо[4',5':4,5]имидазо[2,1-b][1,3]селеназолов (дигидроимидазоимидазоселеназолов) 31a-d. 32a,b разрабатывали подход, заключающийся тиа(селена)-реакции Михаэля семитиогликольурилов 1a-c.f. тиогликольурилов 2а,b, семиселеногликольурилов 22а-d и тиоселеногликольурилов 27а, в с диэтилацетилендикарбоксилатом (ДЭАД) с последующей самоциклизацией образующихся соединений (схема 17). В качестве модельной реакции провели взаимодействие 1,3-диметилсемитиогликольурила 1b с 1.2 экв. ДЭАД в известных условиях (EtOH, кип., 2 ч).

Схема 17

i: EtOH, к.т., 1 ч; ii: EtOH, к.т., 2 ч; iii: EtOH, 50 °C, 2 ч; iv: EtOH, кип., 2 ч.

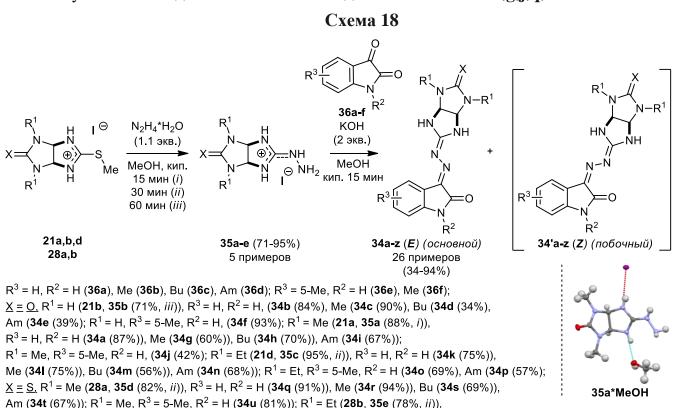
X = O; Y = S; R = Me (1b, 29a (80%)) (i), Et (1c, 29b (89%)) (i), Pr (1f, 29c (81%)) (ii), H (1a, 29d (75%)) (iii);

X = Y = S; R = Me(2a, 30a(67%))(iii), Et(2b, 30b(67%))(iii);

X = O; Y = Se; R = Me (22a, 31a (59%)) (i), Et (22c, 31b (56%)) (i), Pr (22d, 31c (76%)) (ii), H (22b, 31d (65%)) (iv);

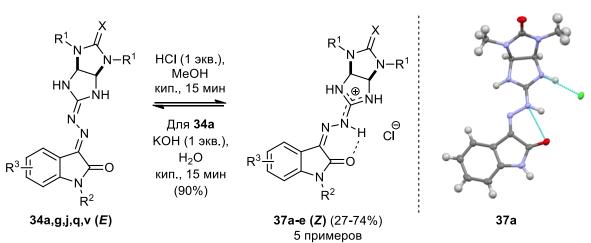
X = S; Y = Se; R = Me(27a, 32a(72%))(iv), Et(27b, 32b(78%))(iv).

По данным ¹³C, {1H-13C} HSQC, {1H-13C} HMBC и ¹³C GATED ЯМРэкспериментов установлено, что реакция протекает региоселективно с образованием новой представителя гетероциклической дигидроимидазоимидазотиазолов 29а (выход составил 43%), соединение 33 не образуется. При осуществлении реакции ДЭАД и семитиогликольурила 1b при комнатной температуре в течение 1 ч (условия (i)) выход повысился до 80%. Разработанные условия (і) использовали в региоселективных реакциях ДЭАД с семитиогликольурилами 1с и семиселеногликольурилами 22а, в и получили новый дигидроимидазоимидазотиазол 29b и первые представители еще одной новой гетероциклической системы - дигидроимидазоимидазоселеназолы 31а, b. Для получения целевых трициклов **29c** и **31c** потребовалось 2 ч (условия (*ii*)), трициклов **29d**, **30a**,**b** - 2 ч и температура до 50 °C (условия (iii)), соединений **31d** и **32a,b** - кипячение реакционных (условия (iv)). Таким образом, получены течение 2ч дигидроимидазоимидазотиазолы 29а-d, 30а,b (6 примеров, выходы 67-89%) и дигидроимидазоимидазоселеназолы **31a-d**, **32a,b** (6 примеров, выходы 56-78%).


