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Visualizing nanoparticle surface dynamics and
instabilities enabled by deep denoising
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Materials functionalities may be associated with atomic-level structural dynamics occurring on the
millisecond timescale. However, the capability of electron microscopy to image structures with high
spatial resolution and millisecond temporal resolution is often limited by poor signal-to-noise ratios.
With an unsupervised deep denoising framework, we observed metal nanoparticle surfaces (platinum
nanoparticles on cerium oxide) in a gas environment with time resolutions down to 10 milliseconds
at a moderate electron dose. On this timescale, many nanoparticle surfaces continuously transition between
ordered and disordered configurations. Stress fields can penetrate below the surface, leading to defect
formation and destabilization, thus making the nanoparticle fluxional. Combining this unsupervised
denoiser with in situ electron microscopy greatly improves spatiotemporal characterization, opening a new
window for the exploration of atomic-level structural dynamics in materials.

N
anoparticle surface structural dynamics,
sometimes referred to as fluxionality,
may play an important role in regulating
functionalities such as diffusion, reac-
tivity, and catalysis, but the atomic-level

processes are not well understood (1). The
importance of atomic-level structural dynam-
ics is well established for protein functionality
but has been less discussed in materials (2).
Recent works have shown that surface flux-
ionality may be directly correlated with cat-
alytic functionality (3, 4). For example, fluxional
effects at the atomic level were found to be
correlated with CO oxidation activity in a Pt
on a CeO2 catalyst, but the spatiotemporal de-
tails were obscured by poor signal-to-noise
ratios (SNRs) (3). Atom dynamics consist of
different types of motions ranging from very
fast vibrations to slower migrations. If we
could locally characterize atommigration (which
depends on temperature) onmillisecond time-
scales, this would deepen our understanding
of functionalities. For example, in heteroge-
neous catalysis, reaction rates per active site
are typically in the range of 1 to 100/s andmay
be associatedwith the formation of short-lived
metastable surface structures that exist on the
tens of milliseconds timescale. However, atomic
resolution characterization of nanoparticle sur-

face dynamics is challenging because it requires
both high spatial and temporal resolution.
Ultrafast transmission electron microscopy
(TEM) can achieve picosecond temporal reso-
lution but is limited to nanometer spatial re-
solution (5–7). Fortunately, the high readout
rates of new electron detectors could allow
conventional TEM to visualize atomic struc-
tures on a millisecond timescale. Unfortunately,
the need to reduce electron beam damage to
the sample makes it necessary to limit the
electron dose rates, yielding millisecond im-
ages that are dominated by noise, which ob-
scures the structural details. Here, we show
that a newly developed unsupervised denois-
ing framework based on deep learning enables
observations of metal nanoparticle surfaces
in a gas environment with time resolutions
down to 10 ms at a moderate electron dose.
On this timescale, we find that many nano-
particle surfaces continuously transition be-
tween ordered and disordered configurations.
The associated stress fields can penetrate be-
low the surface, which leads to defect forma-
tion and destabilization and makes the entire
nanoparticle fluxional.
The concept of fluxionality, in which a sys-

tem rapidly moves through different isomers,
was first discussed for organometallic mole-
cules in the 1950s, as summarized by Cotton
(8). In the early days of nanoscience, there was
interest in fluxional behavior of nanoparticles
due in part to observations performed on the
newly developed atomic-resolution electron
microscopes (9). However, older, less-sensitive
electron detector technology limited temporal
resolutions to ~100 ms and required large
electron dose rates (>104 e Å2 s−1). The desire
to understand structure and functionality in

catalytic nanoparticles has driven the con-
tinued development of gas and liquid cell
TEM (10–13). However, to limit beam damage,
the timescale for much of the reported atomic
structural dynamics is often minutes (14, 15).
Recently, time resolutions on the order of
10 ms have been reported, but they used high
electron dose rates (≥104 e− Å−2 s−1) (16, 17).
Here, we used the power of machine learning
to reduce the electron dose rate by at least
an order of magnitude (~103 e− Å−2 s−1) while
achieving temporal resolutions of ~10 ms and
spatial resolutions of 1 Å. This enabled us to
explore the challenging issue of surface dy-
namics in metal particles.
To address the image noise challenge, we

