ФИО соискателя Никольский Владислав Владимирович

Название диссертации Синтез азолопиридинов на основе реакций нуклеофильного ароматического замещения нитрогруппы в 3-нитропиридинах

Шифр специальности – 1.4.3. – органическая химия

Химические науки

Шифр диссертационного совета 24.1.092.01

Федеральное государственное бюджетное учреждение науки Институт органической

химии им. Н.Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел.: (499) 137-13-79

E-mail: sci-secr@ioc.ac.ru

Дата размещения полного текста диссертации на сайте Института http://zioc.ru/

30 сентября 2025 года

Дата приема к защите

08 октября 2025 года

Дата размещения автореферата на сайте BAK https://vak.minobrnauki.gov.ru

09 октября 2025 года

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ ИМ. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Никольский Владислав Владимирович

СИНТЕЗ АЗОЛОПИРИДИНОВ НА ОСНОВЕ РЕАКЦИЙ НУКЛЕОФИЛЬНОГО АРОМАТИЧЕСКОГО ЗАМЕЩЕНИЯ НИТРОГРУППЫ В 3-НИТРОПИРИДИНАХ

1.4.3. Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в Лаборатории ароматических азотсодержащих соединений №18 Федерального государственного бюджетного учреждения науки

Института органической химии им. Н.Д. Зелинского Российской академии наук

* *	Н.Д. Зелинского Россиискои академии наук
НАУЧНЫЙ РУКОВОДИТЕЛЬ	Старосотников Алексей Михайлович,
	доктор химических наук, ведущий
	научный сотрудник Лаборатории
	ароматических азотсодержащих
	соединений №18 Института органической
	химии им. Н.Д. Зелинского РАН
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ	Бабаев Евгений Вениаминович,
	доктор химических наук, профессор
	кафедры органической химии Химического
	факультета Московского государственного
	университета им. М.В. Ломоносова
	Макаров Вадим Альбертович,
	доктор фармацевтических наук,
	заведующий Лабораторией
	биомедицинской химии
	ФИЦ «Фундаментальные основы
	биотехнологии» РАН
ВЕДУЩАЯ ОРГАНИЗАЦИЯ	Федеральное государственное автономное
	образовательное учреждение высшего
	образования «Южный федеральный
	университет»
Защита диссертации состоится «10» декабря	я 2025 г. в 1230 часов на заседании
Диссертационного совета 24.1.092.01 в Феде	еральном государственном бюджетном
учреждении науки Институте органической	химии им. Н.Д. Зелинского РАН по адресу: 119991
Москва, Ленинский проспект, 47.	•
<u>-</u>	иотеке Института органической химии им. Н.Д.
_	иститута http://zioc.ru . Автореферат размещён на
-	й комиссии при Министерстве науки и высшего
образования Российской Федерации по адре	
	25 Γ
· · · · · · · · · · · · · · · · · · ·	гербовой печатью, просим направлять по адресу:
-	еному секретарю Диссертационного совета ИОХ
PAH.	
Ученый секретарь диссертационного	Г.А. Газиева
совета 24.1.092.01 ИОХ РАН	Газиева
доктор химических наук	

Общая характеристика работы.

Пиридиновый цикл Актуальность работы. является одним наиболее ИЗ распространенных фрагментов молекул, среди находящих применение В самых разнообразных сферах деятельности человека. В дизайне новых биологически активных соединений пиридиновый цикл является привилегированным мотивом. По состоянию на 2021 год 14% среди всех N-гетероциклических лекарственных препаратов, одобренных FDA, содержат пиридиновый цикл. В настоящий момент существует большое количество методов функционализации пиридиновой системы, однако 3-нитропиридины в качестве интермедиатов используются относительно редко. Во многом это связано с тем, что химические превращения 3-нитропиридинов не исследованы с достаточной систематичностью. Тем не менее, данные соединения обладают большим потенциалом для применения в синтезе благодаря сочетанию электроноакцепторной нитрогруппы и особенностям распределения электронной плотности в ароматической системе пиридина, обусловленным влиянием атома азота.

Ранее в нашей лаборатории были изучены реакции различных нитро(гет)аренов с нуклеофилами, на основании которых можно сделать предположение о возможности применения данного подхода к функционализации 3-нитропиридинов. Таким образом разработка новых методов синтеза замещенных пиридинов на основе реакций 3-нитропиридинов с нуклеофильными реагентами является актуальной задачей современной органической химии.

Аннелирование дополнительных азотсодержащих гетероциклов к молекуле пиридина позволяет ввести дополнительные функциональные группы и получить молекулы с еще более разнообразными и ценными свойствами, в связи с этим разработка новых методов синтеза азолопиридинов представляют особый интерес. Реакции нуклеофильного замещения нитрогруппы в 3-нитропиридинах могут позволить синтезировать азолопиридины, труднодоступные иными путями.

Цель работы. Целью данной работы является разработка новых методов синтеза замещенных азолопиридинов, основанных на реакциях ароматического нуклеофильного замещения нитрогруппы.

Достижение поставленной цели потребовало решения следующих задач:

- 1) Разработка оптимальных методов синтеза исходных 3-нитропиридинов, подходящих для дальнейшей нуклеофильной функционализации.
- 2) Изучение реакционной способности замещенных 3-нитропиридинов по отношению к различным нуклеофилам и подбор условий для протекания реакции замещения нитрогруппы.
- 3) Изучение влияния электронных и стерических эффектов заместителей в 3нитропиридинах на протекание реакции нуклеофильного замещения нитрогруппы и её селективность. Поиск границ применимости разработанных методик.
- 4) Применение полученных результатов для синтеза азолопиридиновых систем, таких как 1-арил-1*H*-пиразоло[4,3-*b*]пиридины (I), 2-арил-2*H*-пиразоло[4,3-*b*]пиридины (II), изоксазоло[4,5-*b*]пиридины (III) и пирроло[2,3-*c*]пиридины (IV) (Схема 1). Разработка общих экспериментальных протоколов для синтеза библиотек соединений, обладающих потенциальной биологической активностью.

Схема 1.

Научная новизна и практическая значимость работы. Впервые проведено обширное и систематическое изучение реакций нуклеофильного ароматического замещения неактивированной нитрогруппы в пиридинах на анионные O,N,S-нуклеофилы. Была продемонстрирована широкая применимость данного подхода на примере 2-незамещенных, 2-метил и 2-арилвинилпиридинов, а также изучено влияние электронных и стерических эффектов на селективность замещения нитрогруппы в несимметричных 2-замещенных-3,5-динитропиридинах.

Обнаружена и изучена конкуренция между замещением нитрогруппы и нуклеофильным присоединением в случае амбидентных нуклеофилов, таких как фенолы, индолы и енолы. На основе данной реакции был синтезирован ряд труднодоступных 2-замещенных-1,2- и 4-замещенных-1,4-дигидропиридинов.

