РУС ENG
Министерство науки и высшего образования Российской Федерации
Российская Академия Наук

Группа теоретической химии (№24)

к.ф.-м.н. Медведев Михаил Геннадьевич
Заведующий: к.ф.-м.н. Медведев Михаил Геннадьевич
ORCID: 0000-0001-7070-4052 ColabID: R-386BE-0850A-CG10N Researcher ID: N-3097-2016 h-index: 19
Основные направления исследований
  • Моделирование химических процессов: моделирование химических реакций (TetrahedChem2024, JOC2024, JOC2023, OPRD2023, EJOC2022, JACS2022, JACS2021, JACS2020, ANIE2017), биологических процессов (JCIM2023, JACS2017), фотохимических процессов (ChemEur2023, D&P2022, D&P2019), электрохимических процессов (OrgChemFront2024), а также процессов в твердом теле (JPCLett2021).
  • Развитие методов теоретической химии. К данному направлению относится как тестирование существующих методов (JPCLett2024, Science2022, ChemSocRev2021_1, Science2017), так и создание новых (JCIM2024, JCIM2023, MendComm2017), а также разработка общих подходов для дизайна новых методов (JPCA2024, WCMS2023) и доработка программных комплексов под наши задачи (MendComm2021). Под методами теоретической химии мы понимаем любые инструменты, используемые в направлении 1: методы DFT, силовые поля, базисные наборы, методы конформационного поиска, методы автоматизации молекулярного моделирования и т.д.
  • Приложение методов искусственного интеллекта к химическим задачам: как к ускорению/уточнению молекулярного моделирования (Science2022), так и к другим задачам, возникающим в ходе химических исследований, как например ретросинтез (наша разработка в рамках мегагранта ИХР РАН) или корректировка показаний детектора (ACSApplPolyMat2024).
  • Моделирование процессов взаимодействия между нейронами; этот класс проектов не имеет прямого отношения к химии и появился из нашего интереса к пониманию процессов мышления и нейроморфным процессорам. Здесь есть два поднаправления: создание нейроморфных сетей для проектов направлений 2 и 3, и углубление нашего понимания того, как работает человеческий мозг. В рамках этого направления мы строим модели спайковых нейронных сетей (таких как в мозге) и смотрим на общие закономерности в их работе и обучении.
Лучшие результаты

  В 2023-2024 годах разработан и имплементирован (https://github.com/TheorChemGroup/Ringo) алгоритм конформационного поиска на основе метода обратной кинематики Ringo. Он позволяет анализировать конформационную подвижность любой полициклической молекулы методом обратной кинематики и выделять степени свободы молекулы — то есть набор ее двугранных углов, способных к независимому вращению при фиксированных длинах связей и валентных углах. Разработанный алгоритм превосходит все альтернативные методы конформационного поиска циклических молекул (метадинамика, дистанционная геометрия и LowModeMD) по скорости и эффективности сэмплирования конфигурационного пространства полициклических систем. JCIM2024WCMS2023.

 

 

✓  В 2024 году разработан подход для оценки неопределенности в соотношении продуктов химической реакций при ее моделировании методом молекулярной динамики. Данный подход позволил выявить ошибки в предшествующих исследованиях, и в будущем позволит повысить надежность как качественных, так и количественных выводов в подобном моделировании. JPCLett2024

 

 

✓  В 2023 году совместно с группой Федора Новикова в ИОХ РАН разработан алгоритм расчета относительных биологических активностей биоизостерных молекул, имеющий точность сравнимую с экспериментом. Биоизостеры — это молекулы, которые отличаются друг от друга заместителями, но имеют близкие конформационные профили, поэтому одинаковым образом связываются с белком. Биоизостерные замены проводят с целью улучшения метаболической стабильности и увеличения активности соединений. Разработанный метод позволяет быстро и точно определить, замена каких атомов водорода в молекуле на атомы фтора повышает её биологическую активность. JCIM2023

 

✓  В 2023 году совместно с коллегами из лаборатории № 110 ИНЭОС РАН проведено экспериментальное и теоретическое исследование фотоизомеризации соединений на основе цимантрена и хинозалинона. Впервые показано, что клеточный эффект растворителя может контролировать исход фотохимической реакции с участием цимантренового производного. Квантовохимические расчеты позволили установить механизм реакции, включающий фотоиндуцированное отщепление CO c последующим быстрым обратным присоединением за счет клеточного эффекта. Данный механизм был впоследствии подтвержден в эксперименте при облучении ультразвуком, который разрушает клетки растворителя и таким образом препятствует обратному присоединению CO, направляя реакцию к одному из продуктов. ChemEur2023

 

