ФИО соискателя Сильянова Евгения Алексеевна

Название диссертации *Синтез аналогов природных противоопухолевых* веществ с 3,4-диарилпиррольным фрагментом в ряду комбретастатинов и ламелларинов

Шифр специальности – 1.4.3 – органическая химия

Химические науки

Шифр диссертационного совета 24.1.092.01

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел.:(499) 137-13-79

E-mail: sci-secr@ioc.ac.ru

Дата размещения полного текста диссертации на сайте Института http://zioc.ru/

29 сентября 2021 года

Дата приема к защите 01 октября 2021 года

Дата размещения автореферата на сайте BAK https://vak.minobrnauki.gov.ru 6 октября 2021 года

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ ИМ. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН)

на правах рукописи

СИЛЬЯНОВА ЕВГЕНИЯ АЛЕКСЕЕВНА

СИНТЕЗ АНАЛОГОВ ПРИРОДНЫХ ПРОТИВООПУХОЛЕВЫХ ВЕЩЕСТВ С 3,4-ДИАРИЛПИРРОЛЬНЫМ ФРАГМЕНТОМ В РЯДУ КОМБРЕТАСТАТИНОВ И ЛАМЕЛЛАРИНОВ

1.4.3 – Органическая химия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата химических наук

Работа выполнена в лаборатории медицинской химии № 17 Федерального государственного бюджетного учреждения науки Института органической химии им. Н.Д. Зелинского Российской академии наук

НАУЧНЫЙ РУКОВОДИТЕЛЬ	Самет Александр Викторович
	доктор химических наук, ведущий научный
	сотрудник Лаборатории медицинской химии № 17
	ИОХ РАН
ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ	Зефирова Ольга Николаевна
	Доктор химических наук, доцент, профессор кафедры
	Медицинской химии и тонкого органического
	синтеза химического факультета Московского
	государственного университета им. М.В. Ломоносова
	Кудрявцев Константин Викторович
	Доктор химических наук, ведущий научный
	сотрудник научно-исследовательской лаборатории
	молекулярной фармакологии Российского
	национального исследовательского медицинского
	университета им. Н.И. Пирогова.
ВЕДУЩАЯ ОРГАНИЗАЦИЯ	Федеральное государственное бюджетное
	учреждение науки Новосибирский институт
	органической химии им. Н.Н. Ворожцова Сибирского
	отделения Российской академии наук (НИОХ СО
	PAH).

Защита диссертации состоится «8» декабря 2021 г. в 11:00 часов на заседании Диссертационного совета 24.1.092.01 в Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского РАН по адресу: 119991 Москва, Ленинский проспект, 47.

С диссертацией можно ознакомиться в библиотеке Института органической химии им. Н.Д. Зелинского РАН и на официальном сайте Института http://zioc.ru

Автореферат разослан «13» октября 2021 г.

Ваш отзыв в двух экземплярах, заверенный гербовой печатью, просим направлять по адресу: 119991 Москва, Ленинский проспект, 47, ученому секретарю Диссертационного совета ИОХ РАН.

Ученый секретарь Диссертационного совета 24.1.092.01 ИОХ РАН Доктор химических наук

laguels

Г.А. Газиева

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

Природа является самым мощным источником для поиска новых лекарственных соединений. Лекарства получают из различных организмов как наземных, так и морских.

Разработке новых синтетических аналогов природного антимитотика комбретастатина А-4, выделенного из дерева *Combretum caffrum*, посвящено большое количество современных исследований в области медицинской химии. Исследователей интересуют соединения, обладающие конфигурационной стабильностью и сильным антипролиферативным действием наряду с минимальными побочными эффектами, а также способностью преодолевать множественную лекарственную устойчивость. Производные комбретастатинов СА4Р (фосбретабулин), AVE8062 (омбрабулин) дошли до 3 стадии клинических испытаний как противораковые лекарственные средства, действующие по механизму дестабилизации микротрубочек и разрушающие кровеносные сосуды опухолей. В ряду гетероциклических аналогов комбретастатина синтезирован ряд еще более активных молекул. Однако, 3,4-диарилпирролы до сих пор не были изучены в этом направлении.

В последние годы растет интерес к выделяемым из морских организмов пирролсодержащим алкалоидам ламелларинам. Многочисленным синтетическим исследованиям способствовало малое количество этих соединений, доступное для получения из природных источников без нанесения вреда экологии, а также их важные биологические, особенно противоопухолевые свойства.

Диссертационная работа посвящена синтезу аналогов комбретастатина A-4, модифицированного с помощью пиррольного цикла, а также синтезу морских алкалоидов ламелларинов. В основе целевых структур лежит один и тот же фрагмент — 3,4-диарилпиррол, что позволяет на ранних стадиях объединить синтез и на основе одного фрагмента сформировать соединения различной структуры.

В диссертационной работе был разработан подход к синтезу общего ключевого фрагмента - 3,4-диарилпиррол-2-карбоксилата из доступного природного сырья. На основе этого фрагмента были получены аналоги комбретастатина А-4, осуществлен полный синтез памелларина Q, а также синтез пирролокумаринового фрагмента ламелларинов. С помощью реакции 3+2 диполярного циклоприсоединения был синтезирован полный пентациклический каркас ламелларинов.

Цель работы. Разработка эффективного способа синтеза 3,4-диарилпиррол-2-карбоксилатов из доступного природного сырья. Синтез 3,4-диарилпирролов и 3,4-диарилпиррол-2-карбоксамидов как аналогов комбретастатина A-4. Исследование новых подходов к синтезу пентациклического каркаса ламелларинов и его фрагментов.

Научная новизна и практическая значимость. На основе альдегидов, полученных из коммерчески доступных отечественных экстрактов растений, в том числе семян укропа, петрушки, корневищ аира болотного, предложены и разработаны эффективные способы синтеза целевых структур.

В улучшенных условиях реакции Бартона-Зарда удалось добиться высоких выходов 3,4-диарилпиррол-2-карбоксилатов. На основе полученных соединений был синтезирован ряд не исследованных ранее 3,4-диарилпирролов и 3,4-диарилпиррол-2-карбоксамидов как аналогов природного антимитотика комбретастатина A-4.