propose a denoising framework based on arti-
ficial intelligence (AI), which enables the re-
covery of atomic-resolution information from
noisy images. AI models based on neural net-
works have achieved impressive results for na-
tural images but often require training datasets
with ground-truth clean images (18, 19). Sim-
ulating such datasets is challenging; in fact,
it is often impossible when the goal of denois-
ing is scientific discovery. We propose a fully
unsupervised framework to train and evaluate
AI-powered denoising models using exclusive-
ly real noisy data (20). The framework enabled
recovery of atomic-resolution information from
TEM data, improving the SNR by a factor of
almost 40 at a spatial resolution of 1 Å and time
resolution near 10 ms. This enhanced time re-
solution revealed that supposedly stable, low-
energy nanoparticle surfaces can display highly
active atom dynamics, triggering instabilities
that result in rapid structural fluctuations. The
spatiotemporal capability enabled by the pro-
posed AI framework substantially enhances
our ability to explore surface dynamics and the
evolution of metastable states in nanoparticles
at the atomic level, offering insights into their
evolving structures.

Data collection and noise processing

For this investigation, we explored the struc-
tural dynamics of Pt particles supported on
CeO2 in a CO environment at room temper-
ature. CO interacts strongly with Pt surfaces,
with a binding energy of ~1.5 eV and a mi-
gration energy of ~0.02 eV (21, 22). The CO
surface coverage exceeds 50% even at the mod-
est pressures of 10−4 to 10−2 Torr used in the
current experiment (23). To investigate the dy-
namics,we recordedmovies fromaPt/CeO2 sam-
ple with an electron dose rate of 2000 e–Å−2 s−1

and a readout rate of 75 frames/s (see movies
S1 and S4 in the supplementary materials, sec-
tion 8), corresponding to a single frame expo-
sure time of 13 ms (individual frames had an
electron dose of 26 e– Å−2 s−1 and the dose per
pixel was 0.2 e–). Each movie was composed of
~1000 to2000 frames (3500×3500pixels in size)
with an SNR (measured in the vacuum) of ~0.45,
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which obscured much of the surface structure
in the raw data and made it impossible to ob-
serve the underlying dynamics (see the supple-
mentarymaterials, section 2, formore details).
To process the low-SNR data, we leverage a

deep-learning model trained and evaluated ex-
clusively on the same real noisy data. The
model is based on recently developed unsuper-
vised deep video denoiser (UDVD), (20, 24)
trained to estimate each noisy pixel value using
the surrounding spatiotemporal neighborhood
but without considering the noisy pixel itself
(Fig. 1A). This blind-spot structure, which was
enforced through a specialized architectural
design, was critical because it prevented the
model from learning to trivially map the input
to the output directly. Instead, the denoiser

learned to estimate the underlying clean image
structure without overfitting the noise. Effec-
tive denoising occurs provided (i) each pixel
in the clean image is correlated with if the
surrounding pixels, which is the case if the
spatial sampling is sufficiently highwith respect
to the features of interest (e.g., lattice fringes),
and (ii) the noise is spatially and temporally
uncorrelated (see the supplementarymaterials,
section 41; see part 4 for an analysis of the spa-
tiotemporal correlation in the noise). UDVD
combined several convolutional neural networks
with a UNet architecture to process multiple
frames at the same time, which enabled it to
exploit temporal patterns and multiscale struc-
ture (see the supplementary materials, section
1 for additional details). The results achieved

by the denoiser are shown in Fig. 1, B and C.
After denoising, the atomic structure of the
nanoparticles, including the surface, was clear-
ly resolved, showcasing the advantage of un-
supervised denoising for scientific discovery.
To evaluate the performance of UDVD, we

applied a recently developedunsupervised eval-
uation metric: the unsupervised peak SNR
(uPSNR) (20). This metric is computed by
using held-out adjacent noisy frames com-
bined with a correction term (Fig. 1, D and E)
that yields an unbiased, consistent estimate
of the true PSNR, under the assumption that
the noise is independent across frames (this
is approximately true, as shown in the sup-
plementarymaterials, section 1). An additional
qualitative evaluation of the denoised output