Изучено поглощение света в УФ-Вид области ряда 2-арилвинил-3-нитропиридинов и найдены закономерности между структурой и спектрами поглощения. Кроме того, обнаружен новый класс перспективных флуоресцентных соединений с настраиваемыми свойствами — 2-арилвинил-3-SR-5-нитропиридины.

Разработан универсальный опе-роt протокол для синтеза 1-арил-1H-пиразоло [4,3-b] пиридинов с применением стабильных тозилатов арилдиазония и обнаружен необычный механизм реакции. Разработанный протокол также был применен для синтеза соответствующих производных индазола.

Синтезирован ряд новых 2-арил-2H-пиразоло[4,3-b]пиридинов, изучено образование побочных продуктов в реакции иминов 3-нитропиколинальдегидов с азидом натрия и предложен удобный метод очистки целевых соединений.

Разработан новый метод синтеза изоксазоло[4,5-b]пиридинов на основе внутримолекулярного нуклеофильного замещения нитрогруппы в 3-нитропиридинах, содержащих оксимный фрагмент. Было обнаружено, что гидразоны 2-формилизоксазоло[4,5-b]пиридинов легко вступают в перегруппировку Болтона-Катрицкого, позволяя получить труднодоступные 2-(2-арил-2H-1,2,3-триазол-4-ил)пиридины с отличными выходами.

Изучено взаимодействие 4-арилвинил-3,5-динитропиридинов с азидом натрия и разработан опе-роt протокол для синтеза пирроло[2,3-c]пиридинов без промежуточного выделения нестабильных азидопиридинов.

Публикации. По результатам проведенных исследований было опубликовано 5 статей в рецензируемых международных журналах.

Апробация работы. Результаты диссертационной работы были представлены на 7 всероссийских и международных конференциях: Марковниковский конгресс по органической химии (Казань, 2019), VIII Молодежная конференция ИОХ РАН (Москва, 2019), Марковниковские чтения WSOC-2020 (Красновидово, 2020), The 24th International Electronic Conference on Synthetic Organic Chemistry (2020), Марковниковские чтения WSOC-2021 (Сочи, 2021), IX Молодежная конференция ИОХ РАН (Москва, 2021), «Химия нитросоединений и аминокислот» (Санкт-Петербург, 2024).

Структура и объем работы. Диссертационное исследование включает в себя введение, литературный обзор, обсуждение результатов, экспериментальную часть, выводы и список литературы. Работа изложена на 200 страницах, включая 102 схемы, 13 рисунков и 10 таблиц. Библиографический список включает 98 источников.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Реакционная способность 3-нитро-5-R-пиридинов по отношению к нуклеофилам.

Целью данной работы является разработка методов функционализации замещенных нитропиридинов и синтеза полициклических гетероароматических систем на их основе. В связи с этим, первым этапом работы является изучение реакционной способности ряда модельных 3-нитропиридинов по отношению к основным классам нуклеофильных реагентов. Определение границ применимости известных реакций и синтетических протоколов является необходимым условием для дальнейшего поиска и изучения особенностей системы 3-нитропиридина.

1.1. Синтез 3-нитро-5-R-пиридинов.

Для синтеза модельных 3-нитро-5-R-пиридинов был выбран четырехстадийный подход на основе нитрования доступных 2-гидрокси(амино)-5-R-пиридинов с последующим удалением активирующей группы (Схема 2).

Нитрование 2-гидроксипиридина смесью концентрированной серной и азотных кислот при температуре 80 °C дает 2-гидрокси-3,5-динитропиридин 1а со средним выходом. 6-Гидроксиникотиновая кислота так же требует концентрированных кислот для нитрования, однако проведение реакции при повышенной температуре приводит к значительному декарбоксилированию, в связи с чем для получения удовлетворительных выходов необходимо длительное выдерживание при температуре 40-50 °C. Этерификация метиловым спиртом по Фишеру позволяет получить соответствующий метиловый эфир с высоким выходом, а также избавиться от побочных продуктов декарбоксилирования. Нитрование соответствующих 2-аминопиридинов протекает в мягких условиях при комнатной температуре с использованием 60-70% азотной кислоты. В процессе нитрования аминогруппа подвергается частичному гидролизу как через нуклеофильное ароматическое замещение фрагмента -NHNO₂, так и через действие нитрозных газов. Образующаяся смесь может быть полностью превращена в целевые 2-гидрокси-3-нитропиридины 1с-е под действием водного раствора NaNO₂.

Схема 2.

Нагревание полученных 2-гидрокси-3-нитропиридинов **1a-e** в POCl₃ с каталитическим количеством диметилформамида дает 2-хлоро-3-нитропиридины **2a-e** с высокими выходами. Скорость реакции зависит от электронных эффектов заместителя R в положении 5 и увеличивается для электронодефицитных заместителей NO₂ и COOMe.

Удаление атома галогена в положении 2 пиридинового кольца может быть осуществлено рядом методов, из которых наиболее подходящим для соединений **2а-е** является последовательность нуклеофильного замещения атома хлора на молекулу гидразина с последующим окислением (Схема 3).

Гидразиновый фрагмент в соединениях **3** гладко окисляется под действием водного раствора нитрата серебра при повышенной температуре. 3-Нитро-5-R-пиридины выделяют из водного раствора с помощью экстракции с хорошими выходами и в большинстве случаев не нуждаются в дальнейшей очистке.

Схема 3.

1.2. S_NAr реакции с анионными O,N,S-нуклеофилами.

Соединения содержат называемую неактивированную так нитрогруппу, нуклеофильное замещение которой не сопровождается резонансной стабилизацией окомплекса электроноакцепторными группами). Присоединение нуклеофила в орто- или параположение к нитрогруппе приводит к образованию значительно более стабильного окомплекса, однако в отсутствии дополнительного окислителя для разрыва С-Н связи данный процесс является обратимым. Необратимое замещение нитрогруппы способствует смещению равновесия и позволяет провести реакцию условии достаточной реакционной при субстратов. Нашей целью было изучить возможности нуклеофильного ароматического замещения нитрогруппы в соединениях 4 под действием модельных гетеронуклеофилов.

Было обнаружено, что нитропиридины **4** при повышенной температуре вступают в реакцию с тиолят-анионами, генерируемыми из соответствующих тиолов и безводного K₂CO₃

в среде диполярного апротонного растворителя, такого как диметилформамид или N-метилпирролидон. Во всех случаях образуются ожидаемые продукты замещения с варьирующимися выходами. Стоит отметить, что использование избытка нуклеофила и увеличение длительности реакции не привело к образованию продуктов замещения второй нитрогруппы или галогена в положении 5. Кроме того было показано, что коммерчески доступный 3-нитропиридин не вступает в реакцию в этих условиях, что позволяет сделать вывод о важности индуктивного эффекта заместителей в положении 5 для стабилизации анионного σ-комплекса (Схема 4).