Найден простой и результативный способ селективного О-деметилирования полиметоксизамещенных 3,4-диарилпиррол-2-карбоксилатов в мягких условиях. На основе

полученных результатов осуществлен полный синтез ламелларина Q, а также разработан подход к синтезу пирролокумаринового фрагмента ламелларинов как с метокси, так и с гидрокси группами.

Предложена высокоэффективная препаративная стратегия синтеза пентациклического каркаса ламелларинов. Ключевой стадией является реакция 3+2 диполярного циклоприсоединения изохинолиниевых илидов и нитростильбенов, которая позволяет в одну стадию синтезировать труднодоступный пентазамещенный пиррол, являющийся центральным ядром ламелларинов. Выбранный путь синтеза позволяет быстро и эффективно получать указанные структуры, а также обходиться без использования дорогостоящих реагентов и Pd-катализаторов.

Предварительные испытания противоопухолевых свойств нескольких соединений в Национальном Институте Рака США на 60 линиях раковых клеток человека показали перспективность их дальнейших исследований.

Полученные результаты имеют фундаментальную и практическую значимость для дальнейшей разработки методов полного синтеза ламелларинов, аналогов комбретастатинов и углубленных медицинских исследований.

Публикации. По результатам проведенных исследований опубликовано 5 статей в научных журналах, рекомендованных ВАК при Минобрнауки России, и 3 тезисов докладов.

Апробация работы. Результаты диссертационной работы были представлены на IV Междисциплинарном симпозиуме по медицинской, органической, биологической химии и фармацевтике МОБИ-ХимФарма2018 (Новый Свет, 2018); VIII Молодежной конференции ИОХ РАН (Москва, 2019); Всероссийской конференции «Марковниковские чтения: Органическая химия от Марковникова до наших дней» (Красновидово, 2020).

Структура и объем работы. Материал диссертации изложен на 173 страницах и состоит из введения, обзора литературы, обсуждения результатов, экспериментальной части, выводов, списка сокращений и условных обозначений, структур ламелларинов, списка литературы. Библиографический список состоит из 213 наименований.

Личный вклад соискателя состоит в поиске, анализе и обобщении научной информации по тематике исследования, выполнению описанных в диссертации химических экспериментов, выделению и очистке образующихся соединений. Диссертант принимал участие в установлении строения полученных соединений с помощью физико-химических и спектральных методов анализа, проведении биологических испытаний, обрабатывал и интерпретировал полученные результаты. Соискатель осуществлял апробацию работ на конференциях и выполнял подготовку публикаций по выполненным исследованиям.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Схема 1. Общий план диссертационной работы

Содержание диссертационной работы представлено в 6 разделах (Схема 1). Первым этапом стала наработка исходных нитростильбенов **2** и синтез 3,4-диарилпиррол-2-карбоксилатов **3** по реакции Бартона-Зарда, что обсуждается в разделе 1. Полученные пирролы **3** стали стартовой точкой для исследований в нескольких направлениях: в разделе 2 обсуждается получение 3,4-диарилпирролов **5** и 3,4-диарилпиррол-2-карбоксамидов **6** как аналогов комбретастатина A-4 (Рисунок 1).

Рисунок 1. Комбретастатин А-4 и его гетероциклические аналоги

В разделе 3 описан полный синтез Ламелларина Q, относящегося ко 2-ому типу ламелларинов (Рисунок 2), а в разделе 4 — синтез пирролокумаринового фрагмента ламелларинов 1-ого типа **8**, **10**. Синтез полного пентациклического каркаса ламелларинов 1-ого типа **12** был осуществлен путем реакции 3+2 диполярного циклоприсоединения нитростильбенов **2** к изохинолиниевым илидам и описывается в разделе 5. В разделе 6 представлены результаты биологических испытаний.

Рисунок 2. Структуры ламелларинов 1-ого и 2-ого типов на примере Ламелларинов D и Q

1. Синтез 2-карбэтокси-3,4-диарилпирролов по реакции Бартона-Зарда

В качестве исходных соединений для всего синтеза используются нитростильбены **2**, полученные из альдегидов **1** по реакции Анри взаимодействием с арилнитрометаном в присутствии метиламина в метаноле (Таблица 1).

Таблица 1. Синтез нитростильбенов 2а-t

$$Ar^{2} \underbrace{\hspace{1cm} O \xrightarrow{Ar^{1} NO_{2}} Ar^{2}}_{CH_{3}NH_{2}HCl, NaHCO_{3}, MeOH} \underbrace{\hspace{1cm} Ar^{1} Ar^{2}}_{O_{2}N}$$

 Ar^2 Ar^1 Соединение Выход, % 2a 4-ClC₆H₄ 4-OMeC₆H₄ 57 **2**b $4-NO_2C_6H_4$ 48 4-OMeC₆H₄ 47 **2**c 2d $3,5-(OMe)_2C_6H_3$ 61 72 **2e** 2,5-(OMe)₂-3,4-(OCH₂O)C₆H 2f $2,3-(OMe)_2-4,5-(OCH_2O)C_6H$ 47 $3,4,5-(OMe)_3C_6H_2$ 55 2g2-OMeC₆H₄ 56 2h $2,4-(OMe)_2C_6H_3$ 30 2i 2j $2,5-(OMe)_2C_6H_3$ 61 2k $4-OHC_6H_4$ 32 21 $2,4,5-(OMe)_3C_6H_2$ 23 2,5-(OMe)₂-3,4-(OCH₂O)C₆H 72 2m C_6H_5 2,3-(OMe)₂-4,5-(OCH₂O)C₆H 47 2n $3,4,5-(OMe)_3C_6H_2$ 43 **2**0 2-OMeC₆H₄ 67 **2p** 20 $2,3-(OMe)_2C_6H_3$ 2q 37 2r $2,4-(OMe)_2C_6H_3$ 2s $2.5-(OMe)_2C_6H_3$ 68 2t 4-OMeC₆H₄ 41

Реакция занимает достаточно продолжительное время (до 10 суток) и протекает не всегда с высокими выходами, но она проста в дальнейшей обработке: выпавший продукт 2 отфильтровывают и промывают метанолом от альдегида. Нитростильбены 2i и 2k были

получены в виде масла после колоночной хроматографии и использовались без дальнейшей очистки.