A D

C

B

E

Fig. 1. Unsupervised deep denoising methodology. (A) The proposed UDVD
learns to remove noise from noisy datasets without access to ground-truth clean
images. A deep convolutional neural network is trained to estimate each noisy
pixel from its spatiotemporal surrounding but without using the noisy pixel itself.
Because the noisy component of the pixel is unpredictable, the network learns to
estimate the underlying clean signal. (B) Example of denoising results showing
the structure of the Pt nanoparticle in a CO atmosphere at room temperature. Left,
raw data (13-ms exposure time). Right, same frame after UDVD denoising. Middle,
raw frame after Gaussian blur filter for noise reduction. (C) Comparison of summed
data and denoised data of the 30-frame sum. The surface structures look very
similar. Intensity linescans along green lines in images is graphed on the right showing
similar intensity variations for the denoised (red trace) and raw (black trace line)
data. (see the supplementary materials, section 2). (D) To perform quantitative

evaluation of unsupervised denoisers, we propose a metric called unsupervised mean
squared error (uMSE), which is computed exclusively from noisy data. The uMSE was
obtained by comparing the denoised image with an adjacent noisy frame and adding a
correction term computed from two additional noisy frames (top row). If the signal
content across the noisy frames is consistent and the noise is independent, the
uMSE is an unbiased consistent estimator of the supervised MSE between the
denoised image and the underlying clean signal (bottom row). (E) Comparison of the
performance of a single-frame and multiframe version of UDVD against a traditional
baseline based on Gaussian filtering (Gaussian) and an alternative unsupervised
method known as Neighbor2Neighbor (1). The metric was the uPSNR, which equals
the logarithm of the uMSE. UDVD achieved a statistically significant superior
performance for two datasets containing CeO2 and Pt nanoparticles. Section 1 of the
supplementary materials provides additional details about the models and datasets.
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was performed by comparing a temporal aver-
age of the raw and denoised data. Figure 1C
shows that there is reasonable agreement be-
tween the two temporal averages. Further
details on training and evaluation of the de-
noiser output from generating nanoparticle
surface structure are provided in the supple-
mentary materials, sections 1 and 2. Based
on the vacuum region, the SNR in the UDVD
output was ~16.5, which was improved by a
factor of ~36 compared with the raw data. To
achieve a similar improvement through count-
ing statistics alone would require an increase
in beam current or acquisition time by a fac-
tor of 1300. Increasing the beam current by
such a large factor would destroy the material,
whereas increasing the acquisition time by this
factor would destroy the time resolution. This
result demonstrates the power of the proposed
denoising framework (for a more detailed dis-
cussion on the role of exposure time fordetecting
short-lived surface structures, see the supple-
mentary materials, section 7).

Denoised imaging results

The denoiser revealed new dynamics on nano-
particle surfaces. A typical evolution of a 1.2-nm
Pt nanoparticle surface supported on a (100)
face of a CeO2 during exposure to 10−4 Torr of
CO at room temperature is shown in Fig. 2, A
to F. The first image at t = 0 s shows the par-

ticle in a (110) zone axis with crystallographic
terminations corresponding to (111) surfaces.
The particle underwent rotation, and its evolved
shape led to the formation of a (100) facet. The
presence of (111) and (100) crystallographic
facets corresponds to the low-energy Winter-
bottom shape for Pt nanoparticles (25). The
electron beam will always influence obser-
vations in the electron microscope. In this
case, section 3 of the supplementary mate-
rials addresses this issue and compares en-
ergy transfers from the electron beam and
thermal processes for Pt surfacemigration. The
calculations show that thermally activated Pt
jumps are 106 times more likely than electron
beam activated jumps, suggesting that the
structural fluctuations are predominantly the
result of thermal processes.
The high spatiotemporal resolution images

revealed diffuse contrast that appeared to
“float” above the crystallographic terminations.
This component constantly changed in time
and space, and a layered chimney structure
(labeled in Fig. 2D) is a pronounced example
in which despite the nanoparticle being in a
zone axis orientation with clearly resolved
atomic columns, the chimney structure did
not show atomic column contrast (see movies
S2 and S3 in the supplementary materials,
section 8). This external surface layer was not
an artifact of denoising and could also be seen