✓  В 2020-2023 годах сотрудниками Группы был смоделирован ряд разработанных в Лаборатории №13 ИОХ РАН реакций синтеза нового класса соединений — каркасных органических пероксидов, перспективных соединений для фармацевтики и агрохимии. С помощью квантовохимического моделирования установлены механизмы этих реакций и найден ответ на главную загадку этого класса процессов — их высокую селективность — оказалось, что за нее отвечает обратный альфа-эффект. Полученный результат делает сборку органических пероксидов предсказуемой и позволит в будущем более быстро и эффективно создавать новые каркасные молекулы. JOC2023, JACS2022, JACS2021, JACS2020

 

✓  В сотрудничестве с коллегами из Лаборатории №13 ИОХ РАН, Университета Штата Флорида (США) и Университета Бу-Али Сина (Иран) было произведено сопоставление основных моделей стереоэлектронных эффектов: орбитальной, электростатической и стерической. Было показано, что, хоть энергия молекулы и складывается из многих составляющих (энергии химических связей и орбитальных взаимодействий, электростатических и стерических взаимодействий), именно закономерности изменений в орбитальных взаимодействиях обладают наибольшей предсказательной силой в задачах описания химических реакций. Также были определены ключевые стереоэлектронные взаимодействия наиболее распространенных классов органических соединений и найдены закономерности их влияния на химические и физические свойства. Такие стереоэлектронные эффекты с участием атома кислорода могут быть использованы химиками для создания новых реакций и контроля пути их протекания. ChemSocRev2021_1, ChemSocRev2021_2

 

  В 2022 году опубликован комментарий в Science, в котором показано, что в статье 2021 года британская компания DeepMind, занимающаяся искусственным интеллектом, привела недостаточно надежные доказательства корректности работы своего функционала DM21 с системами, содержащими нецелое количество электронов. Надежные квантовохимические предсказания позволяют заменить часть экспериментов с дорогостоящими реактивами на работу с цифровыми аналогами реальных химических систем, однако, для получения достоверных предсказаний квантовохимическими методами функционалы должны уметь работать с дробным количеством электронов. Science2022

 

✓  В 2017 году руководителем Группы и соавторами была разработана методология оценки качества электронных плотностей атомных систем, получаемых из методов теории функционала плотности (DFT). С ее помощью было показано, что наиболее популярные на тот момент методы DFT были переобучены и могут быть ненадежны при моделировании систем/свойств, далеких от тех, на которых они были обучены. Также, были выявлены надежные функционалы DFT, которые не являются переобученными; к ним относятся функционалы PBE0, B3PW91, B98, TPSS, SCAN, OLYP и другие. Science2017

 

 

Избранные публикации последних лет
Новости института
Исследователями ИОХ РАН получен новый каркас для синтеза высокоэнергетических соединений Исследователями ИОХ РАН получен новый каркас для синтеза высокоэнергетических соединений
Создание высокоэнергетических соединений со сбалансированными свойствами продолжает оставаться одним из основных направлений исследований в современной…
В ИОХ РАН изучено фотохимическое поведение структур, содержащих два нитронных фрагмента В ИОХ РАН изучено фотохимическое поведение структур, содержащих два нитронных фрагмента
В последние несколько десятилетий фотохимические реакции привлекают большое внимание исследователей в различных областях химии и технологии. Такие методы…
Сотрудник ИОХ РАН получил Премию Правительства Москвы! Сотрудник ИОХ РАН получил Премию Правительства Москвы!
Объявлены победители Конкурса на соискание Премии Правительства Москвы молодым ученым за 2024 год. Эта награда присуждается за выдающиеся достижения в фундаментальных…
В ИОХ РАН получен новый фторированный реагент В ИОХ РАН получен новый фторированный реагент
Значительное количество молекул с самой разнообразной биологической активностью содержат атомы фтора. По этой причине введение в органические соединения…
Институт органической химии имени Н.Д. Зелинского РАН поздравляет аспирантов с их профессиональным праздником! Институт органической химии имени Н. Д. Зелинского РАН поздравляет аспирантов с их профессиональным праздником!
Сегодня в аспирантуре ИОХ РАН обучается 104 молодых исследователя с первого по четвертый курс. Ежедневно они проводят эксперименты, выполняют научные исследования…
Исследователями ИОХ РАН предложен электрохимический метод цианирования гетероциклических соединений Исследователями ИОХ РАН предложен электрохимический метод цианирования гетероциклических соединений
Циано-группа является одним из универсальных синтонов в органической химии. На протяжении долгого времени в качестве цианирующего агента применяли синильную…

Группа теоретической химии (№24) ORCID: 0000-0001-7070-4052 ColabID: R-386BE-0850A-CG10N Researcher ID: N-3097-2016 h-index: 19 ST LUCE https://zioc.ru/ 5 100 .00 RUB http://schema.org/InStock