Нитростильбен **2u** был получен путем прямого нитрования стильбена **13** (Схема 2). Этот подход позволяет получать только симметричные производные.

Схема 2. Синтез нитростильбена 2и прямым нитрованием стильбена 13

Для синтеза пиррольного ядра была выбрана реакция Бартона-Зарда, что позволяет получить необходимый 3,4-диарилпиррол-2-карбоксилатный фрагмент за одну стадию. При использовании описанной в литературе классической методики — ТНF, как растворитель, и DBU, как основание, выходы целевого пиррола 3 оказались невысокими (15-43%) (Таблица 2). Такой выход обусловлен образованием побочных продуктов (Схема 3) и, как следствие, необходимостью очистки с помощью колоночной хроматографии. Дикарбэтоксипирролы 14 образуются из промежуточного соединения А после элиминирования молекулы арилнитрометана, присоединения молекулы изоцианоацетата и циклизации. Изоксазолин-Nоксиды 15 предположительно образуются в ходе присоединения образовавшегося ранее арилнитрометана к нитростильбенам 2 с последующей циклизацией промежуточных соединений В.

Схема 3. Предположительный механизм образования целевого и побочных продуктов в реакции Бартона-Зарда

Ar²
Ar¹

$$Ar^2$$
 Ar^1
 Ar^2
 Ar^1
 Ar^2
 Ar^1
 Ar^2
 Ar^1
 Ar^2
 Ar^2
 Ar^1
 Ar^2
 Ar

Выделение целевых пирролов оказалось весьма трудоемким процессом и не всегда приводило к чистым соединениям даже после колоночной хроматографии, что сделало необходимой оптимизацию условий реакции. К наилучшему результату привело использование K_2CO_3 , как основания, и EtOH, как растворителя. В результате с высокими выходами был синтезирован ряд пирролов 3 (Таблица 2).

Таблица 2. Синтез 3,4-диарилпиррол-2-карбоксилатов 3 по реакции Бартона-Зарда

$$Ar^1$$
 Ar^2
+ CNCH₂COOEt $\frac{O_{CHOBahue}}{P_{ACTBOPUTEЛЬ}}$
NH CO₂E

Соединение	Ar^2	Ar ¹	Выход, %	Выход, %
			DBU/THF	
3a	4-ClC ₆ H ₄	4-OMeC ₆ H ₄	43	91
3b	4-NO ₂ C ₆ H ₄		34	96
3c	4-OMeC ₆ H ₄		39	87
3d	3,5-(OMe) ₂ C ₆ H ₃		37	87
3e	2,5-(OMe) ₂ -3,4-(OCH ₂ O) C ₆ H		_a	84
3f	2,3-(OMe) ₂ -4,5-(OCH ₂ O) C ₆ H		_a	87
3g	3,4,5-(OMe) ₃ C ₆ H ₂		_a	91
3h	2-OMeC ₆ H ₄		_a	83
3i	$2,4-(OMe)_2C_6H_3$		_a	34
3j	2,5-(OMe) ₂ C ₆ H ₃		_a	67
3k	4-OHC ₆ H ₄		_a	6
3m	2,5-(OMe) ₂ -3,4-(OCH ₂ O) C ₆ H	C ₆ H ₅	15	87
3n	2,3-(OMe) ₂ -4,5-(OCH ₂ O) C ₆ H		_a	92
30	3,4,5-(OMe) ₃ C ₆ H ₂		_b	92
3p	2-OMeC ₆ H ₄		_a	94
3q	2,3-(OMe) ₂ C ₆ H ₃		_a	74
3r	$2,4-(OMe)_2 C_6H_3$		_a	93
3s	2,5-(OMe) ₂ C ₆ H ₃		_a	85
3t	4-OMeC ₆ H ₄		_a	86
3u	2-OMe-5-MeC ₆ H ₃	2-OMe-5-	_a	72
		MeC ₆ H ₃		

^ареакция в данных условиях не изучалась

Преимуществом новых условий реакции являются не только лучшие выходы, но и почти полное отсутствие побочных продуктов. Дикарбэтоксипирролы **14** не были зафиксированы ни в одной из реакций, а изоксазолин-N-оксиды **15** наблюдалась на ¹Н ЯМР спектрах в количестве 0-5%, что позволило упростить обработку реакции и использовать полученные соединения в синтезе без дальнейшей очистки.

Хороших результатов в реакции Бартона-Зарда удалось достичь только с химически чистыми нитростильбенами 2. В случае использования заведомо грязного исходного 2i отмечено снижение выхода пиррола 3i. При использовании гидроксизамещенного нитростильбена 2k, пиррол 3k был получен с выходом всего 6% после очистки с помощью колоночной хроматографии, что исключило возможность использования гидроксизамещенных нитростильбенов в синтезе Бартона-Зарда в указанных условиях.

^bцелевой продукт не удалось отделить от побочных

2. Синтез 3,4-диарилпирролов и 3,4-диарилпиррол-2-карбоксамидов

Пиррол-2-карбоновые кислоты **4**, общие исходные соединение для синтеза 2H-пирролов **5** и пиррол-2-карбоксамидов **6**, были получены путем щелочного гидролиза соответствующих эфиров **3** (Таблица 3).

Таблица 3. Щелочной гидролиз пиррол-2-карбоксилатов 3

$$Ar^{1} Ar^{2} Ar^{2} \underbrace{\frac{1. \text{ NaOH, EtOH}}{2. \text{ H}^{+}}}_{\text{NH}} Ar^{1} Ar^{2}$$

Соединение	Ar^2	Ar ¹	Выход, %
4a	4-ClC ₆ H ₄	4-OMeC ₆ H ₄	57
4b	4-NO ₂ C ₆ H ₄		85
4c	4-OMeC ₆ H ₄		80
4d	$3,5-(OMe)_2C_6H_3$		80
4e	2,5-(OMe) ₂ -3,4-(OCH ₂ O)C ₆ H		86
4 g	$3,4,5-(OMe)_3C_6H_2$		86
4m	2,5-(OMe) ₂ -3,4-(OCH ₂ O)C ₆ H	C_6H_5	82
40	3,4,5-(OMe) ₃ C ₆ H ₂		86
4p	2-OMeC ₆ H ₄		93

Наличие примеси изоксазолин-N-оксидов **15** в исходных пирролах **3** не препятствует реакции гидролиза и выделению в чистом виде пиррол-2-карбоновых кислот **4**. В ходе щелочного гидролиза из этиловых эфиров пирролкарбоновых кислот **3** образуются растворимые в воде натриевые соли, тогда как когда изоксазолин-N-оксиды **15** путем рециклизации (Схема 4) и отщепления воды переходят в нерастворимые в воде изоксазолы **16**. В результате отделиться от примеси возможно фильтрованием водного раствора реакционной массы ло ее полкисления.