Схема 4.

Дополнительно были изучены реакции 3,5-динитропиридина **4a** с анионными О- и N- нуклеофилами (Схема 5). Кипячение **4a** с метилатом натрия в метаноле дало 3-метокси-5- нитропиридин **5h** с умеренным выходом 30%. Использование аниона оксима ацетофенона, который является более мягким О-нуклеофилом, позволило получить продукт **5i** замещения в мягких условиях с хорошим выходом. Среди анионных N-нуклеофилов только NaN₃ вступил в реакцию замещения, позволив получить 3-азидо-5-нитропиридин **5j** с выходом 48%.

Схема 5.

Таким образом, нами было показано, что нуклеофильное ароматическое замещение неактивированной нитрогруппы в 3-нитропиридинах может быть использовано для синтеза разнообразных функционализированных пиридинов в достаточно мягких и стандартизированных условиях.

1.3. Реакции нуклеофильного присоединения с С-нуклеофилами.

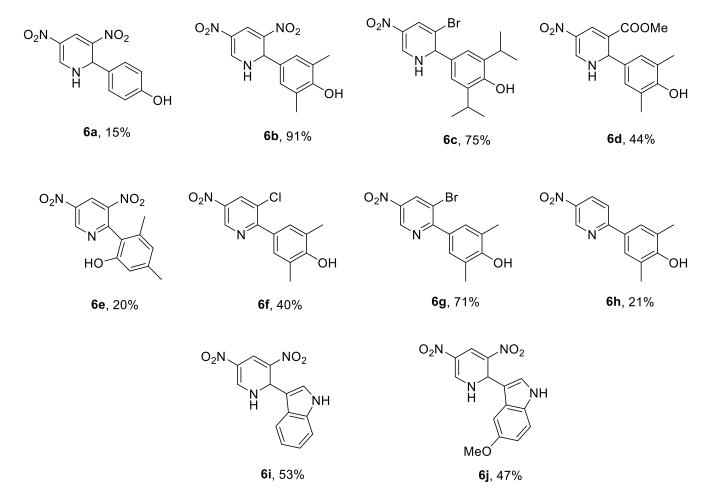

Попытка получить продукт замещения нитрогруппы в 3,5-динитропиридине **4a** на фрагмент фенола в стандартных условиях привела к образованию сложной смеси неидентифицированных веществ. Проведение реакции в мягких условиях при комнатной температуре с гидридом натрия в качестве основания дало неожиданный продукт **6a** (Схема 6), который был идентифицирован как 1,2-дигидропиридин по данным рентгеноструктурного анализа.

Схема 6.

Дальнейшее изучение взаимодействия 3-нитропиридинов 4 с различными фенолами показало, что реакция носит достаточно общий характер. В большинстве случаев были получены высокие выходы 1,2-дигидропиридинов, однако для менее электрофильных мононитропиридинов наблюдается тенденция к окислительной реароматизации под действием кислорода воздуха, которая связана с более длительным временем проведения реакции и меньшей делокализацией электронной плотности.

Дополнительно нами была изучена возможность протекания аналогичной реакции присоединения для амбидентных анионов индолов. В этом случае для генерации нуклеофильного аниона требуются значительно более жесткие условия, однако нам все же удалось получить соответствующие 1,2-аддукты с наиболее активным нитропиридином 4а. Все полученные результаты реакций 3-нитропиридинов с фенолами и индолами представлены на Схеме 7.

Схема 7.

Еще один интересный результат был получен при использовании енолятов в качестве Снуклеофилов. Прибавление сильного ненуклеофильного основания DBU к раствору 3,5динитропиридина **4a** и метилкетона в диметилформамиде при комнатной температуре приводит к образованию ярко окрашенных растворов, характерных для анионных окомплексов. Добавление сильной кислоты вызывает выпадение желто-оранжевых осадков с хорошими выходами, которые были идентифицированы как смеси соответствующих продуктов 1,2- и 1,4-присоединения. В большинстве случаев оба изомера могут быть выделены в индивидуальном виде с помощью колоночной хроматографии, при этом основным изомером является 1,4-дигидропиридин 7.

Составы изомерных смесей были изучены с помощью спектроскопии ¹H ЯМР, соотношение 7:8 составило от 2.1 до 5.9 в зависимости от используемого метилкетона.

$$O_2N$$
 O_2N
 O_2N

Таблица 1.

R Продукты	Общий	7:8	Изолированн 7:8 выход		pKa	
		выход		7	8	(DMSO)
Me	7a+8a	62%	5.9	50%	-	26.5
cPr	7b+8b	85%	5.0	69%	12%	-
tBu	7c+8c	65%	4.7	52%	-	27.7
Ph	7d+8d	88%	3.6	67%	17%	24.7
4-MeO-C ₆ H ₄	7e+8e	69%	3.6	52%	13%	25.7
4-Me-C ₆ H ₄	7f+8f	83%	3.3	62%	17%	25.2
2-Cl-C ₆ H ₄	7g+8g	71%	2.1	47%	21%	23.2

На основании полученных результатов можно сделать вывод, что реакции нуклеофильного присоединения С-нуклеофилов к 3-нитропиридинам представляют собой перспективный метод синтеза сложных структур на основе простых исходных соединений. Данный класс реакций позволяет создавать прочные С-С связи с предсказуемой региоселективностью без использования катализа переходными металлами.

2. Реакции нуклеофильного замещения в 2-метил и 2-алкенил-3-нитропиридинах.

На первом этапе работы нами была установлена возможность применения реакций ароматического нуклеофильного замещения для функционализации 3-нитропиридинов и разработаны соответствующие экспериментальные протоколы. Следующим этапом работы является изучение влияния заместителей в положении 2 на реакционную способность нитрогруппы. Это необходимо для того, чтобы оценить возможность региоселективной функционализации несимметричных пиридинов, а также разработать подходы к синтезу бициклических пиридоаннелированных систем на основе реакций внутримолекулярной циклизации между заместителем в положении 2 и нитрогруппой в положении 3.

2.1. Синтез 2-метил-3-нитропиридинов и 2-алкенил-3-нитропиридинов.

Реакция **2** с раствором натриевой соли диэтил малоната в тетрагидрофуране приводит к соответствующим арилированным малоновым эфирам, которые могут быть без выделения подвергнуты гидролизу в водном растворе кислоты (Схема 8).

Схема 8.

Метильная группа в соединении 9а обладает достаточно высокой кислотностью из-за электроноакцепторого эффекта двух нитрогрупп, чего нельзя мононитропиридинах 9d и 9e. В связи с этим мы также решили синтезировали соответствующие N-оксиды 10d и 10e для изучения влияния положительно заряженного атома азота в N-оксидном фрагменте на реакционную способность CH₃- и NO₂-групп.

