ФИО соискателя Лубов Дмитрий Петрович

Название диссертации *Катализаторы селективной окислительной* функционализации алифатических С-H групп на основе триспиридилметиламиновых комплексов палладия

Шифр специальности –1.4.14. – кинетика и катализ

Химические науки

Шифр диссертационного совета 24.1.092.02

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел.:(499) 137-13-79

E-mail: sci-secr@ioc.ac.ru

Дата размещения полного текста диссертации на сайте Института http://zioc.ru/ 08 июля 2024 года

Дата приема к защите

15 июля 2024 года

Дата размещения автореферата на сайте BAK https://vak.minobrnauki.gov.ru
15 июля 2024 года

На правах рукописи

Лубов Дмитрий Петрович

КАТАЛИЗАТОРЫ СЕЛЕКТИВНОЙ ОКИСЛИТЕЛЬНОЙ ФУНКЦИОНАЛИЗАЦИИ АЛИФАТИЧЕСКИХ С-Н ГРУПП НА ОСНОВЕ ТРИС-ПИРИДИЛМЕТИЛАМИНОВЫХ КОМПЛЕКСОВ ПАЛЛАДИЯ

1.4.14. – Кинетика и катализ

Автореферат

диссертации на соискание учёной степени кандидата химических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук»

Научный руководитель: Брыляков Константин Петрович

доктор химических наук, профессор РАН, заведующий Лабораторией селективного окислительного катализа Института органической химии им. Н.Д. Зелинского

PAH

Официальные оппоненты: Перекалин Дмитрий Сергеевич

доктор химических наук, заведующий Лабораторией функционализированных элементоорганических соединений №133 Института элементоорганических

соединений им. А.Н. Несмеянова РАН

Приходченко Петр Валерьевич

доктор химических наук, заведующий Лабораторией пероксидных соединений и материалов на их основе Института общей и неорганической химии им. Н.С. Курнакова

PAH

Ведущая организация: Институт химии и химической технологии

СО РАН – обособленное подразделение

ФИЦ КНЦ СО РАН

Защита диссертации состоится «17» сентября 2024 г. в 11^{00} часов на заседании диссертационного совета 24.1.092.02 при Федеральном государственном бюджетном учреждении науки Институт органической химии им. Н. Д. Зелинского Российской академии наук (ИОХ РАН) по адресу: 119991, г. Москва, Ленинский проспект, 47.

C диссертацией можно ознакомиться в библиотеке ИОХ РАН и на сайте http://zioc.ru.

Автореферат разослан «___» _____ 2024 г.

Ваш отзыв в двух экземплярах, заверенный гербовой печатью, просим направлять по адресу: 119991 г. Москва, Ленинский проспект, 47, ученому секретарю Диссертационного совета 24.1.092.02 ИОХ РАН.

Ученый секретарь диссертационного совета 24.1.092.02, кандидат химических наук

Sur for

Е.А. Редина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования: Разработка методов, направленных на вовлечение алифатических углеводородов в селективные химические превращения с получением продуктов с высокой добавленной стоимостью является важным направлением развития современного органического Окислительная функционализация органических рассматривается как один из основных подходов к получению ценных химических продуктов из исходного органического сырья. Наиболее рациональной стратегией представляется прямое окисление С-Н групп, позволяющее (в теории) селективно функционализировать как простые углеводороды, так и сложные биологически активные молекулы. Однако изза кинетической инертности С-Н групп для реализации таких превращений в настоящее время преимущественно применяются токсичные неорганические окислители и жесткие условия проведения реакции, не соответствующие современным требованиям к селективности, атомной эффективности и экологичности. диктует необходимость разработки Это высокопроизводительных и селективных катализаторов, позволяющих использовать окислители с высокой атомной эффективностью, дающие в качестве стехиометрических побочных продуктов нетоксичные соединения.

В биологических системах природные ферменты-оксигеназы позволяют проводить процессы окисления в мягких условиях с высокой регио- и стереоселективностью. Поэтому в последнее время значительный интерес исследователей привлекает биомиметический подход окислительных систем на основе комплексов переходных металлов. На сегодняшний день наибольшие успехи связаны с развитием каталитических систем на основе биомиметических комплексов железа с бис-амино-биспиридиновыми лигандами и структурно схожих комплексов марганца. Ведется активная работа по созданию высокоэффективных каталитических процессов, а также по установлению механизмов таких превращений. Несмотря на достигнутый прогресс в этом направлении, системы на основе синтетических комплексов переходных металлов, способные катализировать процессы окисления сложных органических молекул с достаточной для практических применений селективностью и производительностью, пока крайне немногочисленны. Создание таких систем будет способствовать коренному изменению подходов к синтезу функционализированных природных соединений и модификации фармакологических свойств фармпрепаратов – путём селективного введения функциональных групп на «поздних» стадиях синтеза («Late Stage Functionalization»). Помимо гидроксилирования c использованием биомиметических каталитических систем, в последнее время все большее внимание уделяется разработке селективных методов введения карбоксилатных и алкоксигрупп в ходе С-Н окисления, способных расширить синтетические возможности

исследователей при создании новых производных биологически активных соелинений.

Соединения палладия хорошо зарекомендовали себя в качестве катализаторов во многих сферах синтетической химии, демонстрируя уникальные каталитические возможности, в том числе и в реакциях окислительной C-H активации. Такие процессы. В отличие биомиметических реакций окисления, как правило, требуют наличия групп субстрате и проходят через направляющих В органопалладиевых интермедиатов. В то же время процессы прямого (ненаправленного) алифатического С-Н окисления с участием соединений палладия до настоящего времени остаются малоизученными. В связи с этим палладиевые катализаторы с N4-донорными аминопиридиновыми лигандами, используемыми для получения железных и марганцевых биомиметических комплексов, представляются интересными для изучения в процессах окислительной С-Н функционализации.

Таким образом, разработка новых каталитических систем на основе комплексов палладия для реакций ненаправленного С-Н окисления органических молекул использованием экологически безопасных c окислителей, а также создание подходов к управлению селективностью таких процессов является актуальной и важной задачей. Изучение природы каталитически активных частиц и механизма окислительной С-Н функционализации в целом позволит глубже понять факторы, влияющие на активность катализатора, и в дальнейшем осуществлять рациональный дизайн новых лигандов и оптимизацию условий реакции для достижения лучших показателей эффективности и селективности практических применений в тонком органическом синтезе.