Схема 4. Рециклизация изоксазолин-N-оксидов 15 в изоксазолы 16

$$Ar^{2} \xrightarrow{Ar^{2}} Ar^{2} \xrightarrow{Ar^{2}} Ar^{$$

Декарбоксилирование пиррол-2-карбоновых кислот **4** (Таблица 4) было осуществлено путем их нагрева до температуры 205-215 °C в условиях без растворителя в течение 30 секунд. В результате целевые 2H-пирролы **5** были получены с выходами до 73%.

В литературе описан one-pot синтез 2H-пирролов из соответствующих эфиров карбоновых кислот путем кипячения со щелочью в этиленгликоле. Однако, при декарбоксилировании диарилпирролов 3, лучшим подходом стала двухстадийная методика: получение кислот 4, а затем их декарбоксилирование. При попытке провести синтез в этиленгликоле, где требуется продолжительный нагрев в высококипящем растворителе (Т кип. = 197 °C), целевые соединения 5 разлагались и выделены не были.

Таблица 4. Получение 2Н-пирролов 5 путем декарбоксилирования кислот 4

Соединение	Ar^2	Ar ¹	Выход, %
5a	4-ClC ₆ H ₄	4-OMe C ₆ H ₄	46
5b	4-NO ₂ C ₆ H ₄		67
5c	4-OMeC ₆ H ₄		68
5d	$3,5-(OMe)_2C_6H_3$		46
5e	2,5-(OMe) ₂ -3,4-(OCH ₂ O)C ₆ H		60
5g	$3,4,5-(OMe)_3C_6H_2$		73
5m	2,5-(OMe) ₂ -3,4-(OCH ₂ O)C ₆ H	C_6H_5	60
50	3,4,5-(OMe) ₃ C ₆ H ₂		69
5t	4-OMeC ₆ H ₄		79

Пиррол 5t — единственный пиррол, который удалось получить только путем кипячения соответствующего эфира 3t в этаноле с избытком щелочи (Схема 5).

Схема 5. Синтез пиррола 5t

Известно, что плохая растворимость является проблемой как для комбретастатина А-4, так и для ламелларинов. В связи с этим представляло интерес синтезировать не только 2H-пирролы, но и модифицировать их с помощью карбоксамидного фрагмента, обладающего гидрофильными свойствами и способного к образованию дополнительных водородных связей.

Для получения пиррол-2-карбоксамидов **6**, кислоты **4** изначально планировалось перевести в хлорангидриды действием SOCl₂. Однако, в этих условиях наблюдалось осмоление реакционной массы. Эта проблема была решена при использовании сшивающего реагента N,N'-карбонилдиимидазола (CDI). При взаимодействии кислот **4** с CDI в ацетонитриле при комнатной температуре образуются имидазолиды **17**. После добавления к реакционной массе амина и кипячения, были получены соответствующие карбоксамиды **6** (Таблица 5).

Таблица 5. Получение пиррол-2-карбоксамидов 6da-6pf

Исходное	Ar ²	Ar ¹	R	Выход 6,
соединение				%
4d	3,5-(OMe) ₂ C ₆ H ₃	4-OMeC ₆ H ₄	Н	6da (86)
			Me	6db (83)
			Et	6dc (66)
			Bu	6dd (90)
			(CH ₂) ₂ OH	6de (73)
			(CH ₂) ₃ OH	6df (61)
4e	2,5-(OMe) ₂ -3,4-(OCH ₂ O)C ₆ H		Н	6ea (85)
			Me	6eb (84)
			Et	6ec (81)
			Bu	6ed (82)
			(CH ₂) ₂ OH	6ee (74)
			(CH ₂) ₃ OH	6ef (82)
4 g	3,4,5-(OMe) ₃ C ₆ H ₂		Н	6ga (84)
			Me	6gb (80)
			Et	6gc (79)
			Bu	6gd (93)
			(CH ₂) ₂ OH	6ge (80)
			(CH ₂) ₃ OH	6gf (82)
4m	2,5-(OMe) ₂ -3,4-(OCH ₂ O)C ₆ H	C ₆ H ₅	Н	6ma (79)
			Me	6mb (75)
			Et	6mc (92)
			Bu	6md (94)
			(CH ₂) ₂ OH	6me (84)
			(CH ₂) ₃ OH	6mf (84)
40	3,4,5-(OMe) ₃ C ₆ H ₂		Н	60a (91)
			Me	6ob (88)
			Et	6oc (88)
			Bu	6od (94)
			(CH ₂) ₂ OH	60e (92)
			(CH ₂) ₃ OH	6of (73)
4 p	2-OMeC ₆ H ₄		Н	6pa (92)
			Me	6pb (96)
			Et	6pc (88)
			Bu	6pd (90)
			(CH ₂) ₂ OH	6pe (84)
			(CH ₂) ₃ OH	6pf (80)
6 pa			Н	6va (88)
6pb	2-HOC ₆ H ₄		Me	6vb (99)
6 pc			Et	6vc (88)

Ранее была показана невозможность синтеза пирролов с гидрокси группами по реакции Бартона-Зарда (см раздел 1), поэтому 3-(*о*-гидроксифенил)пиррол-2-карбоксамиды **6va-6vc** получали О-деметилированием соответствующих 3-(*о*-метоксифенил)производных **6pa-6pc** действием BBr₃ (Схема 6).