9a соответствующего Кипячение раствора И ароматического альдегида каталитическим количеством вторичного амина в толуоле с насадкой Дина-Старка приводит к быстрому образованию легко кристаллизуемых 2-арилвинил-3,5-динитропиридинов 11а-с с хорошими выходами. Попытка применить эти условия для мононитропиридинов 9d,е окончилась неудачей. Проведение реакции в более высококипящем растворителе ксилоле позволило получить следовые количества целевого соединения вместе с большим количеством продуктов осмоления. С другой стороны, соответствующие N-оксиды 10d,е с легкостью вступили в реакцию Кневенагеля в стандартных условиях, что подтверждает наше предположение о влиянии N-оксидного фрагмента на реакционную способность метильной группы в 2-метил-3-нитропиридинах (Схема 9). N-Оксиды 12а-д могут быть в мягких восстановлены хлоридом фосфора (III), давая c высокими соответствующие 2-арилвинил-3-нитропиридины 12d-g, которые не могут быть получены напрямую. Результаты приведены в Таблице 2.

Схема 9.

$$R = 1$$

$$R =$$

Таблица 2.

R	n	ArCHO	Выход
NO ₂	0	4-Cl-C ₆ H ₄ CHO	11a , 78%
NO_2	0	4-Me ₂ N-C ₆ H ₄ CHO	11b , 91%
NO ₂	0	OHC N—F	11c, 62%
Br	1	4-Cl-C ₆ H ₄ CHO	12a, 69%
Br	1	4-Me ₂ N-C ₆ H ₄ CHO	12b , 73%
CF ₃	1	4-Cl-C ₆ H ₄ CHO	12c , 81%
CF ₃	1	4-Me ₂ N-C ₆ H ₄ CHO	12d , 71%
Br	0	4-Cl-C ₆ H ₄ CHO	11d, 94%
Br	0	4-Me ₂ N-C ₆ H ₄ CHO	11e, 89%
CF ₃	0	4-Cl-C ₆ H ₄ CHO	11f , 89%
CF ₃	0	4-Me ₂ N-C ₆ H ₄ CHO	11g, 82%

Во всех случаях были получены исключительно транс-изомеры соединений **11** и **12**, что было доказано с помощью ¹Н ЯМР (константа спин-спинового взаимодействия 15-16 Гц для протонов двойной связи) и рентгеноструктурного анализа. Селективность образования трансизомеров можно объяснить термодинамически контролируемым процессом E1cB, а также возможностью обратимого присоединения-отщепления молекулы вторичного амина к электронодефицитной двойной связи.

Данный метод позволяет синтезировать широкий спектр 2-арилвинил-3нитропиридинов на основе легкодоступных ароматических альдегидов и 2-метил-3нитропиридинов без применения Pd-катализируемых реакций кросс-сочетания, что предоставляет преимущество в цене реактивов и легкости очистки продуктов. Использование активирующего эффекта N-оксидной группы позволяет ввести в реакцию Кневенагеля даже относительно малоактивные 2-метилпиридины.

<u>2.2. S_N Ar реакции с S-нуклеофилами. Региоселективность замещения в 2-метил(арилвинил)-3,5-динитропиридинах.</u>

Реакционная способность полученных 2-замещенных 3-нитропиридинов 9, 10, 11 и 12 была изучена на примере модельной реакции с тиолят-анионами, которые являются удобными нуклеофилами для подобных исследований.

Было показано, что соединения **9** и **10** легко вступают в реакцию нуклеофильного замещения нитрогруппы под действием тиолят-анионов в условиях, аналогичным нитропиридинам **4**, при этом скорость протекания реакции и выходы продуктов замещения **13a-f** оказались значительно выше (Схема 10). Для мононитропиридинов наблюдается исключительно замещение нитрогруппы, а в случае 2-метил-3,5-динитропиридина **9a** был выделен продукт замещения нитрогруппы в положении 3 с выходом 70%.

Схема 10.

2-Арилвинил-3-нитропиридины **11** и **12** с легкостью вступают в реакцию S_NAr с анионами алифатических и ароматических тиолов, давая продукты замещения нитрогруппы с высокими выходами в мягких условиях. Конкуренции между замещением атома галогена и нитрогруппы ожидаемо не было обнаружено, что соответствует полученным ранее результатам. Более интересные результаты были получены в случаях динитропиридинов **11а-с**, для которых возможно конкурентное замещение одной из двух неэквивалентных нитрогрупп. Во всех случаях было обнаружено преимущественное образование продуктов замещения нитрогруппы в положении **3**, при этом количества второго изомера варьировалось от следовых до значительных.

Таблица 3.

R	n	Ar	R ¹ SH	14:15	Изолированный выход
NO ₂	0	4-Cl-C ₆ H ₄	BnSH	3:1	14a, 56% 15a, 18%
NO ₂	0	4-Cl-C ₆ H ₄	iBuSH	2:1	14b, 62% 15b, 31%
NO ₂	0	4-Cl-C ₆ H ₄	FurSH	n\a	14c, 56%
NO ₂	0	4-Cl-C ₆ H ₄	4-Cl-C ₆ H ₄ SH	n\a	14d , 67%
NO ₂	0	4-Me ₂ N-C ₆ H ₄	4-Cl-C ₆ H ₄ SH	n\a	14e, 83%
NO ₂	0	4-Me ₂ N-C ₆ H ₄	iBuSH	8:1	14f, 84%
NO ₂	0	4-Me ₂ N-C ₆ H ₄	BnSH	10:1	14g, 88%

NO ₂	0	N-(F	BnSH	10:1	14h, 89%
NO ₂	0	N-(F)	4-Cl-C ₆ H ₄ SH	n∖a	14i , 93%
Br	0	4-Cl-C ₆ H ₄	BnSH	n∖a	14j , 60%
Br	1	$4-Me_2N-C_6H_4$	BnSH	n∖a	14k , 67%

Структуры изомеров **14** и **15** были подтверждены с помощью методов двумерной спектроскопии ЯМР (кросс-пики ¹H-¹H NOESY между протонами в R¹ и протонами при C3 и винильной связи), а также рентгеноструктурного анализа соединений **14b** и **14f** (Рисунок 1).

Рисунок 1.

3.2.3. УФ-Вид спектроскопия и флуоресценция 2-арилвинилпиридинов.

Соединения, содержащие большие сопряженные системы, зачастую обладают способностью к интенсивному поглощению света в близкой ультрафиолетовой и видимой области. В связи с этим было проведено исследование спектров поглощения ряда репрезентативных 2-арилвинилпиридинов для установления возможных зависимостей между структурой и фотофизическими свойствами полученных соединений 11, 12, 14, 15. Положения максимумом поглощения и величины коэффициентов экстинкции приведены в Таблице 4. Соединения 14a и 14h также показали флуоресценцию в видимой области под действием ультрафиолетового света. Максимум испускания у 14a находится при 538 нм, а Стоксов сдвиг равен 154 нм. Для соединения 14h соответствующие величины равны 571 нм и 168 нм.