<u>**Цель работы**</u> – разработка и исследование катализаторов для селективной оксифункционализации алифатических С-Н групп на основе аминопиридиновых комплексов палладия(II).

Исходя из поставленной цели были определены следующие задачи:

- 1. Синтезировать ряд новых комплексов палладия(II) с N4-донорными аминопиридиновыми лигандами;
- 2. Исследовать каталитические свойства полученных комплексов в окислении бензильных и неактивированных алифатических С-H групп органических субстратов пероксикарбоновыми кислотами;
- 3. Изучить реакционную способность каталитических систем на основе аминопиридиновых комплексов палладия в процессах селективной С-Н функционализации сложных субстратов природного происхождения;
- 4. Исследовать природу активных центров изучаемых каталитических систем и особенности механизма окисления.

<u>Научная новизна и практическая значимость.</u> В рамках научного исследования был синтезирован ряд новых амино-*трис*-пиридиновых

комплексов палладия(II), обладающих каталитической активностью в реакциях окисления алифатических С-Н групп органическими пероксикислотами. Разработан новый метод каталитического окисления метиленовых групп замещенных арилалканов надуксусной кислотой, имеющей достаточно высокое содержание активного кислорода (21 %) и дающей нетоксичный стехиометрический побочный продукт (уксусную кислоту), с выходами продуктов окисления от умеренных до высоких (до 100%).

Продемонстрировано значительное увеличение скорости селективности катализируемых комплексами палладия процессов С-Н окисления органическими надкислотами при переходе от ацетонитрила в качестве растворителя к β-полифторированным спиртам. Изучено влияние электронных и стерических факторов на региоселективность алифатического С-Н гидроксилирования в 2,2,2-трифторэтаноле. Показано, что разработанная система демонстрирует высокую стереоспецифичность и региоселективность окисления третичным C-H положениям. Разработан алкоксилирования субстратов по третичным бензильным С-Н положениям, позволяющий получать простые эфиры с выходом до 95%. Получен и охарактеризован ряд новых 2,2,2-трифторэтоксипроизводных. На примере этилбензола продемонстрировано, что с использованием разработанной каталитической системы в β-полифторированных спиртах могут быть получены продукты кетонизации, гидроксилирования, селективно ацетоксилирования или 2,2,2-трифторэтоксилирования в зависимости от условий проведения реакции. Показана возможность селективной С-Н функционализации (гидроксилирования и алкоксилирования) ряда сложных субстратов терпеноидной и стероидной природы. Разработанные методики получения функционализированных использованы для производных сложных субстратов с синтетически приемлемыми выходами, а выявленные закономерности и особенности окисления - для развития новых направлений исследования и создания более эффективных каталитических систем.

Изучено влияние строения катализатора на его каталитическую активность. Показано, что катализ процессов бензильного С-Н окисления эффективно ведут лишь комплексы палладия, содержащие три 2-пиридилметильных фрагмента, способных координироваться к атому палладия. Проведено изучение механизма и природы каталитически активных частиц при помощи экспериментальных и расчетных методов. Для систем на основе амино-*трис*-пиридиновых комплексов палладия был впервые предложен механизм каталитического С-Н окисления с участием оксильных частиц палладия, осуществляющих гидроксилирование в соответствии с рекомбинационным механизмом.

<u>Методология и методы исследования.</u> В ходе выполнения работы для получения лигандов и субстратов использовались современные методы

органического синтеза. Для контроля глубины протекания реакции и состава реакционных смесей использовались методы ГХ-МС, ВЭЖХ и ¹Н ЯМР. Выделение и очистка соединений осуществлялись методами экстракции, кристаллизации, колоночной и препаративной тонкослойной хроматографии. В работе использовались физико-химические методы установления строения и чистоты химических соединений: спектроскопия ЯМР на ядрах ¹H, ¹³C, ¹⁹F, в том числе гомоядерная (¹H, ¹H COSY, NOESY) и гетероядерная (¹H, ¹³C) корреляционная спектроскопия, масс-спектрометрия высокого разрешения, рентгеноструктурный Для изучения механизма анализ. использовались методы измерения кинетических изотопных $(^{18}O),$ масс-спектрометрии $(k_{\rm H}/k_{\rm D})$, меченых атомов c ионизацией распылением электрическом поле. построение корреляционных зависимостей линейности свободных энергий, а также квантово-химические расчеты методом теории функционала плотности (DFT).

Положения, выносимые на защиту:

- 1. Методы С-Н окисления арилалканов надуксусной кислотой в присутствии амино-*mpuc*-пиридиновых комплексов палладия(II) в ацетонитриле;
- 2. Установление влияния растворителя на селективность каталитического окисления субстратов с 2° и 3° С-Н группами пероксикарбоновыми кислотами;
- 3. Методы 2,2,2-трифторэтоксилирования и алкоксилирования субстратов с бензильными 3° С-Н группами в β-полифторированных спиртах;
- 4. Подходы к С-Н оксифункционализации сложных молекул природного происхождения стероидной и терпеноидной природы;
- Результаты проведенных кинетических и изотопных экспериментов по изучению механизма окисления, гипотеза о ключевой роли оксильных комплексов палладия и предполагаемый механизм окисления;

Степень достоверности полученных результатов обеспечена тщательностью проведения экспериментальной работы и применением современных физико-химических методов анализа. Строение всех впервые ^{1}H ^{13}C ЯМР синтезированных соединений доказано метолами спектроскопии, в том числе с гомопривлечением двумерных гетероядерных экспериментов, а также масс-спектрометрии высокого разрешения. Для ряда комплексов палладия удалось получить монокристаллы, пригодные для исследования методом монокристальной структурные рентгеновской дифрактометрии; полученные Crystallographic депонированы Cambridge Data Center (CCDC). подтверждается независимой Достоверность результатов экспертизой в рецензируемых научных опубликованных материалов изданиях и апробацией на российских и международных научных конференциях.