(after suitable averaging) in the raw data (see
the supplementary materials, section 4).
Even low-energy (111) facets often had dif-

fuse layers present a substantial fraction of the
time. An example from a different particle in
which the diffuse surface layer transformed to
an ordered bulk terminated-like (111) Pt sur-
face is shown in Fig. 2, G and H. This trans-
formation implied that the diffuse layer, which
we call an adlayer, was primarily associated
with Pt atoms, but the atoms were neither
stationary nor in bulk terminated lattice sites.
The electron scattering fromCO ismuch smaller
than that from Pt, so the contribution to the
diffuse layer signal from CO is not apparent.
Consideration of the image contrast suggests
(see the supplementary materials, section 7)
that similar numbers of atoms are present in
rows C and D in Fig. 2, G and H). As shown by
Fig. 2 and the associated images in the supple-
mentary materials, section 4, and movies S2,
S3, S5, S6, and S7 in the supplementary mate-
rials, section 8, the surface is constantly trans-
forming between ordered crystallographic
terminations and disordered adlayers on the
nanoparticles studied here. Occasionally, the
adlayer is associated with the nucleation or
dissolution of a crystalline layer on the nano-
particle, whereas other times, an existing crys-
talline layer transforms to an adlayer and
then back to a crystalline layer, as seen in
Figs. 2 and 3.
Adlayers composed of diffusing atoms have

been reported during thin film growth and the
particle sintering that occurs through Ostwald
ripening, but we are not aware that this phe-
nomenon has been directly observed on nano-
particles. In Ostwald ripening of supported
metal particles, adatoms diffuse on the metal
surface, detach from the particles, andmigrate
across the support to join other larger particles
(26). In the present case, the strong interaction
with CO disrupted metal-metal surface bonds,
which increased the likelihood that Pt atoms
detached from lattice sites and migrated.
Moreover, most nanoparticles would not have
the correct number of atoms to form complete
(111) and (100) layers to make the perfect
Winterbottom shapes. This incomplete layer
filling would increase the concentration of
low-coordination Pt atoms at step edges and
corners sites, which would make adatom de-
tachment more facile. Once the atoms de-
tached from crystal lattice sites, they would
likely be highly mobile. For example, the mi-
gration energy of Pt on Pt(111) surface is ~0.3 eV,
which could result in millions of jumps per
second at room temperature (27) (see the sup-
plementary materials, section 3).

Strain effects and fluxionality

The surface instabilities generate dynamic
strain fields that penetrate below the sur-
face andmay trigger disruptions of subsurface

A G

F

E

C

B

H

D

Fig. 2. Surface dynamics in Pt particles. (A to F) Variation in the surface of a 1.2-nm Pt particle in a CO
atmosphere during a time period of 360 ms. The diffuse contrast at the surface of the nanoparticle are
the dynamic adlayers of moving atoms. Rapid surface diffusion caused particle shape evolution, such as
the formation of metastable chimney structures and (100) facets. (G and H) Two-nanometer particle showing
a disordered fluxional adlayer (D) transforming into a (111) crystallographic termination (C).
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layers. Figure 3 (and movie S5 in the supple-
mentary materials, section 8) captures the
occurrence of a crystallographic shearing event
taking place on a plane just below the surface
leading to the formation of a stacking fault. In
this case, a (111) Pt plane slid laterally, causing
the ideal face-centered cubic stacking sequence
(Fig. 3A) to transform into a hexagonal close-
packed surface domain (Fig. 3E and the sup-
plementary materials, section 5). At the same
time, the particle underwent a rigid body rota-
tion of ~10° clockwise, whichmade the (111) Pt
plane parallel to the (111) surface of the CeO2.
The temporal evolution shows that the sys-