Рисунок 2.

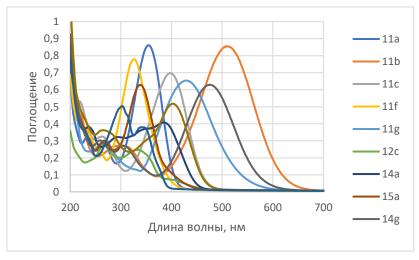


Таблица 4.

Соединение	$\lambda_{1,\mathrm{HM}}$	ε ₁ , мл*М ⁻¹ *см ⁻¹	λ2, нм	ε ₂ , мл*М ⁻¹ *см ⁻¹
11a	-	-	368	46400
11b	302	13500	509	42800
11c	263	16200	397	34900
11f	-	-	326	39000
11g	266	14600	429	32800
12c	267	28700	332	24700
14a	296	16000	384	20300
15a	267	15000	337	31400
14g	305	13600	476	31400
14h	266	18100	403	25900
14j	302	25200	344	19000

3. Синтез пиридоаннелированных систем на основе внутримолекулярного нуклеофильного замещения нитрогруппы.

Накопленные экспериментальные данные позволили нам заключить. что нуклеофильное замещение ароматической нитрогруппы в положении 3 пиридинового кольца может быть использовано для синтеза сложных молекул, содержащих фрагмент пиридина. Кроме того, активирующий эффект заместителей в положении 2 оказывается достаточным для протекания реакции замещения в мягких условиях даже в отсутствии второй нитрогруппы, что позволяет в перспективе осуществить синтез широкого спектра пиридоаннелированных гетероциклов без значительных ограничений. В первую очередь наш интерес привлекли пиразоло[4,3-b]пиридины и изоксазоло[4,5-b]пиридины в связи с относительно небольшим количеством известных методов синтеза и применением этих гетероциклов в синтезе биологически активных соединений.

<u>3.1. Синтез 1-арил-1*H*-пиразоло[4,3-*b*]пиридинов.</u>

Реакция 2-хлоро-3-нитропиридинов **2** с анионом ацетоуксусного эфира в ТНF дает (3-нитропиридин-2-ил)ацетоуксусные эфиры **16** с высокими выходами аналогично реакции с анионом малонового эфира, использованной ранее для синтеза 2-метил-3-нитропиридинов **9** (Схема 11).

Схема 11.

Соединение **16a** было использовано для скрининга подходящих условий реакций. Оказалось, что проведение реакции Яппа-Клингеманна в классических условиях приводит к образованию стабильного азосоединения **17** вместо ожидаемого гидразона. Увеличение

температуры и времени реакции позволило получить незначительные количества гидразона, однако реакция в данном случае сопровождается образованием больших количеств побочных продуктов распада азосоединения и соли диазония. В связи с высокой стабильностью азосоединений 17 было решено максимизировать их выход и изучить возможности получения целевых пиразоло[4,3-*b*]пиридинов исходя из них. В качестве альтернативы азосочетанию в буферизованном водном растворе хлоридов арилдиазония было выбрано азосочетание в безводной среде с использованием твердых тозилатов арилдиазония (Схема 12). Прибавление пиридина к смеси 16а и тозилатов арилдиазония в МеСN приводит к немедленному образованию азосоединений 17 с количественными выходами.

Схема 12.

Модельное соединение **17a** (Ar = 2-CN-C₆H₄) было использовано для изучения реакций деацетилирования и циклизации в целевые пиразоло[4,3-b]пиридины. Взаимодействие с K_2CO_3 дало только продукты разложения, что указывает на необходимость использования нуклеофильных реагентов. Спиртовые растворы NaOH и NaOMe позволили успешно провести деацетилирование и циклизацию, однако реакция значительно осложняется протеканием гидролиза\переэтерификации сложноэфирной группы под действием жестких нуклеофильных реагентов. Мягкие нуклеофильные основания, такие как DABCO и вторичные амины, привели к быстрому образованию смеси целевого продукта **18a** и неизвестного вещества **19a**.

Структура **19а** была однозначно установлена методами ЯМР ¹H, ¹³C, ¹⁵N, HRMS и рентгеноструктурного анализа (Рисунок 3) как N-ацетилгидразон, образующийся в результате C-N миграции ацетильной группы в **17а**.

Рисунок 3.

EtOOC N N Ac CN
03
 02 03 02 03 02 03 03 02 03

На основании проведенных экспериментов был разработан общий опе-роt протокол для синтеза замещенных пиразоло[4,3-b]пиридинов из соответствующих замещенных ацетоуксусных эфиров и тозилатов арилдиазония. Ацетонитрил является полярным апротонным и ненуклеофильным растворителем, который подходит как для реакции азосочетания, так и для внутримолекулярного ароматического нуклеофильного замещения. Пиридин служит ненукулеофильным основанием для стадии азосочетания, а пирролидин

обеспечивает гладкое протекание перегруппировки и деацетилирования. Разработанный протокол позволил синтезировать широкий спектр замещенных пиразоло[4,3-*b*]пиридинов с высокими выходами. Результаты представлены в Таблице 5.

Таблица 5.

X	R	Выход
NO ₂	2-CN	18a, 85%
NO ₂	2-NO ₂ -4-Me	18b , 88%
NO ₂	2-COOMe	18c, 65%
NO ₂	4-F	18d , 76%
NO ₂	3-Cl-4-Me	18e , 69%
NO ₂	2-C1	18f , 72%
NO ₂	2-Me-4-NO ₂	18g , 73%
NO ₂	2-OMe	18h , 78%
NO ₂	4-CF ₃	18i , 82%
NO ₂	4-Br	18j , 83%
CF ₃	3-Cl-4-Me	18k, 78%
CF ₃	2-NO ₂ -4-Me	181 , 84%
CF ₃	2-CN	18m, 75%
CF ₃	2-COOMe	18n, 65%
CF ₃	2-OMe	180 , 63%
CF ₃	4-F	18p , 71%
COOMe	4-F	18q , 77%
COOMe	2-COOMe	18r, 73%
COOMe	4-Br	18s , 84%

На основании данных результатов можно сделать вывод, что обнаруженная перегруппировка 17 в 18 носит общий характер для нитропиридинов без значительной зависимости от электронных эффектов заместителей.