Апробация работы. Результаты, представленные в диссертационной работе, докладывались и обсуждались на следующих конференциях: XI International Conference "Mechanisms of Catalytic Reactions" (Сочи, 2019); XII International Conference "Mechanisms of Catalytic Reactions" (Владимир, 2024); IV Российский конгресс по катализу «Роскатализ» (Казань, 2021); Международный молодежный научный форум «Ломоносов-2020» (Москва, 2020); Всероссийская научная конференции «Марковниковские чтения. Органическая химия: от Марковникова до наших дней» (WSOC-2022; Сочи, 2022); X Молодежная конференция ИОХ РАН (Москва, 2023).

<u>Публикации.</u> По материалам диссертации опубликовано 5 статей в рецензируемых научных журналах и 6 сообщений в виде тезисов в сборниках докладов конференций.

Структура диссертации. Работа изложена на 207 страницах, содержит 73 схемы, 26 рисунков и 18 таблиц. Текст работы включает список используемых сокращений, введение, литературный обзор, обсуждение результатов, экспериментальную часть, выводы, список цитируемой литературы и приложение (стр. 206-207). Список литературы насчитывает 226 источников.

<u>Личный вклад соискателя.</u> Соискатель принимал непосредственное участие в планировании и проведении всех синтетических и каталитических экспериментов, получении и обработке экспериментальных данных, анализе и интерпретации полученных результатов, подготовке научных публикаций к печати. Поиск, анализ и обобщение литературных данных по теме диссертации и представление научных докладов по теме диссертационной работы на научных конференциях выполнены соискателем самостоятельно.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **Введении** обоснована актуальность темы исследования, сформулированы цель и задачи работы, изложены научная новизна и практическая значимость, положения, выносимые на защиту, личный вклад автора, сведения об апробации работы.

Первая глава (литературный обзор) посвящена рассмотрению методов каталитической окислительной С-Н функционализации в присутствии комплексов легких платиновых металлов. В первом разделе рассмотрена общая информация о реакциях образования связи С-О посредством селективной алифатической С-Н активации. Второй раздел посвящен обсуждению существующих систем для гомогенного каталитического окисления С-Н групп на основе соединений первой триады платиновых металлов и состоит из трех подразделов: в первом подразделе рассмотрены системы на основе тетраоксида рутения, порфириновых и биомиметических негемовых комплексов рутения, во втором - системы на основе соединений родия, в третьем подразделе обсуждаются катализируемые комплексами палладия процессы, основные синтетические подходы с их использованием,

достижения и нерешенные проблемы. *Третий раздел* содержит заключение по литературному обзору, на основании которого определены основные задачи диссертационного исследования.

результатов) содержит Вторая глава (обсуждение результаты выполненного исследования и их обсуждение: первый раздел посвящен комплексов палладия(II) с *трис*-пиридилметиламиновыми лигандами; второй раздел – изучению каталитической активности полученных комплексов в реакциях бензильного С-Н окисления в ацетонитриле; третий раздел – исследованию палладий-катализируемых окисления органическими надкислотами неактивированными алифатическими С-Н группами в β-полифторированных спиртах, разработке подходов к управлению хемоселективостью окисления бензильных 2° и 3° С-Н групп, а также применению разработанных методов для региоселективной С-Н оксифункционализации ряда сложных субстратов терпеноидной и стероидной природы; в четвертом разделе приведены результаты экспериментов по изучению механизма и природы каталитически активных частиц при помощи экспериментальных и квантовохимических расчетных методов, а также представлен предполагаемый механизм С-Н пероксикарбоновыми кислотами присутствии пиридилметиламиновых комплексов палладия.

третьей главе (экспериментальная часть) излагаются экспериментальные методики синтеза аминопиридиновых лигандов и комплексов палладия на их основе. Описаны процедуры проведения реакций каталитического С-Н окисления, экспериментов по изучению механизма и активных центров, a также приведены данные спектроскопической и масс-спектрометрической характеризации продуктов окисления.

В приложение вынесены структуры ряда комплексов палладия по данным монокристальной рентгеновской дифрактометрии.

1. Синтез N-донорных *трис*-пиридилметиламиновых лигандов и комплексов палладия(II) на их основе

В ходе работы был синтезирован ряд аминопиридиновых комплексов палладия(II) с N4-донорными триподальными лигандами ТРА ряда ($Pисунок\ I$). Предшественником выступал доступный ацетат палладия или легко получаемый из него трифлат тетракис(ацетонитрил)палладия(II) ($Cxema\ I$).

Полученные комплексы были охарактеризованы при помощи спектроскопии 1 H, 13 C и 19 F ЯМР, а для **1-4** структура подтверждена при помощи монокристальной рентгеновской дифрактометрии.

Схема 1. Получение исследуемых комплексов палладия(II).

В полученных комплексах атом палладия связан с двумя пиридильными и одним аминным атомом азота лиганда, т.е. N4-донорные амино-*трис*пиридиновые лиганды выступают как тридентатные, а один из пиридилметиловых фрагментов остается несвязанным.

Рисунок 1. Структуры синтезированных комплексов палладия(II).

2. Каталитическое бензильное С-Н окисление в ацетонитриле

Показано, что полученные комплексы способны катализировать процессы окисления 2° и 3° бензильных С-Н групп органических соединений пероксикарбоновыми кислотами (AcOOH, *m*-CPBA) в ацетонитриле с высокой производительностью (> 100 TON). Комплексы 1 и 3 оказались самыми эффективными и демонстрируют сравнимую активность при окислении этилбензола, в то время как в процессах с участием 4-7, в которых доступ к центральному атому экранирован заместителями в пиридиновом фрагменте лиганда, наблюдается резкое снижение конверсии субстрата (по сравнению с 1-3 и 8).

В найденных условиях (0.6 мольн. % катализатора, 4 экв. AcOOH, $+60^{\circ}$ C, 24 ч) в присутствии наиболее активного катализатора 1 был окислен ряд арилалканов, содержащих метиленовую группу, с высокой хемо- и региоселективностью и выходами кетонов 10а-р от умеренных до отличных (Схема 2).

Схема 2. Бензильное окисление арилалканов AcOOH в присутствии **1**. Выходы кетонов и конверсия субстратов определены по данным ¹H ЯМР.