4 Синтез новых азинов – гибридных молекул, содержащих фрагмент имидазо[4,5-d]имидазола и оксиндола

Модификацию имидазо[4,5-*d*]имидазолов другими фармакофорами провели, получив азины **34a-z** последовательной реакцией изотиоурониевых солей **21a,b,d**, **28a,b** с гидратом гидразина на первой стадии и последующей конденсацией полученных гидразоноимидазоимидазолов **35a-e** с изатинами **36a-f** (схема 18). Условия каждой стадии разрабатывали.

Показано, что синтез гидразинилов **35a-е** (выходы 71-95%) необходимо проводить в MeOH при соотношении солей **21a,b,d**, **28a,b** и $N_2H_4\cdot H_2O$ 1:1.1 при кипячении в течение 15 мин для **35a** (условия i), 30 мин - **35c** (ii), 60 мин - **35b,d,e** (iii). Строение гидразинила **35a** (в виде сольвата **35a·MeOH**) подтверждено PCA.


Взаимодействие соединений **35а-е** с изатинами **36а-f** осуществляли в МеОН с 2 экв. КОН, кипятили 15 мин. Установили образование двух изомерных продуктов: *Е*-изомеров **34а-z** (26 примеров, выходы 34-94%) и *Z*-изомеров **34'а-z** с преобладанием *Е*-изомеров. Вещества **34a** и **34'a** хорошо различимы в спектре ¹Н ЯМР по химическому сдвигу сигнала протона при атоме C(4) ароматического ядра, который расположен в более слабом поле относительно сигнала аналогичного протона в продукте **34'a**. Соотношение **34a**:**34'a** составляет 7.5:1. Из-за низкого выхода Z-изомеры **34'** не выделяли.

На следующем этапе изучили изомеризацию соединений **34** под действием кислот и оснований. Выяснили, что при кипячении соединения **34a** в метанольном растворе HCl образуется гидрохлорид **37a**, который существует в форме Z-изомера, что доказано данными PCA (схема 19). Z-Изомер гидрохлорида стабилен за счёт наличия водородной связи C(2)=O....H-N между карбонилом индолинонового фрагмента и NH-группой азинового мостика. При обработке раствора гидрохлорида **37a** 1 экв. КОН происходит обратное превращение и снова образуется *E*-изомер **35a** (выход 90%). Гидрохлориды **37b-е** получены с выходами 27-74% из свободных оснований **34a,g,j,q,v**.

Схема 19

 $R^3 = H$, $R^2 = H$ (34v (89%)), Me (34w (78%)), Bu (34x (63%)), Am (34y (78%)); $R^1 = Et$, $R^3 = 5$ -Me, $R^2 = H$ (34z (81%)).

X = O, $R^1 = Me$, $R^2 = R^3 = H$ (34a, 37a (70%)); $R^1 = Me$, $R^3 = H$, $R^2 = Me$ (34g, 37b (50%)); $R^1 = Me$, $R^3 = 5$ -Me, $R^3 = H$ (34j, 37c (27%)); X = S, $R^1 = Me$, $R^2 = R^3 = H$ (34q, 37d (46%)); $R^1 = Et$, $R^2 = R^3 = H$ (34v, 37e (74%))

Предположен механизм кислотно-основного молекулярного переключения (схема 20). При протонировании свободного основания **34a** по атому кислорода происходит поворот фрагмента оксиндола относительно одинарной связи в C(3)-N=N-фрагменте и формирование водородной связи между атомом азота азогруппы и водородом гидроксигруппы с получением гидрохлорида **37a**. При добавлении основания происходит отрыв протона от фрагмента гликольурила с образованием интермедиата **A**. Дальнейшее действие щелочи приводит к отрыву протона от гидроксигруппы и повороту фрагмента оскиндола относительно N=N-связи вследствие отталкивания орбиталей атомов азота и кислорода (интермедиат **Б**). Образованный в ходе перераспределения электронной плотности аддукт **В** депротонирует выделившуюся в ходе реакции воду с образованием азина **34a**.