Разработанный протокол аннелирования пиразольного фрагмента также был опробован для синтеза замещенных индазолов из производных нитробензола. В случае нитрохлорбензолов, которые обладают более низкой электрофильностью, потребовалось использование других условий реакций для синтеза промежуточных ацетоуксусных эфиров. Реакции соответствующих 4-R-1-хлоро-2-нитробензолов 20a-d с этил ацетоацетатом в DMF при 60 °C в присутствии безводного K_2CO_3 дали интермедиаты 21a-d с хорошими выходами. Применение стандартных опе-роt условий для 21a позволило получить ожидаемые индазолы с

высокими выходами, однако в случае соединений **21b-d** реакция останавливается на стадии соответствующих гидразонов, что может быть объяснено более низкой кислотностью из-за недостаточной электронодефицитности нитробензольного кольца. Модификация протокола, в которой вместо пиридина используется более сильное основание DBU, позволяет успешно синтезировать целевые индазолы из **21b-d**. Структуры полученных соединений приведены на Схеме 13.

Схема 13.

В результате данной части работы был разработан универсальный опе-роt протокол для синтеза замещенных пиразоло[4,3-*b*]пиридинов из 2-хлоро-3-нитропиридинов и тозилатов арилдиазония через внутримолекулярную реакцию нуклеофильного ароматического замещения. В ходе изучения реакции было обнаружено участие необычных интермедиатов 19 и предложен вероятный механизм, объясняющий их образование. Кроме того, разработанный

протокол был успешно применен для синтеза замещенных индазолов из производных нитробензола.

<u>3.2. Синтез изоксазоло[4,5-*b*] пиридинов.</u>

На основе предыдущих результатов нашей работы можно сделать предположение, что производные 3-нитропиридина, содержащие оксимный фрагмент, могут вступать в аналогичные реакции циклизации. Для синтеза соответствующих исходных соединений была выбрана стратегия на основе нитрозирования активированных производных 3-нитропиридина.

Реакция полученных ранее нитропиридин-2-илацетоуксусных эфиров **16** с изопропилнитритом в присутствии толуолсульфоновой кислоты приводит к нитрозированию активированной С-H связи с одновременным отщеплением ацетильной группы и образованием оксимов **23** (Схема 14). Соединения **23** под действием оснований подвергаются внутримолекулярной циклизации в чрезвычайно мягких условиях, давая целевые изоксазоло[4,5-*b*]пиридины **24** с практически количественными выходами.

Схема 14.

X NO₂ iPrOH, TsOH
$$R = NO_2$$
, 23a, 76% $R = CI$, 23c, 71% $R = CF_3$, 23e, 60% $R = CF_3$, 23e, 60%

Альдегидная группа способна аналогичным образом активировать атом углерода для реакции нитрозирования, кроме того, соответствующие производные изоксазоло [4,5-b] пиридина обладают более широкими возможностями для дальнейшей функционализации и синтеза сложных биологически активных молекул.

Соединения **26** могут быть получены нитрозированием соответствующих енаминов, которые в свою очередь синтезируются из полученных ранее 2-метил-3-нитропиридинов **9**. Нагревание **9** с диметилацеталем диметилформамида дает енамины **25**, которые легко выделяются в твердом виде и вступают в реакцию нитрозирования с одновременным гидролизом в водном растворе соляной кислоты (Схема 15).

Схема 15.

$$\begin{array}{c} X \\ X \\ NO_2 \\ NAH \ (60\%), \ THF, \ reflux \\ \hline 2) \ HCl, \ H_2O, \ reflux \\ \hline 3) \ DMF-DMA, \ 80 \ ^{\circ}C \\ \hline \\ Z \\ R = NO_2, \ 25a, \ 89\% \\ R = Cl, \ 25c, \ 56\% \\ R = CF_3, \ 25e, \ 65\% \\ \hline \\ R = CF_3, \ 25e, \ 65\% \\ \hline \end{array}$$

Попытка проведения реакции циклизации оксимов **26** в условиях, использованных для получения изоксазоло[4,5-b]пиридинов **24**, привела к образованию 2-циано-3-гидроксипиридинов **27** с выходами 62-65%. Декарбонилирование и раскрытие изоксазольного

цикла указывает на необходимость использования защитной группы перед проведением реакции циклизации.

Кипячение соединений **26** с избытком этиленгликоля и каталитическим количеством толуолсульфоновой кислоты в аппарате Дина-Старка дает ожидаемые диоксоланы **28** с высокими выходами (Схема 16). После защиты альдегидной группы реакция циклизации протекает в мягких условиях с отличными выходами, как и в случае соединений со сложноэфирной группой.

Схема 6

Успешное применение диоксолановой защиты для синтеза производных 3-формилизоксазоло[4,5-b]пиридина позволило предположить, что другие защитные группы также могут быть использованы с хорошими результатами.

Кипячение альдегидов **26** с замещенными фенилгидразинами в спирте приводит к соответствующим гидразонам, которые были без выделения обработаны K₂CO₃, давая целевые гидразоны 3-формилизоксазоло[4,5-*b*]пиридинов с высокими выходами. В случае соединения **26a**, содержащего нитрогруппу, продукт реакции оказался неразделимой смесью целевого **30a** и триазола **31a**. Триазол **31a** образуется в результате основно-катализируемой перегруппировки Болтона-Катрицкого, которая была ранее описана для бензоизоксазолов [94]. Обработка полученной смеси безводным K₂CO₃ в DMF позволило добиться полной конверсии и получить триазол **31a** с выходом 92%. Выделенные в чистом виде гидразоны **30c,d,f,g** в этих условиях также гладко вступили в реакцию перегруппировки, давая триазолы **31c,d,f,g** с отличными выходами (Таблица 6). Исключением оказались 2,4-динитрофенилгидразоны **30b,e,h**, которые оказались стабильны даже при повышении температуры, что может быть объяснено делокализацией аниона и низкой нуклеофильность.

Таблица 6.

X	Ar	Выход 30	Выход 31
NO ₂	Ph	30a, -	31a , 92%
NO ₂	2,4-(NO ₂) ₂ C ₆ H ₃	30b , 87%	31b, -
Cl	Ph	30c , 79%	31c , 90%
Cl	4-CH ₃ -C ₆ H ₄	30d , 76%	31d , 95%
Cl	2,4-(NO ₂) ₂ C ₆ H ₃	30e , 74%	31e, -
CF ₃	Ph	30f , 85%	31f , 95%
CF ₃	2-Cl-C ₆ H ₄	30g , 82%	31g , 91%
CF ₃	2,4-(NO ₂) ₂ C ₆ H ₃	30h , 71%	31h, -

Полученные результаты указывают на то, что перегруппировка носит общий характер за исключением соединений, содержащих сильные электроноакцепторные заместители в молекуле арилгидразина. Стоит отметить высокую скорость реакции и относительно мягкие условия по сравнению с описанными в литературе, что позволяет сделать предположение о наличии активирующего эффекта пиридинового кольца, который не может быть объяснен простыми электронными факторами.