Селективность окисления кумола надуксусной кислотой определяется температурой проведения реакции (Cxema 3). При +60 °C основным продуктом является ацетофенон, продукт разрыва связи C-C (выход до 35 %), в то время как при низких температурах (0...10 °C) получается кумиловый спирт с выходом до 85%.

Схема 3. Бензильное окисление кумола AcOOH в присутствии **1** при разных температурах. Выходы определены по данным ВЭЖХ.

При пониженной температуре был окислен ряд производных кумола и другие субстраты, содержащие третичные бензильные С-Н группы, с получением соответствующих спиртов (*Схема 4*). Однако окисление происходит медленно (48-120 часов) и имеет продолжительный индукционный период.

$$R_2$$
 $1 (0.6 \text{ мольн. }\%)$ R_2 R_2 R_3 R_4 R_5 R_6 R_8 R_8 R_8 R_9 R_9

Схема 4. Бензильное окисление арилалканов AcOOH в присутствии **1**. Выходы определены по ¹Н ЯМР.

Предполагаемый путь образования ацетофенона (продукта разрыва связи C-C) при окислении 3° бензильных C-H групп включает разрыв связи О-H в кумиловом спирте активными частицами палладия с последующим β-расщеплением кумилоксильного радикального интермедиата.

3. Селективное С-Н окисление в β-полифторированных спиртах

После того как было показано, что бензильные С-H группы могут быть окислены с использованием $1/RCO_3H$, было решено изучить возможность расширения реакционной способности на субстраты с более прочными неактивированными алифатическими С-H связями. В качестве модельного процесса было выбрано окисление адамантана. Результаты представлены в $Taблице\ l$.

Было обнаружено, что замена ацетонитрила на β-полифторированные 2,2,2-трифторэтанол 1,1,1,3,3,3спирты, такие как (TFE) (HFIP), в качестве растворителя гексафторизопропанол приводит к значительному увеличению конверсии адамантана (Таблица 1). Окисление адамантана надкислотами (AcOOH, m-CPBA) при температуре 0 или +10 °C в 2,2,2-трифторэтаноле в присутствии 1 (0.6 мольн. %) происходит с высоким выходом спирта (до 93%) и высокой региоселективностью по третичным С-Н группам $(3^{\circ}/2^{\circ})$ до 333, что является одним из самых высоких значений, наблюлавшихся при окислении присутствии аламантана металлокомплексных катализаторов).

При окислении uuc-1,2-диметилциклогексана (Taблица 2) было показано, что гидроксилирование происходит преимущественно с сохранением стереоконфигурации третичного С-H центра (RC > 99%). Отсутствие существенной рацемизации позволяет исключить участие donzoжuвущих углерод-центрированных радикалов в процессе окисления. Uuc- и mpanc-декалины также реагируют с получением соответствующих третичных спиртов с высокой региоселективностью и стереоспецифичностью.

Таблица 1. Каталитическое окисление адамантана^[а]

№	Окислитель (число экв.)	Растворитель	Конверсия % ^[b]	Выход, % ^[b] 15:16:17:18:19 ,	3°/2°
1	m-CPBA (1.5)	CH ₃ CN/CH ₂ Cl ₂	21	20/-/-/0.3/-[c]	100
2	m-CPBA (1.5)	TFE/CH ₂ Cl ₂	94	93 ^[d] /-/1/-/-	_
3	m-CPBA (1.5)	HFIP/CH2Cl2	92	66/21/3 ^[e] /1/-	333
4	AcOOH (2)	TFE/CH ₂ Cl ₂	98	80/14/0.6/1/2	109
5 ^[f]	AcOOH (2)	TFE/CH ₂ Cl ₂	74	69/3/0.5/-/0.8	283

[а] Условия проведения: адамантан (0.2 ммоль), окислитель (АсООН или m-CPBA), кат. **1** (0.6 мольн. %), растворитель (CH₃CN, TFE или HFIP, 600 мкл) + CH₂Cl₂ (300 мкл); [b] Конверсия и выход определены при помощи 1 H ЯМР и ГХ/МС; $^{[c]}$ 0.3% адамантанона; $^{[d]}$ Выход выделенного продукта 82 % (при загрузке 0.5 ммоль); $^{[e]}$ простой эфир HFIP и 1-адамантанола; $^{[f]}$ Температура 0°C; $3^{\circ}/2^{\circ} = 3 \times \{[15] + [17] + 2 \times [16] \}/\{[18] + [19]\}.$

Для оценки влияния электронных факторов проведено окисление производных 2,6-диметилоктана (Tаблица 3). Введение в структуру электроноакцепторных заместителей (OAc, Br) приводит к преимущественному окислению удаленной от акцептора третичной С-H группы. Наибольшее соотношение продуктов по «удаленному»/«ближнему» центрам наблюдается в случае 3,7-диметилоктилбромида (\approx 32:1), что схоже с результатами по гидроксилированию алканов при катализе комплексами марганца с PDP-лигандами.

Таблица 2. Каталитическое окисление *цис*-1,2-диметилциклогексана^[а]

№	Окислитель	Конверсия, % [b]	Выходы 21:22:23, %	<i>RC</i> , % ^[c]
1	AcOOH	92	87 (73) ^[d] :0.2:3.9	>99
2	m-CPBA	>99	89:0.2: -	>99
3 ^[e]	m-CPBA	32	25:0.6: -	95.3

[a] Условия реакции: субстрат (0.1 ммоль), окислитель (0.2 ммоль), катализатор (0.6 мольн. %), TFE/CH₂Cl₂ (320 мкл/80 мкл); [b] Конверсия и выходы были определены при помощи ГХ-МС; [c] RC = $100\% \times ([mpanc-21] - [uuc-21])/([mpanc-21] + [uuc-21])$; [d] Выход выделенного продукта (при загрузке субстрата 1.5 ммоль); [e] в СН₃CN.