tem passed through a transition state lasting
~13 ms (Fig. 3C), during which time the entire
(111) plane showed streaked contrast charac-
teristic of structural disorder or motion. Sim-
ultaneously, the adjacent surface layers on the
left and upper left side of the particle showed
adlayer contrast. This observation demonstra-
ted that instabilities associated with surface
adlayers could destabilize the crystal structure
below the surface.
The adlayers renucleated into ordered crys-

tallographic terminations as the stacking fault
was created (Fig. 3, D and E) and the structure
stabilized. The stabilization associated with
stacking fault formation was short lived, and
the particle underwent a reverse shear 600ms
later. The surface and subsurface layers then
became very dynamic, which led to the entire
particle becoming fluxional, manifesting as
rapid changes in atomic structure, particle
shape, and orientation (Fig. 3, F to J; movie S5
in the supplementarymaterials, section 8; and

discussion in the supplementary materials,
section 4). The structure present in Fig. 3J
was not easy to determine. The raw data (see
movie S4 raw) showed very low contrast with
a sparse, rapidly changing phase contrast
speckle indicative of rapid changes occurring.
The denoiser picked out the stronger features
of the speckle pattern, but these did not cor-
respond to atomic columns. The particle may
also have been changing more rapidly than
the frame time. Each frame would then have
been a superposition of images of the particle
with different structures and orientations, and,
for phase contrast imaging, this would wash
out the contrast in the recorded frame. This
entire particle fluxionality was more frequent-
ly observed in the smaller particles <1.5 nm
(see movie S7 in the supplementary materials,
section 8). We may hypothesize that adlayer-
initiated disruptions below the surface were
more likely when the surface-to-volume ratio
was higher and the contact areawith the oxide
support was smaller, making small particles
less stable.

Quantifying fluxionality

To explore this hypothesis in greater depth, we
have developed an approach to quantify the
order and/or disorder in images based on
topological data analysis, specifically bymeans
of summaries of persistent homology (28). A
brief description of the approach is given in
the supplementary materials, section 6. Per-
sistent homology tracked the change in the
degree of connectivity between dark (or light)
pixels in a single image during intensity thresh-

olding, and in a more ordered image, this con-
nectivity wasmore persistent with thresholding.
Specifically, the so-called accumulated lifetime
persistent survival (ALPS) statistic acts as a
measure of structural order in the image. This
summary is normalized for particle size in
such a way that gives a value near unity in
the vacuum (corresponding to no order or con-
trast). An advantage of this approach is that it
makes no assumptions about the form of the
image (that is, the presence of atomic columns
or fringes, etc.), so it can be applied to images
from particles in any orientation. Applying
this approach to a sequence of images from
the same particle provided a quantitativemea-
sure of the order evolution with time and
allowed comparison of the degrees of order
between nanoparticles.
The ALPS statistic, plotted as a function of

time in Fig. 4A for the particle shown in Fig. 3,
had values ranging from ≥1.3, which corre-
spond to ordered structures, to values ≤1.1,
which correspond to low degrees of order.
The rapid small ALPS fluctuations of ~0.1 unit
were not noise but were associated with con-
stantly changing surface structures. The plot
in Fig. 4A provides a quantitative, high-level
view of particle stability and explicitly shows
the time that the system spends in metastable
ordered states versus highly disordered states.

Particle-size effects

We applied ALPS statistics to quantitatively
compare the structural dynamics in nanopar-
ticles of different size in 23 movies (~25,000
frames) from particles in the size range 0.7

A B C D E

F G H I J

Fig. 3. Dynamics at subsurface sites and nanoparticle fluxionality. (A to
E) Sequence of images of Pt nanoparticle showing the formation of a
subsurface stacking fault. (A) Presheared state of the nanoparticle. Blue
dotted line is perpendicular to a set of (111) planes, with the bulk showing
usual ABCA stacking and blue arrows showing the location of the A layers.
(B) The (111) plane (marked by white arrow) and (100) plane (marked
by yellow arrow) showing streaking contrast demonstrating the onset of plane
instability. (C) The (111) and (100) dynamic adlayer formation indicating