В результате данной части работы было изучено применение внутримолекулярного нуклеофильного замещения ароматической нитрогруппы в 3-нитропиридинах, содержащих оксимный фрагмент, для синтеза 3-замещенных изоксазоло[4,5-b]пиридинов. Была показана 3-формил формилизоксазоло[4,5-b]пиридинов декарбонилированию и раскрытию цикла, а также изучены варианты защитных групп, побочный позволяющих избежать этот процесс. В случае арилгидразонов формилизоксазоло[4,5-b]пиридинов была обнаружена возможность протекания перегруппировки Болтона-Катрицкого в мягких условиях, которая может применяться для синтеза труднодоступных 2-(2-арил-2H-1,2,3-триазол-4-ил)пиридинов с отличными выходами.

<u>3.3. Синтез пирроло[2,3-*c*] пиридинов.</u>

Азидопиридины, содержащие подходящие заместители, являются перспективными интермедиатами для синтеза азолопиридинов, в связи с чем было проведено изучение возможности синтеза пирролопиридинов (азаиндолов) на основе нитропиридинов.

Реакции синтезированных ранее 2-арилвинил-3-нитропиридинов 11 с азидом натрия в DMF не привели к желаемым результатам, вероятно вследствие образования смеси изомерных продуктов замещения, поэтому был синтезирован симметричный 4-метил-3,5-динитропиридин 32 (Схема 17). В качестве исходного соединения использовался 4-гидрокси-3,5-динитропиридин. Оптимизированный способ синтеза 32 состоит из обработки 4-гидрокси-3,5-динитропиридина SOCl₂ в бензоле с последующим упариванием реакционной смеси, немедленным замещением атома хлора на анион ацетоуксусного эфира и гидролизом в разбавленной соляной кислоте.

Схема 17.

Полученный 4-метил-3,5-динитропиридин **32** способен вступать в реакцию конденсации с ароматическими альдегидами аналогично своему изомеру **9a**, однако в случае **32** для получения хороших результатов необходимо использовать двухкратный избыток альдегида, что можно объяснить протеканием побочных реакций между образующимся продуктом и исходным **32**. Результаты представлены в Таблице 7.

$$O_2N$$
 NO_2
 O_2N
 NO_2
 O_2N
 NO_2
 O_2N
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

Таблица 7.

ArCHO	Выход
4-MeO-C ₆ H ₄ CHO	33a, 85%
4-Me ₂ N-C ₆ H ₄ CHO	33b , 61%
4-NO ₂ -C ₆ H ₄ CHO	33c , 55%
CHO Ph N N	33d , 86%
СНО	33e , 74%

4-Арилвинил-3,5-динитропиридины **33** гладко вступают в реакции с азидом натрия в растворе DMF при комнатной температуре, давая соответствующие продукты замещения **34** с высокими выходами. Однако в чистом виде удалось выделить и охарактеризовать только соединение **34a** (Ar = 4-MeOC₆H₄), тогда как остальные соединения оказались склонны претерпевать разложение в целевые пирроло[2,3-*c*]пиридины уже в процессе выделения при комнатной температуре. Кипячение в растворе мезитилена в течение 30 минут оказывается достаточным для достижения полной конверсии азидопиридинов **34** в 6-азаиндолы **35**. В связи с этим методика была оптимизирована и удалось провести замещение нитрогруппы и термическую циклизацию в растворе DMF опе-рот без промежуточного выделения азидопиридинов **34**. Результаты приведены в Таблице 8.

Таблица 8.

Ar	Выход
4-MeO-C ₆ H ₄ CHO	35a , 85%
4-Me ₂ N-C ₆ H ₄ CHO	35b , 63%
4-NO ₂ -C ₆ H ₄ CHO	35c , 61%
Ph Ph	35d , 76%
N	35 e, 50%

Таким образом, нами был разработан новый подход к синтезу замещенных 4нитропирроло[2,3-*c*]пиридинов из 4-метил-3,5-динитропиридина и легкодоступных ароматических альдегидов на основе реакции нуклеофильного ароматического замещения нитрогруппы. Была показана легкость термического разложения соответствующих азидопиридинов **34** и создан простой опе-роt протокол, не требующий промежуточного выделения нестабильных интермедиатов **34**.

<u>3.4. Синтез 2-арил-2*H*-пиразоло[4,3-*b*]пиридинов.</u>

Успешный синтез пирроло[2,3-c]пиридинов на основе нуклеофильного замещения нитрогруппы азид-анионом с последующим термолизом показал перспективность данного подхода к синтезу других азолопиридинов.

Синтез 2-замещенных пиразоло[4,3-b]пиридинов требует использования соответствующих иминов 3-нитропиколинальдегидов. Исходные альдегиды **36** были синтезированы из 2-метил-3-нитропиридинов **9**, методика получения которых была отработана ранее. Селективное окисление метильной группы в соединениях **9** может быть

легко достигнуто с помощью SeO₂ в среде 1,4-диоксана или этилового спирта. Окисление в спиртовой среде дает несколько более высокие выходы альдегидов **36**, однако спонтанное образование стабильных полуацеталей затрудняет очистку продуктов. Альдегиды **36** легко вступают в реакцию конденсации с ароматическими аминами в растворе уксусной кислоты, давая имины **37** с высокими выходами (Схема 18).

Схема 18.

Прибавление азида натрия к раствору иминов 37 в DMSO приводит к образованию продуктов замещения нитрогруппы. Электроноакцепторный эффект сопряженной иминогруппы приводит к значительному увеличению скорости реакции замещения нитрогруппы по сравнению с родственными 2-арилвинилпиридинами 11. Реакция протекает гладко для моно-нитроиминов, однако в случае иминов 3,5-динитропиколинового альдегида 36а наблюдается образование значительных количеств побочного продукта 39, содержащего азидогруппу.

Обработка смеси 38/39 реагентами трехвалентного фосфора, такими как трифенилфосфин, приводит к быстрому выделению азота и образованию иминофосфорана 40 по реакции Штаудингера. Соединения 40 обладают высокой растворимостью в неполярных растворителях и сильной адсорбцией на SiO_2 , что позволяет с легкостью отделить их от целевых продуктов 38. Выходы и структуры полученных 2-арил-2H-пиразоло[4,3-b]пиридинов приведены на Схеме 19.

Схема 19.

В результате нами было успешно применена реакция нуклеофильного ароматического замещения нитрогруппы в иминах 3-нитропиколиновых альдегидов для синтеза 6-замещенных 2-арил-2H-пиразоло[4,3-b] пиридинов **38**. Было показано, что циклизация иминов 3-азидопиколиновых альдегидов протекает с высокими выходами при относительно низкой температуре, а сам синтез может осуществляться one-pot. Кроме того было обнаружено

конкурентное замещение нитрогруппы в случае иминов 3,5-динитропиколинового альдегида, приводящая к смеси 6-нитро- и 6-азидо-замещенных пиразоло[4,3-*b*]пиридинов, и разработан простой способ очистки целевых соединений **38** от побочных продуктов **39**.