Таблица 3. Каталитическое окисление производных 2,6-диметилоктана^{[а], [b]}

No	X	Окислитель	Конверсия,	Выход продуктов, %			25/ 26
JN⊡			%	25	26	27	25/ 20
1	Н	AcOOH	98	27	42 (51) ^[c]	17	1:1.6
$2^{[d]}$	Η	AcOOH	99	31	57	12	1:1.8
3	OAc	m-CPBA	81	61 ^[e]	10	_	7.1:1
4	OAc	AcOOH	32	28 (22)	3.9	_	7.2:1
5	Br	m-CPBA	66	57	3.5	_	16:1
6	Br	AcOOH	47	45 (38)	1.4	_	32:1

[а] Условия реакции: субстрат (0.1 ммоль), окислитель (0.2 ммоль), кат. **1** (0.6 мольн. %), ТFE (300 мкл + CH₂Cl₂ 30 мкл); [b] Конверсия и выход определены при помощи ГХ-МС или ¹Н ЯМР. В скобках - выходы выделенных продуктов (загрузка субстрата 0.3 ммоль); ^[с] Выход выделенного продукта (смесь 1:1.4 **25a:26a**), загрузка 0.4 ммоль; ^[d] Растворитель ТFE/H₂O (1:1 мольн/мольн), время реакции 24 ч. ^[е] Также образуется 10% простого эфира с TFE.

При окислении (+)-ментилацетата **28**, содержащего два 3° С-Н положения С1 и С8, равноудаленных от электроноакцепторной группы ОАс, однако различающихся по пространственной доступности, гидроксилирование преимущественно происходит по стерически более доступному положению С1 (*Таблица 4*). Однако влияние пространственных факторов в случае катализатора **1** с простым стерически незатруднённым лигандом ТРА менее значимо, чем влияние электронных эффектов. Соотношение продуктов **29/30** варьируется в диапазоне 2.7-5.4, что заметно ниже, чем при окислении с участием комплексов Fe и Mn с лигандами семейства PDP (7.7-57).

Таблица 4. Каталитическое окисление (-)-ментилацетата^{[а], [b]}

№	Условия	Конверсия, %	Выходы 29 : 30, %	29/30
1	1 (0.6 мольн. %), <i>m</i> -CPBA (2 экв.), 44 ч	16	12.5 : 2.8	4.5
2	1 (0.6 мольн. %), AcOOH (2 экв.), 44 ч	26	18.5 : 3.4	5.4
3	1 (2 мольн. %), АсООН (4 экв.), 76 ч	63	41.4 : 15.1	2.7

 $^{^{[}a]}$ Условия реакции: субстрат (0.1 ммоль), окислитель (0.2 или 0.4 ммоль), кат. 1, TFE (300 мкл); $^{[b]}$ Конверсию и выход определяли при помощи 1 H ЯМР.

Окисление этилбензола с использованием системы 1/RCO₃H в β-полифторированных спиртах (TFE, HFIP) также происходит с более высокой конверсией по сравнению с ацетонитрилом и позволяет в зависимости от условий получать различные продукты (*Схема 5*). Использование избытка окислителя (AcOOH или *m*-CPBA) при +10°C позволяет получить ацетофенон с выходом до 91%, тогда как использование пониженного количества AcOOH и добавление уксусной кислоты приводит к тому, что ацетат 1-фенилэтанола 31 становится преобладающим продуктом реакции (*Схема 5*). В среде ацетонитрила из этилбензола не удавалось получить в виде основного продукта вторичный спирт из-за его способности к дальнейшему окислению в кетон, однако в среде HFIP были найдены условия, в которых 1-фенилэтанол 32 или его простой эфир с 2,2,2-трифторэтанолом 33 могут быть получены с выходами около 50% (*Схема 5*).

Схема 5. Окисление этилбензола надкислотами в β -полифторированных спиртах. Выходы определены по данным 1 Н ЯМР и ВЭЖХ (для 10a).

Окислении кумола системой 1/АсООН в ТFE при 0°С происходит значительно быстрее, чем в ацетонитриле (24 ч против 120 ч), однако среди продуктов реакции помимо спирта (47%) обнаруживается значительное количество 2,2,2-трифторэтилового эфира кумилового спирта (43%). Замена АсООН на высушенную в вакууме *m*-СРВА позволяет получить в качестве основного продукта простой эфир с выходом до 85% (по ¹Н ЯМР). Из производных кумола и других соединений, содержащих бензильные третичные С-Н группы, действием *m*-СРВА в среде ТFE в присутствии комплекса 1 также могут быть получены соответствующие 2,2,2-трифторэтиловые эфиры 34а-g в качестве основных продуктов с хорошими выходами (41-73%, *Схема 6*). Полученные производные были выделены при помощи препаративной ТСХ и охарактеризованы методами ¹Н, ¹ЗС, ¹9F ЯМР спектроскопии и масс-спектрометрии высокого разрешения.

Согласно проведенным контрольным экспериментам, возможными маршрутами образования простого эфира могут быть как прямой перенос

фрагмента OCH_2CF_3 с активного центра катализатора после разрыва С-Н связи кумола, так и превращение образовавшегося в реакции кумилового спирта в простой эфир с участием катионных частиц палладия.

Схема 6. Трифторэтоксилирование производных кумола в присутствии **1**. Выходы указаны для выделенных продуктов. ^а Выход определен по ГХ-МС, основные продукты окисления - спирт (45%) и n-нитроацетофенон (20%).

Схема 7. Каталитическое С-Н алкоксилирование кумола в системе HFIP:алифатический спирт. Конверсия и выходы определены по данным ГХ-МС или 1 H ЯМР (для спиртов C1-C4). В скобках указаны выходы выделенных продуктов (при загрузке 0.6 ммоль). $^{[a]}$ Загрузка катализатора 0.6 мольн. %, загрузка окислителя 1.3 экв. $^{[b]}$ при 0°C

При окислении кумола в смеси HFIP и первичных алифатических спиртов в качестве продуктов могут быть получены различные простые эфиры кумилового спирта **35а-j** с выходами 62-95% (*Схема 7*). Добавление H_2O , более сильного нуклеофила, к TFE или HFIP подавляет образование простых эфиров, что было использовано для получения продукта гидроксилирования с высокой селективностью и выходом. Были подобраны условия для смесей TFE/ H_2O и HFIP/ H_2O , в которых кумиловый спирт образуется из кумола с выходом до 91%, причем окисление происходит значительно быстрее и с меньшей загрузкой окислителя, чем при проведении реакции в ацетонитриле.