that pronounced atomic motion occurred at rates beyond the frame exposure
time of 13 ms. Rigid body rotation was also observed of the entire nanoparticle.
(D and E) The (111) plane stabilizes in its new shifted position forming a
stacking fault showing ABCB stacking (yellow arrow). The adlayers transformed
back to crystallographic terminations. (F to J) Surface interface instabilities
drove structural dynamics and the phase contrast images became highly
fluxional. The entire particle was destabilized, which resulted in rapid changes
in crystal orientation and structure.
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to 4 nm (for details, see the supplementary ma-
terials, section 6, and movies S6 and S7 in sec-
tion 8). To simplify and facilitate the comparison
between particles, the mean and standard de-
viation (SD) of each ALPS plot were determined
andplotted as a function of particle size in Fig. 4,
B and C. The mean value of the ALPS statistic
showed an approximately linear dependence
with particle size (and surface-to-volume ratio),
quantitatively confirming the hypothesis that
instability is inversely proportional to size.
The SD showed a poorly defined maximum

in the size range 1.5 to 3 nm, which suggested
that there were three categories of structural
dynamics for the Pt particles. The first cat-
egory had the largest ALPS value (>1.5) and
relatively small SDs, corresponding to larger
particles that remain well ordered through-
out the period of observation. Although their
surfaces were dynamic, their ALPS statistic
was dominated by the bulk because of their
small surface-to-volume ratio, and these par-
ticles remained relatively stable.
The second category had the smallest ALPS

values (<1.2) and small SDs. These were par-
ticles 1.5 nm or smaller and had high degrees

of disorder. Their low SDs showed that they
were rarely in highly ordered states. From in-
spection of the denoised movies, the high
degree of disorder was associated with high
degrees of fluxionality. Because the particles
have a high surface-to-volume ratio, fluxional
surface adlayers drove fluxionality for the en-
tire particle.
The third category showed a wide range of

SDs and a wide range of ALPS values. They
were predominantly intermediate-sized par-
ticles between 1.5 and 3 nm, whichmanifested
very diverse behaviors and could either be ex-
tremely fluxional or relatively stable. The par-
ticle dynamics depended on the degree of
stability of their surfaces and on the stability
of the interface with the support.
The particle shown in Figs. 3 and 4 belonged

to this third category and exhibited different
degrees of order at different time periods. For
period A in Fig. 4A, the particle shows a well-
defined orientation with the support. Activa-
tion of the reverse shear (Fig. 3F) marked a
period of more pronounced structural instab-
ility (period B), whichmanifested through large
surface and interface changes.

The availability of the denoised atomic-
resolution image for each ALPS point allowed
the structural origin for the stability or in-
stability transformation to be explored. For
example, the degree of instability was oscil-
latory throughout period B, and inspection of
the images shows that thiswas associatedwith
a set of Pt (111) fringes (making an angle of 77°
with the support) that repeatedly appeared and
disappeared. The particle continuously attemp-
ted to establish a stable interfacial structure
with the CeO2 support but failed to achieve a
stable configuration. The Pt particle surface was
extremely fluxional throughout this process.
The particle then entered a more ordered

period C, characterized by Pt (111) fringes that
made an angle of ~30° with respect to the
support. Another shearing operation (at frame
1141) caused the particle to enter a brief period
of instability before entering period D, an
ordered stable period characterized by Pt(111)
fringes making and angle of ~87° with respect
to the support. The transitions from meta-
stable to unstable configurations represented
a rich and complex space, but the topological
analysis allowed this complexity to be quantified

A

B C

Fig. 4. Quantifying global structural dynamics in Pt nanoparticles. (A) The order parameter (ALPS) versus frame number (frame time = 1/75 s ~13 ms) for the
same particle showing the transition from ordered to disorders configuration (inserts are typical images for each of the four stable time periods A to D). (B and C) The
mean order parameter and SD as a function of particle size for different nanoparticle measured with 13-ms time resolution over periods of 8 to 15 s.
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in time and the denoised images permitted
the associated evolutionary structural path-
ways to be elucidated.