4. Выводы.

- 1) В результате проведенных исследований на основе реакций нуклеофильного замещения нитрогруппы в 3-нитропиридинах разработаны новые подходы к синтезу различных азолопиридинов.
- 2) Проведено систематическое изучение реакций нуклеофильного замещения нитрогруппы в модельных 3-нитропиридинах на анионные О,N,S-нуклеофилы. Исследовано влияние электронных и стерических факторов заместителей в положениях 2 и 5 на протекание реакции. В случае несимметричных 2-замещенных 3,5-динитропиридинов показано преимущественное замещение нитрогруппы в положении 3 и обнаружен ряд факторов, влияющих на региоселективность замещения.
- 3) Реакция 5-R-3-нитронитропиридинов с анионами фенолов и индолов приводит к образованию новых 2-арил-1,2-дигидропиридинов и продуктов их ароматизации по механизму нуклеофильного присоединения. Обнаружено присоединение енолятов метилкетонов к 3,5-динитропиридину, приводящее к смесям 1,2- и 1,4-дигидропиридинов, и показано влияние заместителя в метилкетоне на соотношение 1,2- и 1,4-присоединения.
- 4) Изучены спектры оптического поглощения и флуоресценции ряда 2-арилвинилпиридинов и обнаружена зависимость между природой заместителей в положениях 2 и 5 на положение максимума поглощения. Обнаружен новый класс флуоресцентных молекул 2-арилвинил-3-SR-5-нитропиридины.
- 5) Разработан универсальный one-pot протокол для синтеза 1-арил-1H-пиразоло[4,3-b]пиридинов и обнаружен необычный механизм реакции, включающий внутримолекулярную миграцию ацетильной группы. Модифицированный протокол также был успешно применен для синтеза производных индазола.
- изоксазоло[4,5-b]пиридинов 6) Разработан новый метод синтеза основе внутримолекулярного нуклеофильного замещения В 3нитрогруппы нитропиридинах, содержащих оксимный фрагмент. Было обнаружено, гидразоны 2-формилизоксазоло[4,5-b]пиридинов легко вступают в перегруппировку труднодоступные 2-(2-арил-2H-1,2,3-Болтона-Катрицкого, позволяя получить триазол-4-ил)пиридины с высокими выходами.
- 7) Изучены реакции нуклеофильного замещения 3-нитропиридинов с азидом натрия с последующим термолизом азидогруппы. На этой основе разработаны one-pot методики для получения 2-арил-2H-пиразоло[4,3-b]пиридинов и пирроло[2,3-c]пиридинов без выделения промежуточных продуктов замещения нитрогруппы.

Основные результаты диссертационного исследования изложены в следующих работах:

- 1. Bastrakov M.A. Reactions of 3-R-5-nitropyridines with nucleophiles: Nucleophilic substitution vs conjugate addition / M.A. Bastrakov, <u>V.V. Nikol'skiy</u>, A.M. Starosotnikov, I.V. Fedyanin, S.A. Shevelev, D.A. Knyazev // Tetrahedron. − 2019 − T. 75, №47 − 130659.
- 2. <u>Nikol'skiy V.V.</u> Nucleophilic Functionalization of 2-R-3-Nitropyridines as a Versatile Approach to Novel Fluorescent Molecules / <u>V.V. Nikol'skiy</u>, M.E. Minyaev, M.A. Bastrakov, A.M. Starosotnikov // Molecules 2022 T. 27, №17 C. 5692.
- 3. <u>Nikol'skiy V.V.</u> Straightforward and Efficient Protocol for the Synthesis of Pyrazolo [4,3-b]pyridines and Indazoles / <u>V.V. Nikol'skiy</u>, M.E. Minyaev, M.A. Bastrakov, A.M. Starosotnikov // Int. J. Mol. Sci. 2023 T. 24, №2 C. 1758
- 4. Nikol'skiy V.V. Synthesis of isoxazolo[4,5-b]pyridine derivatives (microreview) / V.V. Nikol'skiy, A.M. Starosotnikov // Chem Heterocycl Comp. 2023 T. 59 C. 240
- 5. <u>Nikol'skiy V.V.</u> Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5-b]pyridines / <u>V.V. Nikol'skiy</u>, M.E. Minyaev, M.A. Bastrakov, A.M. Starosotnikov // Beilstein J. Org. Chem. 2024 T. 20. C. 1069
- 6. Bastrakov M.A., Fedorenko A.K., <u>Nikolsky V.V.</u>, Starosotnikov A.M. Nucleophilic dearomatization of nitropyridines. // Markovnikov congress on organic chemistry, 21-28 июня 2019
- 7. Реакции нуклеофилов с 5-R-3- нитропиридинами / <u>Никольский В.В.</u>, Бастраков М.А., Старосотников А.М. // *VIII Молодежная конференция ИОХ РАН*, Москва, 2019 г.
- 8. Reactivity of 3,5-dinitropyridine towards C-nucleophiles / Nikol'skiy V.V., Starosotnikov A.M., Bastrakov M.A. // Markovnikov congress on organic chemistry, Казань, 2019 г.
- 9. Реакции нуклеофилов с 5-R-3- нитропиридинами: замещение и присоединение / <u>Никольский В.В.</u>, Бастраков М.А., Старосотников А.М. // Всероссийская научная конференция Марковниковские чтения: органическая химия от Марковникова до наших дней WSOC-2020, Красновидово, 2020 г.
- 10. Synthesis of 2-Methyl-3-nitropyridines, 2-Styryl-3- nitropyridines and Their Reactions with S-Nucleophiles / <u>Nikol'skiy V.</u>, Starosotnikov A., Bastrakov M. // *The 24th International Electronic Conference on Synthetic Organic Chemistry*, 2020 г.
- 11. Синтез 2-метил-3-нитропиридинов, 2-арилвинил-3-нитропиридинов и их реакции с S-нуклеофилами / <u>Никольский В.В.</u>, Старосотников А.М., Бастраков М.А. // Всероссийская конференция Марковниковские чтения: Органическая химия от Марковникова до наших дней WSOC 2021, Сочи, 2021 г.
- 12. Новый метод синтеза 1-арил-1H-пиразоло[4,3-b] пиридинов/ В.В. Никольский, А.М. Старосотников. // IX Молодежная конференция IOX PAH, Москва, 2021 г.
- 13. Синтез конденсированных пиридинов на основе реакций нуклеофильного замещения нитрогруппы / Старосотников А.М., <u>Никольский В.В.</u>, Иванова В.В., Бастраков М.А. // Всероссийская конференция с международным участием «Химия нитросоединений и аминокислот», Санкт-Петербург, 2024 г.