Высокая региоселективность каталитического окисления 1/RCO₃H алифатических групп (как бензильных, так и неактивированных 3° положений), обусловленная в первую очередь электронными эффектами, позволила применить разработанные подходы для функционализации сложных субстратов природного происхождения, содержащих большое количество различных 2° и 3° С-Н групп. Так, было показано, что окисление производного дезоксихолевой кислоты 36 предсказуемо протекает по иисдекалиновой системе с получением третичного спирта 37 с выходом 48% (Схема 8а), а окисление терпеноида амброксида 38 - по α-положению С12 простого эфира, наиболее электроноизбыточному за счет стереоэлектронных эффектов, с образованием лактона склареолида 39 с выходом 79% (Схема 8b). При введении в реакцию сесквитерпена цедрана 40 неожиданно на первый взгляд образуется продукт кетонизации по С9 положению 41 (Схема 8с). Однако, с учётом обнаруженной эпимеризации С8 центра, образование объясняется протекающим каскалом реакций: первоначальным каталитическим гидроксилированием, дегидратацией и некаталитическим эпоксидированием с последующей перегруппировкой Мейнвальда.

Схема 8. Окисление сложных субстратов системой $1/RCO_3H$ в TFE: а) окисление производного дезоксихолевой кислоты **36**; b) окисление (-)-амброксида; c) окисление цедрана. Указаны выходы выделенных продуктов.

Ацетат эстрона 42, содержащий 2° и 3° бензильные положения, при использовании 1/RCO₃H/TFE окисляется преимущественно с образованием С9(β)-спирта 43 с выходом 63% (Схема 9). С6,С9-Кетоспирт 44 может быть получен в случае большего избытка окислителя в TFE. Так, применение *m*-СРВА (3 экв.) и комплекса 7 позволяет выделить 44 с выходом 75%. При использовании вместо 1 комплекса 5 с более стерически затрудненным лигандом удается получить в качестве основного продукта С6-кетон 45 (Схема 9), не наблюдаемый в заметных количествах при использовании других катализаторов. Однако катализатор 5 менее активен, и даже при большей загрузке катализатора (2 мольн. %) и увеличенном времени реакции (до 72 часов) не удается достичь выхода С6-кетона выше 22%. В смеси растворителей HFIP/MeOH ацетат эстрона преимущественно окисляется по третичному С9-положению с получением метоксипроизводного 46 в виде смеси диастереомеров (С9 α :С9 β = 2.7:1), которые могут быть разделены при колоночной хроматографии. Для помоши получения трифторэтоксипроизводного 47 катализатор 1 в ТFE неприменим, однако было найдено, что более стерически нагруженный катализатор 4 (1 мольн. %) позволяет получить простой эфир 47 с выходом 34% (С9 α :С9 β = 1.7:1) наряду с 15% С9,С11-алкена (Схема 9).

Метил дегидроабиетат **48**, содержащий 2° (C7) и 3° (C15) бензильные положения, в смеси HFIP/MeOH окисляется по C7-положению, образуя метоксипроизводное **49** с выходом 50% в виде смеси двух диастереомеров (C7 α :C7 β = 2.5:1) (*Схема 10*). В качестве преобладающего побочного продукта выделяется продукт избыточного окисления — C7-кетон **50** (25%). При окислении действием *m*-CPBA в TFE удается получить C7-трифторэтоксипроизводное **51** с выходом 49% (C7 α :C7 β = 4.4:1) (*Схема 10*).

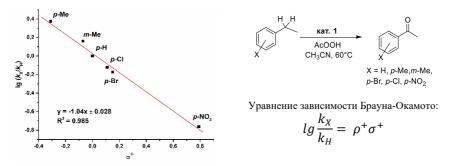
Схема 9. Окисление ацетата эстрона **42** *m*-CPBA в β-полифторированных спиртах. Выходы указаны для выделенных продуктов.

Схема 10. Алкоксилирование метилового эфира дегидроабиетиновой кислоты **48**. Выходы указаны для выделенных продуктов.

При функционализации N-ацетилдегидроабиетиламина **52**, другого производного дегидроабиетиновой кислоты, в системе HFIP/MeOH было получено C7-метоксипроизводное **53** с выходом 51%, однако наблюдаемая диастереоселективность окисления (C7 α :C7 β = 5.9) выше по сравнению с другими субстратами (*Схема 11*). Как и при окислении ацетата эстрона, в случае **52** применение комплекса **4** вместо **1** в TFE позволяет повысить выход C7-трифторэтоксипроизводного **54**, которое было выделено с выходом 26% в виде единственного диастереомера (*Схема 11*). Применение HFIP/H₂O позволяет получать продукт C7-гидроксилирования **55** (61%). Все выделенные продукты охарактеризованы с привлечением двумерной корреляционной (1 H- 1 H, 1 H- 13 C) ЯМР спектроскопии и масс-спектрометрии высокого разрешения. Стереоконфигурация C7-центра в полученных алкоксипроизводных была подтверждена при помощи метода двумерной спектроскопии ЯМР 1 H- 1 H NOESY.

Схема 11. Алкоксилирование N-ацетилдегидроабиетиламина **52**: а) в среде HFIP/MeOH; b) в среде TFE.

Таким образом, были разработаны подходы к селективному гидроксилированнию и алкоксилированию ряда сложных субстратов терпеноидной и стероидной природы с применением аминопиридиновых комплексов палладия и органических пероксикислот в β-полифторированных спиртах.