Схема 6. Получение 3-(о-гидроксифенил)пиррол-2-карбоксамидов 6va-6vc

3. Синтез Ламелларина Q

Ламелларин Q по своей структуре похож на полученные ранее 3,4-диарилпиррол-2-карбоксилаты **3** (Схема 7), поэтому представлялось интересным оптимизировать методику для синтеза указанного природного соединения. В структуре Ламелларина Q имеются два основных отличия: наличие гидрокси групп вместо метокси и присутствие метилового эфира вместо этилового.

Схема 7. Сравнение структур ламелларина Q и полученных пирролов 3

С целью получения гидрокси групп была проведена оптимизация количества BBr_3 , необходимого для деметилирования. Исследование проводилось на ближайшем структурном аналоге — 3,4-бис(4-метоксифенил)пиррол-2-карбоксилате 3c (Схема 8).

Схема 8. Исследование количества ВВг3 необходимого для деметилирования

При использовании одного эквивалента BBr₃ образования гидрокси групп не наблюдалось. При использовании двух эквивалентов BBr₃ наблюдалось деметилирование только одной группы, причем оно происходило с выраженной селективностью: была выделена смесь частично деметилированных продуктов **3k** и **3k'** в соотношении 1:4 в пользу соединения **3k'**. Структура минорного продукта **3k** подтверждена его альтернативным синтезом из 2-(4-гидроксифенил)-1-(4-метоксифенил)-1-нитроэтилена **2k**. Полностью деметилированный продукт **18** удалось получить только в присутствии трех эквивалентов BBr₃.

На основании полученных результатов был осуществлен полный синтез Ламелларина Q (Схема 9). Нитростильбен **2c**, полученный взаимодействием альдегида **1c** и 4-метоксифенилнитрометана, вводили в реакцию Бартона-Зарда с этилизоцианоацетатом в метаноле. В метаноле вместе с образованием пиррола происходит переэтерификация в метиловый эфир пиррол-2-карбоновой кислоты **19**. После деметилирования пиррола **19** тремя эквивалентами ВВг₃ был получен Ламелларин Q за 3 стадии с общим выходом 35%. Для сравнения, одна из последних методик в литературе предлагает получить то же соединение за 7 стадий с общим выходом 20%.

Схема 9. Полный синтез Ламелларина Q

Его структура была доказана, в том числе с помощью рентгеноструктурного анализа. Несмотря на то, что Ламелларин Q является простейшим по своей структуре представителем ламелларинов, в литературе его рентгеноструктурные данные ранее не были представлены.

4. Синтез пирролокумаринового ядра ламелларинов

Одним из ключевых структурных фрагментов ламелларинов 1-ого типа является пирролокумарин (Схема 10). Лактонный фрагмент пирролокумаринов может быть образован путем лактонизации 2-гидроксифенил производных **20**, полученных из О-защищенных производных **21**. Присутствие в структуре исходных арилальдегидов **1** метокси групп позволяет избавиться от дополнительной стадии введения защитных групп, что сокращает синтез на одну стадию.

Схема 10. Пирролокумариновый фрагмент в структуре ламелларинов типа 1 и образование лактонного фрагмента

В связи с этим, для последующих опытов были выбраны 2-метоксифенилзамещенные пирролы, способные к образованию лактонного фрагмента после деметилирования. Для деметилирования монометоксифенилпиррола **3p** (Схема 11) потребовался всего 1 эквивалент ВВг₃, а *о*-гидроксифенилпиррол **7p** был получен с почти количественным выходом. Стоит еще раз отметить, что, когда диарилпиррол не содержал *о*-ОМе группу (раздел 3, схема 8), при использовании 1 экв. ВВг₃, деметилирования не происходило.

Схема 11. Деметилирование 2-метоксифенилпиррол-2-карбоксилата 3р

При введении в реакцию полиметоксифенилпирролов с 1 эквивалентом BBr₃ наблюдалось деметилирование только *одной* метокси группы, находящейся в *о*-положении *с сохранением всех других алкокси групп*, присутствующих в молекуле (Таблица 6). Получение производных с гидрокси группой в *о*-положении фенильного кольца, было доказано химическим путем: под действием щелочи (50 мол. % NaOH) происходила лактонизация и образование метоксизамещенных пирролокумаринов 8.

Из литературных данных известно, что BBr_3 способен координироваться с кислородом карбонильной группы, образуя устойчивые комплексы. Вероятно, такая селективность обусловлена тем, что BBr_3 , координируясь со сложноэфирной группой, деметилирует пространственно сближенную метокси группу в o-положении ароматического кольца.

Таблица 6. Селективное О-деметилирование, синтез метоксизамещенных пирролокумаринов 8

Исходное соединение	R	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Выход 7, %	Выход 8 ,%
3e	OMe	OCH ₂ C)	OMe	7e (68)	8e (83)
3f	OMe	OMe	OCH ₂ C)	7f (51)	8f (81)
3h	OMe	Н	Н	Н	7h (78)	8h (71)
3i	OMe	Н	OMe	Н	7i (81)	8i (80)
3j	OMe	Н	Н	OMe	7j (81)	8j (71)
3m	Н	OCH ₂ C)	OMe	7m (61)	8m (78)
3n	Н	OMe	OCH ₂ C)	7n (55)	8n (71)
3p	Н	Н	Н	Н	7p (96)	8p (82)
3q	Н	OMe	Н	Н	7q (82)	8q (80)
3r	Н	Н	OMe	Н	7r (98)	8r (83)
3s	Н	Н	Н	OMe	7s (89)	8s (74)

Для проверки этой гипотезы был синтезирован 3,4-бис(2-метокси-5-метилфенил)-1Н-пиррол-2-карбоксилат **3u** и введен в реакцию в 1 эквивалентом BBr₃ (Схема 12). Гидроксидиарилпиррол **7u** был получен в виде единственного изомера. Возможность осуществить последующую реакцию циклизации с образованием пирролокумарина **8u**, подтвердила предположение о механизме селективного О-деметилирования.

Схема 12. Контрольный эксперимент

Синтез пирролокумаринового ядра ламелларинов с гидрокси группами **10** удалось осуществить путем полного О-деметилирования пирролов **3** избытком BBr₃. Количество BBr₃ для полного деметилирования необходимо на 1 эквивалент больше, чем число метокси групп, присутствующих в пирроле (Таблица 7). После лактонизации под действием 50 мол. % NaOH были получены гидроксизамещенные пирролокумарины **10**.