С помощью метода 1 Н ЯМР мониторинга выяснили, что облучение раствора азина **34v** в ДМСО- d_{6} УФ-лампой (6 Вт, 254 нм) в течение 28 часов приводит к переходу E-изомера **34v** в равновесную смесь E- и Z-изомеров **34v** и **34'v** в соотношении 1:1 (схема 21). Дальнейшее облучение не сдвигает равновесия. Смесь изомеров стабильна в темноте, а при воздействии солнечного света на смесь изомеров происходит обратный процесс: через 30 дней наблюдаемое соотношение изомеров E/Z составило 85:15. При облучении ампулы с раствором Z-изомера гидрохлорида **37e**, никаких изменений в спектрах не наблюдали.

Исследовав термически индуцированную изомеризацию азина **34v** и гидрохлорида **37e** выяснили, что гидрохлорид **37e** способен к изомеризации при нагревании раствора соединения **37e** до 130 °C в течение 5 мин: образуется равновесная смесь E-и Z-изомеров **37e** и **37'e** в соотношении 1:1 (схема 22). Дальнейший нагрев к смещению равновесия не приводит. Увеличение температуры до 150 °C приводит к деструкции соединения. Нагревание растворов свободного основания **34v** в аналогичных условиях не инициирует изомеризацию.

разработан двухстадийный результате подход синтезу 3-((5оксо(тиоксо) Γ екса Γ идроимида Γ оксо(тиоксо) Γ екса Γ идра Γ екса Γ идра Γ екса Γ идра Γ екса Γ онов на основе реакции изотиоурониевых солей тио(семитио)гликольурилов с гидратом гидразина на первой стадии И последующей конденсацией гидразоноимидазоимидазолов с изатинами. Изучение изомеризации целевых азинов под действием температуры, кислот и оснований, УФ и видимого света свидетельствует о выявлении в ряду данных соединений новых молекулярных переключателей.

5 Изучение биологической активности и токсичности полученных соединений

Изучение противомикробной активности (бактерии Staphylococcus Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa и дрожжи Candida albicans (C.a.), Cryptococcus neoformans var. Grubii (C.n.)) семиселеногликольурилов **22а-m,о-s** и тиоселеногликольурилов **27a,b** *in vitro* показало, что все соединения проявили противогрибковую активность в отношении дрожжей С.а. и С.п. Активность оценивали по величине минимальной ингибирующей концентрации (МИК, мкг/мл). Соединения **22а-m,о,р,г,s, 27а,b** проявили высокую ингибирующую грибков активность отношении обоих (МИК 2-0.125мкг/мл). Фенетилсемиселеногликольурил 22k является соединением-лидером (рисунок 1), показав МИК 0.125 мкг/мл для обоих видов дрожжей. 1,3-Диэтилзамещённый 22с и 1замещённые соединения 22i,l,р особенно активно подавляют рост С.п. (МИК 0.125 с фенильным (22m) Семиселеногликольурилы и бензильным заместителями показали высокую активность против грибков С.а. (МИК 0.125 мкг/мл).

Рисунок 1. Соединения-лидеры, проявившие лучшую ростингибирующую активность против грибков C.a. и C.n.

Для всех протестированных соединений не выявлено цитотоксического эффекта в отношении клеточной линии НЕК-293 и склонности к гемолизу эритроцитов человека даже при самой высокой тестовой концентрации 32 мкг/мл.

Для семиселено- 22a-u, 25a-c, 26a-f (30 соединений) и тиоселеногликольурилов 27a-c (3 соединения) изучили ингибирование плесневого гриба Aspergillus niger (A.n.), оценивая МИК. Установлено, что большинство соединений являются перспективными, проявившими ингибирующую активность в концентрации 4-32 мкг/мл. Соединение 22c является лидером (МИК 4 мкг/мл, рисунок 2). 1-Замещённые семиселеногликольурилы 22f,g,l,m и тиоселеногликольурил 27c проявили ингибирующую активность при МИК 8 мкг/мл. 1,3-Дизамещённые селеногликольурилы 22a,b,d,e ингибируют рост гриба при МИК 8 мкг/мл, а соединения 22h,j,n-q,s, и 27a,b при МИК 16 мкг/мл. Среди 1,4-дизамещённых и тризамещённых селеногликольурилов 25 и 26 соединения 25b,c, 26a,b являются соединениями-лидерами (МИК 8-16 мкг/мл). Селеногликольурилы 22r,t,u, 25a, 26c-e (7 соединений), в том числе энантиомерно чистые 22t,u, ингибируют рост грибка при МИК 32 мкг/мл.