4. Исследование механизма окисления и природы каталитически активных центров

Величина первичного кинетического изотопного эффекта (КИЭ) в процессах С-Н окисления несёт ценную информацию о механизме реакции. Для окисления этилбензола в присутствии 1 в ацетонитриле при $+60^{\circ}$ С (Схема 12a) значение $k_{\rm H}/k_{\rm D}$ оказалось равно 6.3. Это свидетельствуют о том, что бензильный атом водорода лежит на координате реакции в лимитирующей стадии процесса. Наблюдаемые значения КИЭ находятся в значений. C-H диапазоне характерных для окисления электронодефицитными комплексами переходных металлов (3-10) значительно выше, чем значения для отрыва атома водорода Оцентрированными свободными радикалами (1-2 для 'ОН и 4 для 'OtBu). При конкурентном окислении 1-фенилэтанола и 1-d-1-фенилэтанола при +60°C ожидаемо получено более низкое значение $k_{\rm H}/k_{\rm D}=2.4$ вследствие того, что С-Н группа во вторичном спирте «активирована» за счёт сверхсопряжения с соседним гетероатомом (Схема 12b). В среде полифторированных спиртов также наблюдаются значительные первичные КИЭ при С-Н окислении надкислотами, катализируемом аминопиридиновыми комплексами палладия. Так, при конкурентном окислении кумола и α-D-кумола m-CPBA в ТFE при +10°С получено значение КИЭ $k_{\rm H}/k_{\rm D} = 7.8$ (*Схема 12c*).

$$\mathbf{a}$$
) \mathbf{H} \mathbf{H} \mathbf{D} \mathbf{CD}_3 \mathbf{K} \mathbf{A} \mathbf{CDO} \mathbf{CD}_3 \mathbf{CD}_4 \mathbf

Схема 12. Измерение КИЭ при конкурентном С-Н окислении: а) этилбензола и d_{10} -этилбензола в CH_3CN при $+60^{\circ}C$; b) 1-фенилэтанола и 1-d-1-фенилэтанола в CH_3CN при $+60^{\circ}C$; c) кумола и α -D-кумола в TFE при $+10^{\circ}C$.

Логарифм констант скорости окисления замещенных этилбензолов Брауна-Окамото параметрами заместителей свидетельствует об электронодефицитном переходном состоянии. Параметр ρ^+ отрицателен (-1.04), что позволяет сделать заключение об электрофильной природе окислителя (*Рисунок 2*). Абсолютная величина ρ^+ указывает на невысокую степень разделение заряда; в то же время, ρ^+ близко к значениям, электронодефицитными наблюдаемым при окислении переходных металлов (например, -1.0 при окислении, катализируемом бисамино-бис-пиридиновыми комплексами Mn, -1.6 для цитохрома P450, -1.4 для оксочастиц Ru) и выше значений для реакций отрыва атома водорода свободными оксоцентрированными радикалами (RO', ROO', от -0.3 до -0.6).

Рисунок 2. График корреляционной зависимости Брауна-Окамото для окисления замещенных этилбензолов AcOOH при +60°C в присутствии 1.

При окислении кумола 1 экв. безводной *m*-СРВА в присутствии 1 при $+30^{\circ}$ С в ацетонитриле с добавлением 10 экв. изотопно-меченой воды H_2^{18} О в атмосфере аргона наблюдается внедрение 60% 18О в кумиловый спирт (Схема 13а). Поскольку для спиртов обмен кислородом с водой нехарактерен дополнительно подтверждено экспериментом контрольным выдерживанием спирта с 1/m-СРВА в СН₃СN), то можно предположить, что кислородом способна обмениваться активная частица, образующаяся из комплекса 1. Такой обмен известен, в частности, для терминальных оксокомплексов переходных металлов. Низкий уровень внедрения ¹⁸О при окислении в атмосфере меченого кислорода свидетельствует о том, что растворённый дикислород не является основным источником атомов О при образовании спирта в присутствии 1 (Схема 13b). Этот вывод согласуется с данными о том, при проведении окисления кумола в инертной, воздушной или кислородной атмосфере при 0 °C или +10 °C были получены практически идентичные результаты по конверсии и соотношению основных продуктов, что позволяют исключить значительный вклад свободнорадикального маршрута окисления кумола с участием растворенного молекулярного кислорода.

Схема 13. Каталитические эксперименты по окислению кумола m-СРВА в ацетонитриле в присутствии H_2^{18} О и 18 О₂.

На основании совокупности полученных экспериментальных данных можно сделать предположение об участии в окислении активных частиц, подобных по реакционной способности оксочастицам металлов. Однако предположение о том, что в изучаемой системе образуются терминальные оксо-комплексы палладия (IV), сталкивается с так называемой «охо wall» проблемой, связанной с электронной дестабилизацией терминальных оксо-комплексов поздних переходных металлов (9-11 групп) с тетрагональной геометрией. Однако запрет не является строгим для высокоспиновых состояний, поэтому металл-оксильные (M^{n+} –O*) частицы, являющиеся электронными эквивалентами оксо-частиц $M^{(n+1)+}$ =O, могут участвовать в качестве активных частиц в различных процессах С-H окисления, как, например, недавно обнаруженные частицы с фрагментами Ni–O* и Co–O*.

квантовохимические **DFT** Действительно. расчеты метолом (B2PLYP/def2-TZVPP для Pd, 6-311G(d) для остальных атомов) показывают, что для активного интермедиата со связью палладий-кислород основным состоянием является триплетное (S=1), соответствующее образованию оксильных частиц, содержащих бирадикалоидный фрагмент Pd^{III}-O^{*}. Для такого интермедиата выгоднее гексакоординированная структура. Это согласуется с тем экспериментальным фактом, что комплексы палладия как с бис-амино-бис-пиридиновыми, так и амино-бис-пиридиновыми лигандами не демонстрируют каталитической активности в реакциях С-Н окисления надуксусной кислотой, есть для эффективного аминопиридиновые комплексы палладия(II) должны содержать три 2пиридилметильных фрагмента, способных координироваться к центральному атому.

Схема 14. Предполагаемая схема реакции в системе 1/RCO₃H/кумол. ТРАлиганд представлен схематично.

Таким образом, для С-Н окисления в системе 1/RCO₃H/субстрат была предложена следующая схема каталитического процесса (Схема 14). На первой стадии экваториальный лиганд прекатализатора замещается остатком пероксикарбоновой кислоты. Этот процесс является медленным и может быть вероятной причиной индукционного периода при окислении в ацетонитриле при 0 °С. После образования интермедиата $[(TPA)Pd^{II}(\eta^{1} OOC(O)R)]^+$ происходит гетеролиз связи O-O через образование комплекса с η^2 -координированным пероксикарбоксилатом, по-видимому, чему, способствует аксиальная координация свободного пиридилметильного фрагмента лиганда к атому Рd. При этом образуется гексакоординированная активная частица [(TPA)Pd^{III}—O'(OC(O)R]+, участвующая в отрыве атома водорода (НАТ) от бензильного положения субстрата. Последующая рекомбинация полученного радикала с координированной к палладию гидроксильной группой приводит к образованию кумилового спирта. Получившаяся при этом частица палладия(II) [(TPA)Pd^{II}]²⁺ реагирует с надкислотой, завершая таким образом каталитический цикл.