Таблица 7. Полное О-деметилирование и синтез гидроксизамещенных пирролокумаринов 10

5. Синтез полного структурного скелета ламелларинов реакцией 3+2 диполярного циклоприсоединения

Пентациклический каркас ламелларинов может быть получен путем модификации синтезированных ранее пирролов 3 или пирролокумаринов 8, 10. Однако, наибольший интерес представляет способ, требующий меньшего количества стадий. Известно, что нитростиролы могут вступать в реакцию 3+2 диполярного циклоприсоединения с изохинолиниевыми илидами, но подобный путь с нитростильбенами еще не был изучен. С использованием реакции 3+2 диполярного циклоприсоединения, взаимодействием нитростильбенов 2 в качестве диполярофилов и изохинолиниевых илидов как 1,3-диполей, можно за одну стадию получить

труднодоступный пентазамещенный пиррол **11** (Схема 13). Илиды получали in situ из соответствующих солей **22** под действием основания. В качестве промежуточного продукта образуется нитропирролидин \mathbf{C} , который после окислении и отщепления HNO_2 под действием основания образует целевой пиррол.

Схема 13. Общая схема синтеза пирролоизохинолинов 11

Оптимизация условий реакции 3+2 диполярного циклоприсоединения (Таблица 8) производилась с использованием наиболее доступных реагентов: бис(4-метоксифенил)нитростильбена **3c** и незамещенной изохинолиниевой соли **22a**. Варьированию подвергались основание (В), окислитель (О) и растворитель.

Из литературы известно, что окисление промежуточного пирролидина **С** может происходить кислородом воздуха, однако при проведении реакции без дополнительно окислителя целевой продукт был выделен в количестве 3%.

MeO

OMe

Таблица 8. Оптимизация условий реакции 3+2 диполярного циклоприсоединения

При использовании диацетата меди как окислителя, скорость реакции в ацетонитриле была выше чем в хлороформе, поэтому ацетонитрил был выбран для дальнейшей оптимизации

основания. Варьирование основания показало наилучший результат с карбонатом калия (47%), но в реакции с пиридином по TCX визуально наблюдалось меньше примесей, несмотря на меньший выход.

Использование чистого пиридина и проведение реакции при температуре -5 °C действительно показало лучший результат (57%), но такую температуру сложно поддерживать на протяжении всего времени протекания реакции.

Несмотря на то, что удалось получить выход более 50%, любые другие вариации условий не давали лучшего результата, а их влияние на результат был минимальным. Была проведена замена окислителя, в надежде на то, что его изменение окажет более сильный эффект на ход реакции. В качестве нового окислителя была выбрана активная форма диоксида марганца γ -MnO₂.

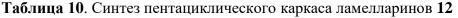
Наилучший результат с диоксидом марганца (41%) был получен с применением DABCO в качестве основания и CHCl₃, как растворителя. Несмотря на то, что выход в этих условиях меньше, чем лучший выход, полученный ранее, реакция идет быстрее, а также не требует продолжительного поддержания отрицательной температуры.

Дальнейшего улучшения удалось добиться, заменив растворитель на менее полярный PhCH₃. В этих условиях реакция протекает только при кипении, однако отсутствие побочных продуктов, скорость реакции и полученный выход (74%) позволили закончить оптимизацию условий реакции. Контрольный эксперимент в тех же условиях, но с диацетатом меди показал выход существенно ниже (32%).

Известно, что реакция 3+2 диполярного циклоприсоединения может протекать двумя различными путями (Схема 14). Путь A – согласованное образование двух связей и образование промежуточного продукта нитропирролидина C. Путь B – поочередное образование двух связей с образованием промежуточного ациклического соединения D.

Схема 14. Механизм образования целевого и побочного продуктов

Ar¹ NO₂ Ar² Ar¹ Ar² COOEt
$$\frac{[O]}{-HNO_2}$$
 Ar¹ Ar² $\frac{Ar^1}{-HNO_2}$ Ar¹ Ar² $\frac{Ar^2}{-HNO_2}$ Ar¹ Ar² $\frac{Ar^2}{-HNO_2}$ COOEt $\frac{[O]}{-HNO_2}$ Ar¹ Ar² $\frac{Ar^2}{-HNO_2}$ COOEt $\frac{Ar^2}{-HNO_2}$ $\frac{Ar^2$


В ходе оптимизации удалось выделить и охарактеризовать побочные продукты, которые представляют из себя изоксазолин-N-оксиды **23**. Очевидно, что они не являются продуктами 3+2 диполярного циклоприсоединения, а могут образоваться, только если в какой-то момент времени в реакционной смеси присутствует промежуточный аддукт Михаэля **D**, из которого

путем 1,5-элиминирования образуется побочный продукт 23. Определение его структуры позволило более осознано проводить оптимизацию условий реакции.

Так как промежуточное соединение **D** является полярной структурой, то полярные растворители, такие как ацетонитрил, будут его стабилизировать и, тем самым, увеличивать вероятность образования изоксазолин-N-оксида **23**. При проведении реакции в неполярном толуоле стабилизации промежуточного соединения **D** не происходит, а значит и вероятность образования побочного продукта снижается, что и наблюдалось на практике. В оптимизированных условиях был получен ряд пирролоизохинолинов **11** (Таблица 9).

Таблица 9. Синтез пирролоизохинолинов 11

Синтез полного пентациклического каркаса ламелларинов **12** может быть осуществлен путем деметилирования BBr₃ с последующей циклизацией (Таблица 10).

6. Биологические испытания

Исследование биологической активности 69 соединений проводили на зародышах морского ежа *Paracentrotus lividus*. Данный фенотипический метод не требует сложного дорогостоящего оборудования и позволяет быстро обнаружить вещества с антимитотической активностью, нарушающие деление оплодотворенных яйцеклеток морского ежа. При обработке на стадии вылупившейся бластулы оседание зародышей на дно сосуда и быстрое вращение вокруг анимально-вегетативной оси (спиннинг) является доказательством воздействия исследуемого вещества на тубулин, приводящего к дестабилизации микротрубочек.