Рисунок 2. Соединения, показавшие МИК 4-8 мкг/мл на грибе A.n.

Противогрибковую активность семиселено- **26a-f**, тиоселеногликольурилов **27a,b,d-f,h,j** и дигидроимидазоимидазоселеназолов **31a-c**, **32a,b** изучили *in vitro* на шести грибах-фитопатогенах: *Venturia inaequalis* (*V.i.*) – возбудителе парши яблонь, *Rhizoctonia solani* (*R.s.*) – возбудителе ризоктониоза, *Fusarium oxysporum* (*F.o.*), *Fusarium maniliforme* (*F.m.*) – возбудителях фузариозов, *Bipolaris sorokiniana* (*B.s.*) – возбудителе корневых гнилей, *Sclerotinia sclerotiorum* (*S.s.*) – возбудителе белых гнилей, оценивая процент ингибирования роста мицеллия (ИРМ) при фиксированной концентрации 30 мкг/мл и сравнивая данные с показателем ИРМ у препарата сравнения триадимефона (41%, 43%, 77%, 87%, 44%, 61%, соответственно). Перспективность в борьбе с грибкамифитопатогенами показали все испытанные соединения. Семиселеногликольурилы **26a-f**

и тиоселеногликольурилы 27a,b,d-f,h,j полностью ингибируют рост V.i и R.s. Все тризамещённые семиселеногликольурилы **26а-f** эффективны против *B.s.* и *S.s* (ИРМ 60-100%), а для соединений **26a,c-f** выявлена способность подавлять рост грибка *F.m* (ИРМ 86-95%). Активностью В отношении B.s.обладают все испытанные 59-67%) (ИРМ тиоселеногликольурилы 27a,b,d-f,h,j И дигидроимидазоимидазоселеназолы **31а-с**, **32а**,**b** (ИРМ 44-55%). В ряду трициклических структур наиболее активными являются дигидроимидазоимидазоселеназолы 32а,b, полностью подавляющие рост R.s., тогда как их аналоги **31а-с** показывают ИРМ 52-69%. Дигидроимидазоимидазоселеназолы **31c**, **32a**,**b** активны против грибков *V.i* (ИРМ 44-79%). Здесь прослеживается чёткая тенденция: соединения 32а, в, имеющие во 2 положении тиокарбонильную группу более активны, чем структуры 31а-с с карбонильной группой в том же положении. Соединением-лидером является 1,3дипропил-4-этилсемиселеногликольурил **26f**, эффективно ингибируя рост пяти из шести грибков-фитопатогенов (рисунок 3). К настоящему моменту для тиоселеногликольурила **27b** определили IC_{50} для гриба *B.s* (3.3 мкг/мл).

Рисунок 3. Тиоселено(семиселено)гликольурилы и дигидроимидазоимидазоселеназол, проявившие лучшую активность против грибовфитопатогенов

Оценку острой токсичности соединений **26d,f**, **27b** и расчет средней летальной дозы (ЛД₅₀) проводили при помощи экспресс-метода Прозоровского В. Б. и соавт. Для установления класса токсичности использовали классификацию К. К. Сидорова. Установлено, что для тиоселеногликольурила **27b** ЛД₅₀=129 мг/кг (4 класс токсичности по Сидорову – малотоксично), а для триалкилзамещённых семиселеногликольурилов **26d** – ЛД₅₀=56.4 мг/кг и **26f** – ЛД₅₀=47.7 мг/кг (относятся к 3 классу токсичности – умеренно токсичны).