выводы

- 1. Синтезирован и охарактеризован ряд новых комплексов палладия(II) с амино-*трис*-пиридилметильными лигандами, способных катализировать процессы окисления вторичных и третичных бензильных С-Н групп органических соединений пероксикарбоновыми кислотами (AcOOH, *т*-СРВА) с высокой производительностью (>140 TON), регио- и хемоселективностью (до 100%) и стереоспецифичностью (>99%).
- 2. Установлено, что замена наиболее распространённого реакционного растворителя ацетонитрила на β-полифторированные спирты позволяет существенно ускорить протекание реакции и одновременно повысить её хемо- и региоселективность, а также расширить круг возможных субстратов за счет соединений с неактивированными алифатическими С-Н группами. Найдены подходы к управлению хемоселективностью окисления, позволяющие, в зависимости от условий реакции, получать продукты гидроксилирования либо алкоксилирования по бензильным 2° и 3° С-Н группам.
- 3. Показана возможность применения каталитических систем на основе *трис*-пиридилметиламиновых комплексов палладия и пероксикарбоновых кислот для окислительной функционализации как сравнительно простых молекул углеводородов, так и сложных молекул природного происхождения. Разработаны подходы к региоселективному гидроксилированию и алкоксилированию ряда биологически активных субстратов терпеноидной и стероидной природы.
- 4. С помощью ряда химических, кинетических, спектроскопических и квантовохимических расчётных методов изучены особенности механизма С-Н гидроксилирования в присутствии *тиде*-пиридилметиламиновых комплексов палладия. Полученные данные свидетельствуют в пользу прямого отрыва атома водорода бензильной С-Н группы субстрата активной частицей оксильным комплексом палладия [(TPA)PdIII-O']²⁺, за которым следует повторное связывание образовавшегося С-центрированного радикала координированной к палладию гидроксильной группой в клетке растворителя.

Список основных работ, опубликованных по теме исследования

- 1. **Lubov D.P.**, Lyakin O.Y., Samsonenko D.G., Rybalova T.V., Talsi E.P., Bryliakov K.P. Palladium aminopyridine complexes catalyzed selective benzylic C–H oxidations with peracetic acid // Dalton Transactions. 2020. V. 49. N. 32. P. 11150–11156.
- 2. **Lubov D.P.**, Talsi E.P., Bryliakov K.P. Methods for selective benzylic C–H oxofunctionalization of organic compounds // Russian Chemical Reviews. 2020. V. 89. N. 6. P. 587–628.
- Д.П. Лубов, Е.П. Талзи, К.П. Брыляков. Методы селективной бензильной С-Н оксофункционализации органических соединений // Успехи химии. 2020. V. 89 N. 6. P. 587—628.
- 3. **Lubov D.P.**, Bryliakova A.A., Samsonenko D.G., Sheven D.G., Talsi E.P., Bryliakov K.P. Palladium-Aminopyridine Catalyzed C-H Oxygenation: Probing the Nature of Metal Based Oxidant // ChemCatChem. 2021. V. 13. N. 24. P. 5109–5120.
- 4. **Lubov D.P.**, Shashkov M. V., Nefedov A.A., Bryliakov K.P. A Predictably Selective Palladium-Catalyzed Aliphatic C-H Oxygenation // Organic Letters. 2023. V. 25. N. 9. P. 1359–1363.
- 5. **Lubov D.P.**, Ivanov K.S., Nefedov A.A., Talsi E.P., Bryliakov K.P. Palladium catalyzed $C(sp^3)$ -H trifluoroethoxylation // Journal of Catalysis. 2024. V. 435. P. 115563.
- 6. **Lubov D.P.**, Talsi E.P., Bryliakov K.P. Benzylic C-H Oxidation of Arylalkanes with Peroxyacetic Acid in the Presence of Palladium-Aminopyridine Complexes. XI International Conference "Mechanisms of Catalytic Reactions": Abstracts. Sochi, Russia, 7-11 October 2019. p. 329.
- 7. **Lubov D.P.**, Bryliakov K.P. Selective C(sp³)—H Hydroxylation/Alkoxylation in the Presence of Palladium Aminopyridine Complexes. XII International Conference "Mechanisms of Catalytic Reactions": Abstracts. Vladimir, Russia, 17-21 June 2024. p. 133.
- 8. Д.П. Лубов. Изучение бензильного С-Н окисления арилалканов пероксикарбоновыми кислотами в присутствии аминопиридиновых комплексов палладия (II). XXVII Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020», секция «Химия»: Сборник тезисов. Москва, Россия, 10-27 ноября 2020 года. с. 494.
- 9. **Д.П.** Лубов, А.А. Брылякова Е.П. Талзи, К.П. Брыляков. Бензильное С-Н окисление арилалканов пероксикарбоновыми кислотами, катализируемое аминопиридиновыми комплексами палладия (II). IV Российский конгресс по катализу «Роскатализ»: Сборник тезисов. Казань, Россия, 20-25 сентрября 2021 года. с. 380-381.
- 10. Д.П. Лубов, Р.В. Оттенбахер, К.П. Брыляков. Разработка методов селективной каталитической С-Н оксифункционализации органических соединений. Всероссийская научная конференция «Марковниковские чтения:

органическая химия от Марковникова до наших дней», школа-конференция молодых учёных «Органическая химия: традиции и современность»: Сборник тезисов. – Лоо, Сочи, Россия, 16-21 сентября 2022 года. – с. 68.

11. Д.П. Лубов, А.А, Брылякова К.П. Брыляков. Селективная палладий-катализируемая С-Н оксифункционализация органических соединений. X Молодежная конференция ИОХ РАН: Сборник тезисов. — Москва, Россия, 29-31 мая 2023 года. — с. 42.