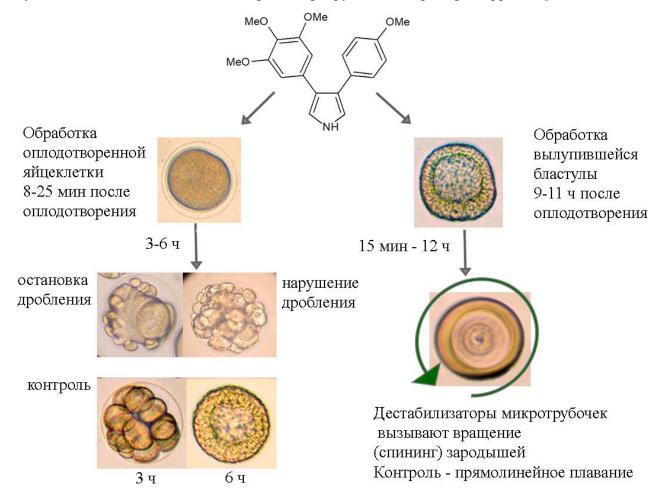
Пирролы **5g** и **5d** вызывают спиннинг зародышей, что указывает на их антимитотическое действие, обусловленное дестабилизацией микротрубочек (Рисунок 3). Эфир **3d** и карбоксамид **6gc** не вызывали спиннинга зародышей, однако при полном угнетении дробления яйцеклетки приобретали бугорчатую форму, характерную для ингибиторов полимеризации тубулина.

Анализ зависимости антипролиферативной активности исследованных соединений от их химической структуры показал важное значение 4-метоксифенильного фрагмента в положении 4 пиррольного кольца. Так, 2H-пирролы **5e,5g**, содержащие в положении 4 пиррола 4-метоксифенильный фрагмент, проявили антимитотическую активность, в отличие от соответствующих пирролов **5m** и **5o**, содержащих в 4 положении пиррола незамещенный фенильный фрагмент.

Соединения, содержащие в 3 положении пиррольного кольца 3,4-метилендиоксифенильный фрагмент (серия е), были менее активны, чем соединения с 3,4,5-триметоксифенильным заместителем (серия g). У пирролкарбоксамидов 6 заместитель в карбоксамидной группе не оказывал существенного влияния. Гидролиз эфира 3d приводил к полной потере активности у кислоты 4d, однако далее у пирролов 5d и карбоксамидов 6d активность восстанавливалась.

Таблица 11. Действие целевых соединений **3**, **4**, **5**, **6** проявивших анимитотическую активность, на зародышах морского ежа *Paracentrotus lividus*

	EC, μ M ^a					
	Нарушение дробления	Остановка дробления	Спиннинг зародышей			
	Этил 3,4-диарилпиррол-2-карбоксилаты 3					
3d	1	$4(TE)^b$	>4			
3g	4	>4	>4			
	3,4-Диарилпи	иррол-2-карбоновые кисло	ты 4			
4g	0.5	4	>4			
	3,	4-Диарилпирролы 5				
5a	4	>4	>4			
5b	4	>4	>4			
5d	0.5	1	5			
5e	4	>4	>4			
5g	0.05	0.2	4			
5t	1	>4	>4			
	3,4-Диари	лпиррол-2-карбоксамиды	6			
6da	1	>4	>4			
6db	2	>4	>4			
6dc	2	>4	>4			
6dd	2	>4	>4			
6de	4	>4	>4			
6df	2	>4	>4			
6ed	2	>4	>4			
6ee	2	>4	>4			
6gb	2	>4	>4			
6gc	0.5	$4(TE)^b$	>4			
6ge	4	>4	>4			
CA4 ^c	0.002	0.01	0.05			


 $[^]a$ EC — пороговая концентрация, вызывающая эффект. Оставалась неизменной в повторных экспериментах.

В серии соединений **g** с 4-метоксифенильным и 3,4,5-триметоксифенильным заместителями 2H-пиррол **5g** проявил самый большой антипролиферативный эффект; пиррол-2-карбоновая кислота **4g** была значительно активнее соответствующего эфира **3g**, и ее антипролиферативный эффект был сопоставим с эффектом наиболее активного амида **6gc**. Максимум активности именно в случае *орто*-расположенных 4-метоксифенильного и 3,4,5-триметоксифенильного заместителей наблюдался ранее и для других *о*-диарилзамещенных азолов.

^b При полной остановке дробления формировались бугорчатые клетки (TE, от англ. «tuberculate eggs»), характерные для дестабилизаторов микротрубочек.

 $^{^{}c}$ Положительный контроль.

Рисунок 3. Выявление дестабилизаторов микротрубочек на примере пиррола 5g

Соединения 11 и 12 не обладают антимитотическим действием до 4 μ M, однако соединения 12 в концентрации 2-4 μ M угнетают вылупление и последующее развитие (морфогенез) зародышей, возможно, за счет ингибирования металлопротеиназ.

Интересный эффект был выявлен у N-незамещенного карбоксамида **60а**. Это соединение не влияло на развитие до стадии гаструлы, а далее нарушало становление осей симметрии, что приводило к радиализации зародышей.

Параллельно с исследованиями на зародышах морских ежей в Национальном институте рака США (NCI NIH, USA) в рамках Программы поиска новых противоопухолевых лекарственных средств (Developmental Therapeutic Program) была исследована цитотоксичность 34 соединений по отношению к 60 линиям опухолевых клеток человека.

Наиболее активный N-этилкарбоксамид **6gc** заметно подавлял рост ряда линий опухолевых клеток человека (Таблица 12).

Таблица 12. Избирательное угнетение роста опухолевых клеток человека под действием N-этилкарбоксамида **6gc** в концентрации 10 мкмоль• π^{-1}

Линия опухолевых клеток человека	Угнетение роста клеток (%)
А498, карцинома почки	114.0 ^a
SNB-75, рак мозга	106.8 a
MDA-MB-435, меланома	104.4 ^a
OVCAR-3, рак яичника	97.5
HL-60(ТВ), лейкемия	94.8
НОР-92, немелкоклеточный рак легкого	91.1
К-562, лейкемия	87.9
NCI-H460, немелкоклеточный рак легкого	86.3
НТ29, аденокарцинома толстой кишки	85.3
НСТ-116, аденокарцинома толстой кишки	84.7
SK-MEL-5, меланома	84.0
NCI-H522, немелкоклеточный рак легкого	82.4
MDA-MB-468, рак молочной железы	81.5
SR, лимфома	80.5
NCI/ADR-RES, рак яичника	80.2

 $[^]a$ Угнетение роста клеток >100% означает летальный эффект, т.е. уменьшение количества жизнеспособных клеток в присутствии исследуемого вещества по отношению к исходному уровню.