Антибактериальную активность азинов **34a,d,e,h-k,m-o,q,s,t,x,y** (15 соединений) изучали на плотных питательных средах методом диффузии в агар на культурах *Escherichia coli* (*E.c*, BKM B-820) и *Staphylococcus aureus* (*S.a*, BKM B-128) оценивали по величине зоны задержки роста (3P, мм) бактериальной культуры. Наиболее перспективными из них являются азины **34s,t,y** (3P 25 мм, 20 мм и 20 мм соответственно, 3P препарата сравнения ципрофлоксацина составляет 28 мм, рисунок 4). Ни одно из протестированных соединений не ингибирует рост *E.c*.

Рисунок 4. Антибактериальная активность азинов 34s,t,y

Таким образом, впервые синтезированные семиселено- и тиоселеногликольурилы являются новым классом соединений с противогрибковой активностью и перспективны для применения в медицине и сельском хозяйстве. Для дигидроимидазоимидазоселеназолов выявлена ингибирующая активность в отношении грибов-фитопатогенов.

ВЫВОДЫ

- 1. Предложены новые методы функционализации имидазо[4,5-d]имидазолов.
- 2. Разработаны подходы к синтезу широкого круга новых бициклических производных гликольурилов, неизвестных ранее трициклических систем и недоступных азинов, содержащих имидазо[4,5-*d*]имидазольный и оксиндольный фрагменты.
- 3. Синтезированы ранее недоступные 1-замещённые, в том числе энантиомерно чистые, 1-алкил-4-метил-, 1,3,4-триалкилсемитиогликольурилы и 1,3-дизамещенные тиогликольурилы при взаимодействии 4,5-дигидроксиимидазолидин-2-онов(тионов) с HNCS или 4,5-дигидроксиимидазолидин-2-тионов с различными мочевинами.

- 4. Подобраны условия селенирования тио(семитио)гликольурилов, состоящего из *S*-метилирования исходных субстратов до соответствующих изотиоурониевых солей с их последующим взаимодействием с NaHSe, генерируемым *in situ* реакцией Se с NaBH₄.
- 5. Синтезированы первые представители новых гетероциклических систем 3,3а-дигидро-1H-имидазо[4',5':4,5]имидазо[2,1-b]тиазолов и 3,3а-дигидро-1H-имидазо[4',5':4,5]имидазо[2,1-b][1,3]селеназолов с использованием реакции 1,3-дизамещённых тио(семитио)гликольурилов, тиоселено(семиселено)гликольурилов с диэтилацетилендикарбоксилатом.
- 6. Реализован метод синтеза новых гибридных молекул на основе последовательного взаимодействия изотиоурониевых солей тио(семитио)гликольурилов с гидратом гидразина и конденсацией образовавшихся гидразоноимидазоимидазолов с изатинами.
- 7. При исследовании изомеризации под действием кислот и оснований, температуры, УФ- и видимого света выявлены первые молекулярные переключатели в ряду азинов, содержащих фрагменты имидазо[4,5-*d*]имидазола и оксиндола.
- 8. Установлено, что тиоселено- и семиселеногликольурилы являются новым классом соединений с мощной противогрибковой активностью в отношении *Candida albicans* и *Cryptococcus neoformans* и низкой цитотоксичностью. 1-(2-Фенетил)-семиселеногликольурил является соединением лидером.
- 9. Показано, что 1,3,4-триалкилсемиселеногликольурилы, тиоселеногликольурилы и 3,3а-дигидро-1H-имидазо[4',5':4,5]имидазо[2,1-b][1,3]селеназолы эффективно ингибируют рост грибов-фитопатогенов Venturia inaequalis, Rhizoctonia solani, Sclerotinia sclerotiorum. 1,3-Дипропил-4-этилсемиселеногликольурил, 1,3-диэтилтиоселеногликольурил и (Z)-этил 2-(7-оксо-2-тиоксо-1,3-диэтил-3,3а-дигидро-1H-имидазо[4',5':4,5]имидазо[2,1-b][1,3]селеназол-6(2H,7H,8aH)-илиден)ацетат обладают наибольшей активностью.