Discussion

Consideration of thermodynamic and kinetic
factors can provide a framework from which
to interpret the fluxional observations. Before
exposure to CO, most of the Pt particles ex-
hibited the thermodynamically favoredWinter-
bottom shape consisting of (111) and (100)
facets (see the supplementary materials, sec-
tion 2). The structural dynamics initiated al-
most immediately after exposure to CO with
the particles evolving away from the Winter-
bottom shape. The behavior was stochastic
and particles in the 1.5- to 4-nm range did tem-
porarily revisit the equilibrium shape for var-
ious periods of time. The smaller ones were
too fluxional to make any strong statement
about a favored shape. The disruptive and dy-
namic role of the chemisorbed CO on the sta-
bility of the Pt surface facets and equilibrium
shape should not be underestimated. The large
chemisorption energy (~1.5 eV) was associated
with significant electron transfer between the
metal and the molecule and disrupted the
local Pt–Pt bonding, which led to enhanced Pt
migration accelerating the kinetics. However,
the concept of a global equilibrium shape in
such an environment for small particles may
be questionable. The equilibrium shape is dom-
inated by surface energies, and the CO will
cause dynamics changes in surface energies
because it was diffusing on the surface and
also adsorbed and desorbed with time at cer-
tain sites. For example, the local surface energy
of a Pt (111) facet with 50% CO coverage will
change if the coverage spontaneously changes
to 40% or 60%. Consequently, the thermody-
namic driving force was constantly changing
on the atomic scale, and there was no well-
defined Winterbottom shape.
Thermal fluctuations constantly perturbed

the system, locally driving surface migration,
but there was no global equilibrium shape for
the system on the timescale of our observa-
tion. Any conclusion that the observed transi-
tion structures, such as stacking faults and
chimney structures, are high-energy configu-
rations may be incomplete because we are not
able to directly observe the associated CO sur-
face overlayer. The complex surface dynamics
that were observed at the atomic level can be
understood from a kinetic perspective by con-
sidering the Arrhenius relations governing the
migration rate r (r = A exp(–Ea/kT), where k is
Boltzmann’s constant). Any process in or on a
material with an activation energy Ea ≤ 0.7 eV
will occur many times per second at room
temperature (the attempt frequency, A, can
be approximated as the phonon frequency
~1012 Hz). Prior TEM observations of static
nanoparticle surfaces at room temperature

may have appeared stationary, because the
image recording averaged over the atomic-
level dynamics. Going to higher temporal reso-
lution revealed that atomic-level dynamics were
constantly taking place. The surface will only
become truly static at absolute zero. Although
the observations reported here are in CO, it
seems likely thatmany nanoparticle surfaces
may show fluxionality under a wide range of
different conditions.
In conclusion, with the help of a newly de-

veloped unsupervised AI denoising algorithm
and in situ electron microscopy, we made
atomic-resolution observations of nanopar-
ticle surfaces with time resolutions down to
10 ms and under a moderate electron dose.
The structural dynamics of Pt nanoparticles
in a CO atmosphere were observed and char-
acterized as a function of particle size. The
nanoparticle surfaces continuously transitioned
between relatively stable crystallographic ter-
minations andmore active adlayers composed
of rapidly diffusing Pt atoms. The atoms of the
adlayer temporarily “floated” on top of the
conventional crystallographic terminations
and sometimes nucleated, adding a crystal-
lographic monolayer to the surface or diffus-
ing away. This process was continuous with
the crystallographic terminations repeatedly
stabilizing and destabilizing on timescales
of <100ms at room temperature. The surface
structural dynamics and stress fields pene-
trated below the surface and led to defect for-
mation such as stacking faults. Many of the
particles, especially the smaller ones, were
observed to go through extended periods of
extreme structural instability. Through the ap-
plication of topological data analysis, we were
able to quantify and differentiate periods when
the particle was in a well-ordered metastable
state from the more fluxional disordered con-
figurations. The high spatiotemporal informa-
tion from the denoiser allowed the short-lived
atomic-resolution elementary structural steps
associated with nanoparticle transitions to be
identified. The combination of AI-powered un-
supervised denoising and in situ electron mi-
croscopy provides a new approach with which
to investigate the field of atomic structural dy-
namics and stability. This will provide a new
perspective for fundamental materials research
by allowing functionalities to be correlated, not
only to static atomic structure, but also to local
structural dynamics.
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