выводы

- 1. Разработана схема синтеза целевых соединений: 3,4-диарилпирролов, пирролокумаринов и ламелларинов из единого синтетического предшественника нитростильбенов, полученных на основе полиметоксибензальдегидов, которые доступны из природного сырья.
- 2. Оптимизированы условия проведения реакции Бартона-Зарда для синтеза 3,4-диарилпиррол-2-карбоксилатов из нитростильбенов и этилизоцианоацетата. В новых улучшенных условиях выходы некоторых пирролов удалось увеличить более чем в пять раз. Впервые установлено образование в реакции Бартона-Зарда изоксазолин-N-оксидов в качестве побочных продуктов.
- 3. Отработаны методы синтеза аналогов природного антимитотика комбретастатина A-4, содержащих 3,4-диарилпиррольный фрагмент: 3,4-диарилпиррол-2-карбоновых кислот, 3,4-диарилпиррол-2-карбоксамидов, а также незамещенных 3,4-диарилпирролов, которые синтезированы в условиях "solvent-free" декарбоксилирования соответствующих 2-карбоновых кислот.
- 4. Осуществлен полный синтез природного соединения Ламелларина Q (метил 3,4-бис(4-гидроксифенил)-1H-пиррол-2-карбоксилата) в 3 стадии с общим выходом 35%.
- 5. Показана селективность трибромида бора в отношении *о*-метокси группы в полиметоксизамещенных 3,4-диарилпиррол-2-карбоксилатах, что позволило получить пирролокумариновый фрагмент ламелларинов как с метокси, так и с гидрокси группами.
- 6. Разработана высокоэффективная препаративная методика получения труднодоступного пентазамещенного пиррольного цикла за одну стадию с помощью реакции 3+2-диполярного циклоприсоединения из нитростильбенов и изохинолиниевых илидов. Последующая лактонизация дает возможность получить пентациклический каркас ламелларинов с высокими выходами.
- 7. Предложенные реакции проходят в мягких условиях, используют простые доступные реагенты и не требуют применения дорогостоящих катализаторов, таких как Pd.
- 8. Проведенные биологические испытания на зародышах морских ежей и 60 клеточных линий человека показали, что полученные структуры обладают заметным антипролиферативным действием. Выявлен ряд структур ингибиторов полимеризации тубулина, среди которых самым эффективным является 3-(4-метоксифенил)-4-(3,4,5-триметоксифенил)пиррол.

ПЕРЕЧЕНЬ СТАТЕЙ ПО ДИССЕРТАЦИОННОЙ РАБОТЕ

- 1. Самет А. В., <u>Сильянова Е. А.</u>, Ушкаров В. И., Семенова М. Н., Семенов В. В. Синтез 3,4-диарил- и 3-арил-4-ацилпирролов и изучение их антимитотической активности // Изв. АН. Сер. Хим. -2018. -№ 5. C. 858–865.
- 2. <u>Сильянова Е. А.</u>, Самет А. В., Семенов В. В Эффективный синтез 3,4-диарилпиррол-2-карбоксилатов ключевых фрагментов природных антимитотиков // Изв. АН. Сер. Хим. 2018. № 12. С. 2316—2319.
- 3. Semenova M. N., Demchuk D. V., Tsyganov D. V., Chernysheva N. B., Samet A. V., <u>Silyanova E. A.</u>, Kislyi V. P., Maksimenko A. S., Varakutin A. E., Konyushkin L. D., Raihstat M. M., Kiselyov A. S., Semenov V. V. Sea urchin embryo model as a reliable in vivo phenotypic screen to characterize selective antimitotic molecules. Comparative evaluation of combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as tubulin-binding agents // ACS Comb. Sci. 2018. T. 20, № 12. C. 700–721.
- 4. <u>Silyanova E. A.</u>, Samet A. V., Salamandra L. K., Khrustalev V. N., Semenov V. V. Formation of 3,4-diarylpyrrole- and pyrrolocoumarin core of natural marine products via Barton-Zard reaction and selective O-demethylation // Eur. J. Org. Chem. − 2020. − T. 2020, № 14. − C. 2093–2100.
- 5. <u>Е. А. Сильянова</u>, А. В. Самет, М. Н. Семенова, В. В. Семенов Синтез и антипролиферативные свойства 3,4-диарилпиррол-2-карбоксамидов // Изв. АН. Сер. хим. -2021. № 3. С. 498—509.

Тезисы

- 1. А. В. Самет, <u>Е. А. Сильянова</u>, М. Н. Семенова, В. В. Семенов / 3,4-Диарилпирролы: особенности синтеза и антимитотическая активность // Сборник тезисов докладов Четвёртого Междисциплинарного Симпозиума по Медицинской, Органической и Биологической Химии и Фармацевтике под редакцией К.В. Кудрявцева и Е.М. Паниной. М.: «Перо», 2018. 205 с.
- 2. А.В. Самет, <u>Е.А. Сильянова</u>, В.В. Семенов / Новый эффективный способ синтеза 3,4диарилпиролов и пирролокумаринов — структурного ядра природных соединений // Сборник тезисов докладов VIII Молодёжной конференции ИОХ РАН под редакцией Е.М. Бугачева. — М.: «МАКС Пресс», 2019. — 184 с.
- 3. <u>Е.А. Сильянова,</u> А.В. Самет, Л.К. Саламандра, В.В. Семенов / Синтез 3,4-диарилпирролов и пирролокумаринов структурного ядра природных соединений с помощью реакции Бартона-Зарда и селективного О-деметилирования // Сборник тезисов докладов Марковниковских чтений: Органическая химия от Марковникова до наших дней. 2020. С. 83.