Основные результаты работы изложены в следующих публикациях:

- 1. Baranov V. V., <u>Galochkin A. A.</u>, Nelyubina Yu. V., Kravchenko A. N., Makhova N. N. Synthesis and Structure of 1-Substituted Semithioglycolurils //Synthesis. **2020**. V. 52. №. 17. P. 2563-2571.
- 2. <u>Galochkin A. A.</u>, Baranov V. V., Kolotyrkina N. G., Kravchenko A. N. Synthesis of trialkyl semithioglycolurils from alkylthiourea-glyoxal cyclic adducts and dialkylureas $//Mendeleev\ Commun. -2022. V. 32. No. 6. P. 771-773.$
- 3. <u>Galochkin A. A.</u>, Pavlovskaya A. E., Baranov V. V., Strelenko Yu. A., Kravchenko A. N. Regioselective synthesis of 1-alkyl-4-methylsemithioglycolurils //Chem. Heterocycl. Compd. 2022. V. 58. №. 11. P. 615-620.

- 4. <u>Galochkin A. A.</u>, Baranov V. V, Hansford K. A., Friberg L. I. M., Strel'tzova E. D., Lipatov E. S., Nelyubina Yu. V., Kravchenko A. N. Synthesis, Structures and Antifungal Activity of Selenoglycolurils //ChemistrySelect − 2023. − T. 8. №. 14. e20230076.
- 5. Баранов В. В., <u>Галочкин А. А.</u>, Кравченко А. Н. Новый подход к синтезу метимазола // Изв. АН, Сер. хим. **2023**. Т. 72. № 8. С. 1946-1949.
- 6. <u>Galochkin A. A.</u>, Astakhova M. K., Alekseenko A. L., Baranov V. V., Strelenko Yu. A., Popkov S. V., Kravchenko A. N. Synthesis of the First Representatives of new 3,3a-dihydro-1*H*-imidazo[4',5':4,5]imidazo[2,1-*b*]thia(selena)zole Heterocyclic Systems with Fungicidal Activity //ChemistrySelect − **2024**. − V. 9. №. 15. e202400624.
- 7. <u>Galochkin A. A.</u> Synthesis of biologically active selenium-containing glycoluril and thioglycoluril derivatives / Galochkin A. A., Baranov V. V., Kravchenko A. N. // International Conference «Catalysis and organic synthesis ICCOS-2019», Москва 2019. С. 125.
- 8. <u>Галочкин А. А.</u> Синтез 1-замещенных семитиогликольурилов / Галочкин А. А., Баранов В. В., Кравченко А. Н. // Всероссийская научная конференция «Марковниковские чтения: Органическая химия. От Марковникова до наших дней», Пансионат МГУ Красновидово 2020. С. 45.
- 9. Павловская А. Е. Региоселективный синтез несимметрично 1,4- и 1,6- дизамещенных семитиогликольурилов / Павловская А. Е., <u>Галочкин А. А.</u>, Баранов В. В., Кравченко А. Н. // Международная конференция студентов, аспирантов и молодых ученых «Ломоносов-2022», Москва 2022. С. 568.
- 10. <u>Галочкин А. А.</u> Тиоурониевые соли тиогликольурилов в синтезе новых фармакологически ориентированных производных имидазо[4,5-d]имидазола / Галочкин А. А., Косолапова К. А., Баранов В. В., Кравченко А. Н. // XXV Всероссийская конференция молодых учёных-химиков (с международным участием), Нижний Новгород 2022 С. 56.
- 11. Астахова М. К. Синтез первых представителей имидазоимидазотиазолидинонов на основе тиогликольурилов // Астахова М. К., **Галочкин А. А.**, Баранов В. В., Кравченко А. Н. // X Молодёжная конференция ИОХ РАН, Москва 2023 С. 108.
- 12. <u>Галочкин А. А.</u> Первые представители имидазоимидазоселеназолидинонов. Синтез и фунгицидная активность / Галочкин А. А., Баранов В. В., Кравченко А. Н. // Всероссийская конференция с международным участием «Идеи и наследие А. Е. Фаворского в органической химии», Санкт-Петербург 2023 С. 121.